# Games orbits play & obstructions to Borel reducibility

Aristotelis Panagiotopoulos joint with M.Lupini

California Institute of Technology

2019 Panhellenic Logic Symposium

#### Definition

A classification problem is a pair (X, E), where X is a Polish space and E is an analytic equivalence relation on X.

#### Definition

A classification problem is a pair (X, E), where X is a Polish space and E is an analytic equivalence relation on X.

Recall. A **Polish space** is a separable and completely metrizable topological space. An equivalence relation E is **analytic** if it is the continuous image of some Polish space under a continuous map.

#### Definition

A classification problem is a pair (X, E), where X is a Polish space and E is an analytic equivalence relation on X.

Recall. A **Polish space** is a separable and completely metrizable topological space. An equivalence relation E is **analytic** if it is the continuous image of some Polish space under a continuous map. Examples. This formal setup encompasses many natural problems:

- $(Graphs(\mathbb{N}), \simeq_{iso})$  the isomorphism problem between countable graphs.
- $(\mathcal{U}(\mathcal{H}), \simeq_U)$  the problems of classifying unitary operators of a separable Hilbert space  $\mathcal{H}$  up to unitary equivalence.

#### Definition

A classification problem is a pair (X, E), where X is a Polish space and E is an analytic equivalence relation on X.

Recall. A **Polish space** is a separable and completely metrizable topological space. An equivalence relation E is **analytic** if it is the continuous image of some Polish space under a continuous map. Examples. This formal setup encompasses many natural problems:

- $(\operatorname{Graphs}(\mathbb{N}), \simeq_{iso})$  the isomorphism problem between countable graphs.
- $(\mathcal{U}(\mathcal{H}), \simeq_U)$  the problems of classifying unitary operators of a separable Hilbert space  $\mathcal{H}$  up to unitary equivalence.

More generally.  $(X, E_X^G)$ , where G is a Polish group acting continuously on a Polish space X and  $E_X^G$  is the associated **orbit equivalence relation**:

$$xE_X^G x' \iff [x]_G = [x']_G \iff \exists g \in G \ gx = x'.$$



Are x and y equivalent?





Invariants for graph isomorphism  $(Graphs(\mathbb{N}), \simeq_{iso})$ :

- $G \mapsto \operatorname{maxdeg}(G)$ , mapping G to its max degree;
- $G \mapsto \text{conn}(G)$ , mapping G to the #(connected components);



Invariants for graph isomorphism  $(Graphs(\mathbb{N}), \simeq_{iso})$ :

- $G \mapsto \operatorname{maxdeg}(G)$ , mapping G to its max degree;
- $G \mapsto \text{conn}(G)$ , mapping G to the #(connected components);

Notice that  $\{\max(\cdot), \operatorname{conn}(\cdot)\}\$  is **not** a complete set of invariants.



Invariants for graph isomorphism  $(Graphs(\mathbb{N}), \simeq_{iso})$ :

- $G \mapsto \operatorname{maxdeg}(G)$ , mapping G to its max degree;
- $G \mapsto \text{conn}(G)$ , mapping G to the #(connected components);

Notice that  $\{\max(\cdot), \operatorname{conn}(\cdot)\}\$  is **not** a complete set of invariants.

#### Definition

A classification problem (X,E) is concretely classifiable if there is a Borel map f from X to some Polish space Y so that  $xEx' \iff f(x) = f(x')$ .

#### Definition

A classification problem (X,E) is concretely classifiable if there is a Borel map f from X to some Polish space Y so that  $xEx' \iff f(x) = f(x')$ .

**Friedman and Stanley**:  $(Graphs(\mathbb{N}), \simeq_{iso})$  is **not** concretely classifiable.

#### Definition

A classification problem (X,E) is concretely classifiable if there is a Borel map f from X to some Polish space Y so that  $xEx' \iff f(x) = f(x')$ .

**Friedman and Stanley**:  $(Graphs(\mathbb{N}), \simeq_{iso})$  is **not** concretely classifiable.

What about  $(\mathcal{U}(\mathcal{H}), \simeq_U)$ ?

