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Classification problems

Definition

A classification problem is a pair (X,E), where X is a Polish space and
E is an analytic equivalence relation on X.

Recall. A Polish space is a separable and completely metrizable
topological space. An equivalence relation E is analytic if it is the
continuous image of some Polish space under a continuous map.
Examples. This formal setup encompasses many natural problems:

(Graphs(N),'iso) the isomorphism problem between countable
graphs.

(U(H),'U ) the problems of classifying unitary operators of a
separable Hilbert space H up to unitary equivalence.

More generally. (X,EG
X), where G is a Polish group acting continuously on

a Polish space X and EG
X is the associated orbit equivalence relation:

xEG
Xx

′ ⇐⇒ [x]G = [x′]G ⇐⇒ ∃g ∈ G gx = x′.
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Classification problems

Are x and y equivalent?
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Assigning invariants

Invariants for graph isomorphism (Graphs(N),'iso):

G 7→ maxdeg(G), mapping G to its max degree;

G 7→ conn(G), mapping G to the #(connected components);

Notice that {maxdeg(·), conn(·)} is not a complete set of invariants.

Definition

A classification problem (X,E) is concretely classifiable if there is a Borel
map f from X to some Polish space Y so that xEx′ ⇐⇒ f(x) = f(x′).
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Concrete Classification

Definition

A classification problem (X,E) is concretely classifiable if there is a Borel
map f from X to some Polish space Y so that xEx′ ⇐⇒ f(x) = f(x′).

Friedman and Stanley: (Graphs(N),'iso) is not concretely classifiable.

What about (U(H),'U )?

• When H is of finite dimension n, then assignment U(H) 7→ Tn which
maps each element of U(H) to its eigenvalues (λ1, . . . , λn) in increasing
order provides a concrete classification.

• Choksi, Nadkarni: when H is the infinite dimensional separable
Hilbert space then the problem (U(H),'U ) is not concretely classifiable.
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Relative complexity of classification problems

Let (X,E) and (Y, F ) be two classification problems.
A Borel reduction from E to F is a Borel map f : X → Y with

xEx′ ⇐⇒ f(x)Ff(x′).

We write (X,E) ≤B (Y, F ) when such a Borel reduction exists.

Notice that (X,E) is concretely classifiable iff (X,E) ≤B (Y,=), for some
Polish space Y .
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Relative complexity of classification problems

Definition

Let (X,E) and (Y, F ) be two classification problems. A Borel reduction
from E to F is a Borel map f : X → Y with xEx′ ⇐⇒ f(x)Ff(x′).
We write (X,E) ≤B (Y, F ) when such a Borel reduction exists.

Example. While (U(H),'U ) is not concretely classifiable, by the spectral
theorem we can Borel reduce (U(H),'U ) to the problem

(Prob(T),'null)

of measure equivalence between Borel probability measures on T.

Can we find “simpler” invariants than this?

Kechris, Sofronidis: (U(H),'U ) does not Borel reduce to any
“isomorphism problem between countable structures,” e.g.

(U(H),'U ) 6≤B (Graphs(N) 'iso)

Aristotelis Panagiotopoulos (Caltech) Games Orbits Play PLS12 7 / 17



Relative complexity of classification problems

Definition

Let (X,E) and (Y, F ) be two classification problems. A Borel reduction
from E to F is a Borel map f : X → Y with xEx′ ⇐⇒ f(x)Ff(x′).
We write (X,E) ≤B (Y, F ) when such a Borel reduction exists.

Example. While (U(H),'U ) is not concretely classifiable, by the spectral
theorem we can Borel reduce (U(H),'U ) to the problem

(Prob(T),'null)

of measure equivalence between Borel probability measures on T.

Can we find “simpler” invariants than this?

Kechris, Sofronidis: (U(H),'U ) does not Borel reduce to any
“isomorphism problem between countable structures,” e.g.

(U(H),'U ) 6≤B (Graphs(N) 'iso)

Aristotelis Panagiotopoulos (Caltech) Games Orbits Play PLS12 7 / 17



Relative complexity of classification problems

Definition

Let (X,E) and (Y, F ) be two classification problems. A Borel reduction
from E to F is a Borel map f : X → Y with xEx′ ⇐⇒ f(x)Ff(x′).
We write (X,E) ≤B (Y, F ) when such a Borel reduction exists.

Example. While (U(H),'U ) is not concretely classifiable, by the spectral
theorem we can Borel reduce (U(H),'U ) to the problem

(Prob(T),'null)

of measure equivalence between Borel probability measures on T.

Can we find “simpler” invariants than this?

Kechris, Sofronidis: (U(H),'U ) does not Borel reduce to any
“isomorphism problem between countable structures,” e.g.

(U(H),'U ) 6≤B (Graphs(N) 'iso)

Aristotelis Panagiotopoulos (Caltech) Games Orbits Play PLS12 7 / 17



Relative complexity of classification problems

Definition

Let (X,E) and (Y, F ) be two classification problems. A Borel reduction
from E to F is a Borel map f : X → Y with xEx′ ⇐⇒ f(x)Ff(x′).
We write (X,E) ≤B (Y, F ) when such a Borel reduction exists.

Example. While (U(H),'U ) is not concretely classifiable, by the spectral
theorem we can Borel reduce (U(H),'U ) to the problem

(Prob(T),'null)

of measure equivalence between Borel probability measures on T.