#### Definition

A classification problem (X,E) is concretely classifiable if there is a Borel map f from X to some Polish space Y so that  $xEx' \iff f(x) = f(x')$ .

**Friedman and Stanley**:  $(Graphs(\mathbb{N}), \simeq_{iso})$  is **not** concretely classifiable.

What about 
$$(\mathcal{U}(\mathcal{H}), \simeq_U)$$
?

• When  $\mathcal{H}$  is of **finite** dimension n, then assignment  $\mathcal{U}(\mathcal{H}) \mapsto \mathbb{T}^n$  which maps each element of  $\mathcal{U}(\mathcal{H})$  to its eigenvalues  $(\lambda_1, \dots, \lambda_n)$  in increasing order provides a concrete classification.

#### Definition

A classification problem (X,E) is concretely classifiable if there is a Borel map f from X to some Polish space Y so that  $xEx' \iff f(x) = f(x')$ .

**Friedman and Stanley**:  $(Graphs(\mathbb{N}), \simeq_{iso})$  is **not** concretely classifiable.

What about 
$$(\mathcal{U}(\mathcal{H}), \simeq_U)$$
?

- When  $\mathcal{H}$  is of **finite** dimension n, then assignment  $\mathcal{U}(\mathcal{H}) \mapsto \mathbb{T}^n$  which maps each element of  $\mathcal{U}(\mathcal{H})$  to its eigenvalues  $(\lambda_1, \dots, \lambda_n)$  in increasing order provides a concrete classification.
- Choksi, Nadkarni: when  $\mathcal H$  is the infinite dimensional separable Hilbert space then the problem  $(\mathcal U(\mathcal H), \simeq_U)$  is not concretely classifiable.



Let (X,E) and (Y,F) be two classification problems. A **Borel reduction** from E to F is a Borel map  $f\colon X\to Y$  with

$$xEx' \iff f(x)Ff(x').$$

We write  $(X, E) \leq_B (Y, F)$  when such a Borel reduction exists.



Let (X,E) and (Y,F) be two classification problems. A **Borel reduction** from E to F is a Borel map  $f\colon X\to Y$  with

$$xEx' \iff f(x)Ff(x').$$

We write  $(X, E) \leq_B (Y, F)$  when such a Borel reduction exists.

Notice that (X, E) is concretely classifiable iff  $(X, E) \leq_B (Y, =)$ , for some Polish space Y.

#### Definition

Let (X,E) and (Y,F) be two classification problems. A **Borel reduction** from E to F is a Borel map  $f\colon X\to Y$  with  $xEx'\iff f(x)Ff(x')$ . We write  $(X,E)\leq_B (Y,F)$  when such a Borel reduction exists.

#### Definition

Let (X,E) and (Y,F) be two classification problems. A **Borel reduction** from E to F is a Borel map  $f\colon X\to Y$  with  $xEx'\iff f(x)Ff(x')$ . We write  $(X,E)\leq_B (Y,F)$  when such a Borel reduction exists.

**Example.** While  $(\mathcal{U}(\mathcal{H}), \simeq_U)$  is **not** concretely classifiable, by the spectral theorem we can Borel reduce  $(\mathcal{U}(\mathcal{H}), \simeq_U)$  to the problem

$$(\operatorname{Prob}(\mathbb{T}), \simeq_{null})$$

of measure equivalence between Borel probability measures on  $\mathbb{T}$ .

#### Definition

Let (X,E) and (Y,F) be two classification problems. A **Borel reduction** from E to F is a Borel map  $f\colon X\to Y$  with  $xEx'\iff f(x)Ff(x')$ . We write  $(X,E)\leq_B (Y,F)$  when such a Borel reduction exists.

**Example.** While  $(\mathcal{U}(\mathcal{H}), \simeq_U)$  is **not** concretely classifiable, by the spectral theorem we can Borel reduce  $(\mathcal{U}(\mathcal{H}), \simeq_U)$  to the problem

$$(\operatorname{Prob}(\mathbb{T}), \simeq_{null})$$

of **measure equivalence** between Borel probability measures on  $\mathbb{T}$ .

Can we find "simpler" invariants than this?

#### Definition

Let (X,E) and (Y,F) be two classification problems. A **Borel reduction** from E to F is a Borel map  $f\colon X\to Y$  with  $xEx'\iff f(x)Ff(x')$ . We write  $(X,E)\leq_B (Y,F)$  when such a Borel reduction exists.

**Example.** While  $(\mathcal{U}(\mathcal{H}), \simeq_U)$  is **not** concretely classifiable, by the spectral theorem we can Borel reduce  $(\mathcal{U}(\mathcal{H}), \simeq_U)$  to the problem

$$(\operatorname{Prob}(\mathbb{T}), \simeq_{null})$$

of **measure equivalence** between Borel probability measures on  $\mathbb{T}$ .

Can we find "simpler" invariants than this?

**Kechris, Sofronidis**:  $(\mathcal{U}(\mathcal{H}), \simeq_U)$  does **not** Borel reduce to any "isomorphism problem between countable structures," e.g.

$$(\mathcal{U}(\mathcal{H}), \simeq_U) \not\leq_B (\operatorname{Graphs}(\mathbb{N}) \simeq_{\operatorname{iso}})$$

# The universe of classification problems (X, E)



#### The universe with respect to dynamics



#### The universe with respect to dynamics



#### Question.

Can we classify  $(\mathcal{U}(\mathcal{H}), \simeq_U)$  using invariants which come from the action of some "algebraically tame" Polish group, e.g., Abelian, solvable, etc.?

#### Yet another complexity class







#### Theorem (Lupini, P.)

The classification problem  $(\mathcal{U}(\mathcal{H}), \simeq_U)$  does not reduce to an orbit equivalence relation induced by an action of a **CLI** group.

Note. By a theorem of Solecki solvable Polish groups are CLI.

Let  $G \curvearrowright X$  be a continuous Polish group action and let  $E_X^G$  be the associated orbit equivalence relation.

[Folklore] If  $G \curvearrowright X$  is **generically ergodic**, i.e., if it has dense and meager orbits, then  $(X, E_X^G)$  is **not** concretely classifiable.

Let  $G \curvearrowright X$  be a continuous Polish group action and let  $E_X^G$  be the associated orbit equivalence relation.

[Folklore] If  $G \curvearrowright X$  is **generically ergodic**, i.e., if it has dense and meager orbits, then  $(X, E_X^G)$  is **not** concretely classifiable. [Choksi, Nadkarni] The action  $\mathcal{U}(\mathcal{H}) \curvearrowright \mathcal{U}(\mathcal{H})$  by conjugation is generically ergodic.

Let  $G \curvearrowright X$  be a continuous Polish group action and let  $E_X^G$  be the associated orbit equivalence relation.

[Folklore] If  $G \curvearrowright X$  is **generically ergodic**, i.e., if it has dense and meager orbits, then  $(X, E_X^G)$  is **not** concretely classifiable. [Choksi, Nadkarni] The action  $\mathcal{U}(\mathcal{H}) \curvearrowright \mathcal{U}(\mathcal{H})$  by conjugation is generically ergodic.

[Hjorth] If  $G \curvearrowright X$  is **turbulent**, then  $(X, E_X^G)$  is **not** classifiable by countable structures.

Let  $G \curvearrowright X$  be a continuous Polish group action and let  $E_X^G$  be the associated orbit equivalence relation.

[Folklore] If  $G \curvearrowright X$  is **generically ergodic**, i.e., if it has dense and meager orbits, then  $(X, E_X^G)$  is **not** concretely classifiable. [Choksi, Nadkarni] The action  $\mathcal{U}(\mathcal{H}) \curvearrowright \mathcal{U}(\mathcal{H})$  by conjugation is generically ergodic.

[Hjorth] If  $G \curvearrowright X$  is **turbulent**, then  $(X, E_X^G)$  is **not** classifiable by countable structures.

[Kechris, Sofronidis] The action  $\mathcal{U}(\mathcal{H}) \curvearrowright \mathcal{U}(\mathcal{H})$  by conjugation is turbulent.