Can we find “simpler” invariants than this?

Kechris, Sofronidis: (U(H),'U ) does not Borel reduce to any
“isomorphism problem between countable structures,” e.g.

(U(H),'U ) 6≤B (Graphs(N) 'iso)

Aristotelis Panagiotopoulos (Caltech) Games Orbits Play PLS12 7 / 17



The universe of classification problems (X,E)

• All orbit equivalence relations

• Classifiable by countable structures

• Concretely classifiable

(U(H),'U ) ·
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The universe with respect to dynamics

• All orbit equivalence relations
i.e. by actions of Polish groups

• Classifiable by countable structures
i.e. by actions of non-Archimedean

Polish groups

• Concretely classifiable
i.e. by actions of compact Polish groups

(U(H),'U ) ·

Question.
Can we classify (U(H),'U ) using invariants which come from the action
of some “algebraically tame” Polish group, e.g., Abelian, solvable, etc.?
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Yet another complexity class
• All orbit equivalence relations

i.e. by actions of Polish groups

•

Classifiable by countable structures
i.e. by actions of non-Archimedean

Polish groups

•
Classifiable by actions of

CLI Polish groups

• Concretely classifiable
i.e. by actions of compact Polish groups

(U(H),'U ) ·

Theorem (Lupini, P.)

The classification problem (U(H),'U ) does not reduce to an orbit
equivalence relation induced by an action of a CLI group.

Note. By a theorem of Solecki solvable Polish groups are CLI.
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Dynamical obstructions to classification

Let Gy X be a continuous Polish group action and let EG
X be the

associated orbit equivalence relation.

[Folklore] If Gy X is generically ergodic, i.e., if it has dense and
meager orbits, then (X,EG

X) is not concretely classifiable.

[Choksi, Nadkarni] The action U(H) y U(H) by conjugation is generically
ergodic.

[Hjorth] If Gy X is turbulent, then (X,EG
X) is not classifiable by

countable structures.
[Kechris, Sofronidis] The action U(H) y U(H) by conjugation is
turbulent.

We develop dynamical obstructions to classification by CLI group actions.
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Left completions and CLI groups

Let G be a Polish group. A sequence (gn) in G is left-Cauchy if

(gn) is Cauchy with respect to some left-invariant metric on G
⇐⇒

(gn) is Cauchy with respect to any left-invariant metric on G

The left-completion Ĝ of G is the completion of G with respect to some
left-invariant metric. Ĝ is always a monoid.

If G is CLI then Ĝ = G;

Ŝ∞ is the monoid of all injections γ : N→ N;

Û(H) is the monoid of all linear isometric embeddings T : H → H.

Definition (Becker)

Let X be a Polish G-space. We say that x left-embeds in y if for any
left-invariant metric d on G there exists a d-Cauchy sequence (gn) so that
gnx→ y.
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Ŝ∞ is the monoid of all injections γ : N→ N;
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An obstruction to classification by CLI groups.

Theorem (Lupini, P.)

Let X be a Polish G-space. Assume that for any comeager subset C of X
there exist x, y ∈ C so that:

1 [x] 6= [y];

2 x left-embeds in y.

Then EX
G is not classifiable by CLI group actions.
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The application
Let S be a Polish space and let Inj(N, S) be the subspace of SN consisting
of the injective sequences from N to S. Consider the action of S∞ on
Inj(N, S) by permuting coordinates and denote by Ectbl the associated
equivalence relation.

(λ1, λ2, . . .) Ectbl (λ′1, λ
′
2, . . .) ⇐⇒ {λ1, λ2, . . .} = {λ′1, λ′2, . . .}

(λ1, λ2, . . .) ↪→left (λ′1, λ
′
2, . . .) ⇐⇒ {λ1, λ2, . . .} ⊆ {λ′1, λ′2, . . .}

Using the dynamical criterion for non-classifiability by CLI group actions
one easily shows that the equivalence relation Ectbl is not classifiable by
CLI group actions.

Theorem (Lupini, P.)

Let H be the separable infinite dimensional Hilbert space. Then 'U on
U(H) is not classifiable by CLI group actions.
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Higher dimensional obstructions

Let X be a Polish G-space and let x, y ∈ X.

Definition

The Becker graph B(X/G) associated to Gy X is the directed graph:

{[x] : x ∈ X} is the collection of all vertexes of B(X/G);

we add an arrow [x]→ [y] whenever x left-embeds into y.

Theorem (Lupini, P.)

If the Polish G-space X is generically 1-dimensional, i.e., for any
comeager subset C of X there exist x, y ∈ C so that:

1 [x] 6= [y];

2 x left-embeds in y;

then EX
G is not Borel reducible to an orbit equivalence relation EY

H

induced by an action of a CLI group H.
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Higher dimensional obstructions

In a recent joint work with A.Kruckman we study higher dimensional
obstructions to classification. The notion of dimension we define is based
on whether B(X/G) contains n-cubes as subgraphs.
The n-cube is the diagraph ∆n =

(
P({0, . . . , n− 1}),⊆

)

We use this to obtain anti-classification for isomoprhism relations between
certain countable structures which have appeared in the work of Shelah
and Baldwin, Koerwien, Laskowski
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Thαnk you!
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