Let  $G \curvearrowright X$  be a continuous Polish group action and let  $E_X^G$  be the associated orbit equivalence relation.

[Folklore] If  $G \curvearrowright X$  is **generically ergodic**, i.e., if it has dense and meager orbits, then  $(X, E_X^G)$  is **not** concretely classifiable. [Choksi, Nadkarni] The action  $\mathcal{U}(\mathcal{H}) \curvearrowright \mathcal{U}(\mathcal{H})$  by conjugation is generically ergodic.

[Hjorth] If  $G \curvearrowright X$  is **turbulent**, then  $(X, E_X^G)$  is **not** classifiable by countable structures.

[Kechris, Sofronidis] The action  $\mathcal{U}(\mathcal{H}) \curvearrowright \mathcal{U}(\mathcal{H})$  by conjugation is turbulent.

We develop dynamical obstructions to classification by CLI group actions.

Let G be a Polish group. A sequence  $(g_n)$  in G is **left-Cauchy** if

 $\left(g_{n}
ight)$  is Cauchy with respect to *some* left-invariant metric on G

 $\iff$ 

 $(g_n)$  is Cauchy with respect to any left-invariant metric on G

Let G be a Polish group. A sequence  $(g_n)$  in G is **left-Cauchy** if

 $(g_n)$  is Cauchy with respect to *some* left-invariant metric on G

 $(g_n)$  is Cauchy with respect to any left-invariant metric on G

The **left-completion**  $\widehat{G}$  of G is the completion of G with respect to some left-invariant metric.  $\widehat{G}$  is always a monoid.

Let G be a Polish group. A sequence  $(g_n)$  in G is **left-Cauchy** if

 $(g_n)$  is Cauchy with respect to *some* left-invariant metric on G

 $\left(g_{n}\right)$  is Cauchy with respect to any left-invariant metric on G

The **left-completion**  $\widehat{G}$  of G is the completion of G with respect to some left-invariant metric.  $\widehat{G}$  is always a monoid.

- If G is CLI then  $\widehat{G} = G$ ;
- $\widehat{S_{\infty}}$  is the monoid of all injections  $\gamma: \mathbb{N} \to \mathbb{N}$ ;
- ullet  $\widehat{\mathcal{U}(\mathcal{H})}$  is the monoid of all linear isometric embeddings  $T:\mathcal{H} o \mathcal{H}.$

Let G be a Polish group. A sequence  $(g_n)$  in G is **left-Cauchy** if

 $\left(g_{n}\right)$  is Cauchy with respect to  $\mathit{some}$  left-invariant metric on G

 $(g_n)$  is Cauchy with respect to any left-invariant metric on G

The **left-completion**  $\widehat{G}$  of G is the completion of G with respect to some left-invariant metric.  $\widehat{G}$  is always a monoid.

- If G is CLI then  $\widehat{G} = G$ ;
- $\widehat{S_{\infty}}$  is the monoid of all injections  $\gamma: \mathbb{N} \to \mathbb{N}$ ;
- ullet  $\widehat{\mathcal{U}}(\mathcal{H})$  is the monoid of all linear isometric embeddings  $T:\mathcal{H} o \mathcal{H}.$

#### Definition (Becker)

Let X be a Polish G-space. We say that x **left-embeds** in y if for any left-invariant metric d on G there exists a d-Cauchy sequence  $(g_n)$  so that  $g_n x \to y$ .

An obstruction to classification by CLI groups.

#### Theorem (Lupini, P.)

Let X be a Polish G-space. Assume that for any comeager subset C of X there exist  $x,y\in C$  so that:

- ①  $[x] \neq [y];$
- 2 x left-embeds in y.

Then  $E_G^X$  is not classifiable by CLI group actions.

An obstruction to classification by CLI groups.

#### Theorem (Lupini, P.)

Let X be a Polish G-space. Assume that for any comeager subset C of X there exist  $x,y\in C$  so that:

- ①  $[x] \neq [y];$
- 2 x left-embeds in y.

Then  $E_G^X$  is not classifiable by CLI group actions.

Let S be a Polish space and let  $\mathrm{Inj}(\mathbb{N},S)$  be the subspace of  $S^{\mathbb{N}}$  consisting of the injective sequences from  $\mathbb{N}$  to S. Consider the action of  $S_{\infty}$  on  $\mathrm{Inj}(\mathbb{N},S)$  by permuting coordinates and denote by  $E_{\mathrm{ctbl}}$  the associated equivalence relation.

Let S be a Polish space and let  $\mathrm{Inj}(\mathbb{N},S)$  be the subspace of  $S^\mathbb{N}$  consisting of the injective sequences from  $\mathbb{N}$  to S. Consider the action of  $S_\infty$  on  $\mathrm{Inj}(\mathbb{N},S)$  by permuting coordinates and denote by  $E_{\mathrm{ctbl}}$  the associated equivalence relation.

$$(\lambda_1, \lambda_2, \ldots) E_{\text{ctbl}} (\lambda'_1, \lambda'_2, \ldots)$$

Let S be a Polish space and let  $\mathrm{Inj}(\mathbb{N},S)$  be the subspace of  $S^\mathbb{N}$  consisting of the injective sequences from  $\mathbb{N}$  to S. Consider the action of  $S_\infty$  on  $\mathrm{Inj}(\mathbb{N},S)$  by permuting coordinates and denote by  $E_{\mathrm{ctbl}}$  the associated equivalence relation.

$$(\lambda_1, \lambda_2, \ldots) E_{\text{ctbl}} (\lambda'_1, \lambda'_2, \ldots) \iff \{\lambda_1, \lambda_2, \ldots\} = \{\lambda'_1, \lambda'_2, \ldots\}$$

Let S be a Polish space and let  $\mathrm{Inj}(\mathbb{N},S)$  be the subspace of  $S^{\mathbb{N}}$  consisting of the injective sequences from  $\mathbb{N}$  to S. Consider the action of  $S_{\infty}$  on  $\mathrm{Inj}(\mathbb{N},S)$  by permuting coordinates and denote by  $E_{\mathrm{ctbl}}$  the associated equivalence relation.

$$(\lambda_1, \lambda_2, \dots) \ E_{\text{ctbl}} \ (\lambda'_1, \lambda'_2, \dots) \iff \{\lambda_1, \lambda_2, \dots\} = \{\lambda'_1, \lambda'_2, \dots\}$$
$$(\lambda_1, \lambda_2, \dots) \hookrightarrow_{\text{left}} \ (\lambda'_1, \lambda'_2, \dots) \iff$$

Let S be a Polish space and let  $\mathrm{Inj}(\mathbb{N},S)$  be the subspace of  $S^{\mathbb{N}}$  consisting of the injective sequences from  $\mathbb{N}$  to S. Consider the action of  $S_{\infty}$  on  $\mathrm{Inj}(\mathbb{N},S)$  by permuting coordinates and denote by  $E_{\mathrm{ctbl}}$  the associated equivalence relation.

$$(\lambda_1, \lambda_2, \ldots) E_{\text{ctbl}} (\lambda'_1, \lambda'_2, \ldots) \iff \{\lambda_1, \lambda_2, \ldots\} = \{\lambda'_1, \lambda'_2, \ldots\}$$

$$(\lambda_1, \lambda_2, \ldots) \hookrightarrow_{\text{left}} (\lambda'_1, \lambda'_2, \ldots) \iff {\lambda_1, \lambda_2, \ldots} \subseteq {\lambda'_1, \lambda'_2, \ldots}$$

Let S be a Polish space and let  $\mathrm{Inj}(\mathbb{N},S)$  be the subspace of  $S^\mathbb{N}$  consisting of the injective sequences from  $\mathbb{N}$  to S. Consider the action of  $S_\infty$  on  $\mathrm{Inj}(\mathbb{N},S)$  by permuting coordinates and denote by  $E_{\mathrm{ctbl}}$  the associated equivalence relation.

$$(\lambda_1, \lambda_2, \dots) \ E_{\text{ctbl}} \ (\lambda'_1, \lambda'_2, \dots) \iff \{\lambda_1, \lambda_2, \dots\} = \{\lambda'_1, \lambda'_2, \dots\}$$
$$(\lambda_1, \lambda_2, \dots) \hookrightarrow_{\text{left}} \ (\lambda'_1, \lambda'_2, \dots) \iff \{\lambda_1, \lambda_2, \dots\} \subseteq \{\lambda'_1, \lambda'_2, \dots\}$$

Using the dynamical criterion for non-classifiability by CLI group actions one easily shows that the equivalence relation  $E_{\rm ctbl}$  is not classifiable by CLI group actions.

Let S be a Polish space and let  $\mathrm{Inj}(\mathbb{N},S)$  be the subspace of  $S^{\mathbb{N}}$  consisting of the injective sequences from  $\mathbb{N}$  to S. Consider the action of  $S_{\infty}$  on  $\mathrm{Inj}(\mathbb{N},S)$  by permuting coordinates and denote by  $E_{\mathrm{ctbl}}$  the associated equivalence relation.

$$(\lambda_1, \lambda_2, \dots) \ E_{\text{ctbl}} \ (\lambda'_1, \lambda'_2, \dots) \iff \{\lambda_1, \lambda_2, \dots\} = \{\lambda'_1, \lambda'_2, \dots\}$$
$$(\lambda_1, \lambda_2, \dots) \hookrightarrow_{\text{left}} \ (\lambda'_1, \lambda'_2, \dots) \iff \{\lambda_1, \lambda_2, \dots\} \subseteq \{\lambda'_1, \lambda'_2, \dots\}$$

Using the dynamical criterion for non-classifiability by CLI group actions one easily shows that the equivalence relation  $E_{\rm ctbl}$  is not classifiable by CLI group actions.

#### Theorem (Lupini, P.)

Let  $\mathcal H$  be the separable infinite dimensional Hilbert space. Then  $\simeq_U$  on  $\mathcal U(\mathcal H)$  is **not** classifiable by CLI group actions.

Let X be a Polish G-space and let  $x, y \in X$ .

#### Definition

The **Becker graph**  $\mathcal{B}(X/G)$  associated to  $G \curvearrowright X$  is the directed graph:

- $\{[x]: x \in X\}$  is the collection of all vertexes of  $\mathcal{B}(X/G)$ ;
- we add an arrow  $[x] \rightarrow [y]$  whenever x left-embeds into y.

Let X be a Polish G-space and let  $x, y \in X$ .

#### Definition

The **Becker graph**  $\mathcal{B}(X/G)$  associated to  $G \curvearrowright X$  is the directed graph:

- $\{[x]: x \in X\}$  is the collection of all vertexes of  $\mathcal{B}(X/G)$ ;
- we add an arrow  $[x] \rightarrow [y]$  whenever x left-embeds into y.

#### Theorem (Lupini, P.)

If the Polish G-space X is generically 1-dimensional, i.e., for any comeager subset C of X there exist  $x, y \in C$  so that:

- ①  $[x] \neq [y];$
- ② x left-embeds in y;

then  $E_G^X$  is **not** Borel reducible to an orbit equivalence relation  $E_H^Y$  induced by an action of a **CLI** group H.

In a recent joint work with A.Kruckman we study higher dimensional obstructions to classification. The notion of dimension we define is based on whether  $\mathcal{B}(X/G)$  contains n-cubes as subgraphs.

The n-cube is the diagraph  $\Delta^n = (\mathcal{P}(\{0,\ldots,n-1\}),\subseteq)$ 



In a recent joint work with A.Kruckman we study higher dimensional obstructions to classification. The notion of dimension we define is based on whether  $\mathcal{B}(X/G)$  contains  $n\text{-}\mathrm{cubes}$  as subgraphs.

The n-cube is the diagraph  $\Delta^n = (\mathcal{P}(\{0,\ldots,n-1\}),\subseteq)$ 



We use this to obtain anti-classification for isomoprhism relations between certain countable structures which have appeared in the work of Shelah and Baldwin, Koerwien, Laskowski

# $\mathsf{Th} \alpha \mathsf{nk} \mathsf{ you}!$