Broad Infinity and Generation Principles

Paul Blain Levy

University of Birmingham

July 6, 2024

Paul Blain Levy (University of Birmingham)

ZF is a set theory that lacks the axiom of choice (AC).

ZFA is a variant that allows urelements, aka atoms.

Classes are represented by formulas with parameters.

Examples

 \mathcal{T} is the class of all things (universal class).

Set is the class of all sets.

They are the same in ZF.

We define $\langle x, y \rangle \stackrel{\text{def}}{=} \{\{x\}, \{x, y\}\}\$ observing that $\langle x, y \rangle = \langle x', y' \rangle$ implies x = x' and y = y'. We define Nothing $\stackrel{\text{def}}{=} \emptyset$ and $\text{Just}(x) \stackrel{\text{def}}{=} \{x\}$ observing that $\text{Just}(x) \neq \text{Nothing}$, and that Just(x) = Just(x') implies x = x'.

A K-tuple within C is a function $K \rightarrow C$,

think of it as a column with K entries.

This is included in ZF and ZFA.

There is a set X such that

- Nothing $\in X$
- for any $x \in X$, we have $\mathsf{Just}(x) \in X$.

This isn't provable in ZFC (assuming ZF is consistent).

For any function $F: \mathcal{T} \to \mathsf{Set}$, there is a set X such that

- Nothing $\in X$
- for any $x \in X$ and Fx-tuple y within X, we have $\mathsf{Just}\langle x, y \rangle \in X$.

Every time we construct a new element, we gain a new arity.

ZF + Broad Infinity is called Broad ZF.

We go through this more slowly.

Remove Infinity, Powerset and Foundation from the base theory.

Let $\mathbb N$ be the class of all (Zermelo) natural numbers.

It's the least class \boldsymbol{X} such that

- Nothing $\in X$
- for any $x \in X$, we have $\mathsf{Just}(x) \in X$.

For example, 3 is represented as Just(Just(Nothing))).

Infinity says that $\ensuremath{\mathbb{N}}$ is a set.

The following are equivalent to Powerset + Infinity:

- Simple Wide Infinity Uses one arity.
- Full Wide Infinity Uses symbols of various arities.
- The following are equivalent:
 - Simple Broad Infinity Every time we construct a new element, we gain a new arity.

• Full Broad Infinity

Every time we construct a new element, we gain new symbols of various arities.

Note: the Simple versions seems to be too weak in intuitionistic set theory.

Uses one arity

Let K be an arity—a set.

We write SimpleWide(K) for the class of all simple K-wide numbers.

It's the least class \boldsymbol{X} such that

• Nothing $\in X$

• for any K-tuple x within X, we have $\mathsf{Just}(x) \in X$.

Simple Wide Infinity says that SimpleWide(K) is a set.

Wide number as two-dimensional tree

Arity = $\{0, 1, 2\}$.

- Vertical dimension for tupling.
- Horizontal dimension for internal structure.
- Root at the left.

Paul Blain Levy (University of Birmingham)

Uses symbols of various arities.

Let $S - (K_i)_{i \in I}$ be a signature—a family of sets. Each $i \in I$ is a symbol and K_i is its arity.

We write Wide(S) for the class of all *S*-wide numbers.

It's the least class X such that

• for any $i \in I$ and K_i -tuple x within X, we have $\langle i, x \rangle \in X$. Full Wide Infinity says that Wide(S) is a set.

- Every time we construct a new element, we gain a new arity.
- Let F be a broad arity—a function $\mathcal{T} \to \mathsf{Set}$.

We write SimpleBroad(F) for the class of all simple F-broad numbers.

It's the least class X such that

• Nothing $\in X$

• for any $x \in X$ and Fx-tuple y within X, we have $\mathsf{Just}\langle x, y \rangle \in X$. Simple Broad Infinity says that SimpleBroad(F) is a set. The broad arity sends Just(Nothing, []) to $\{0,1\}$, and everything else to \emptyset .

$$\mathsf{Just}\langle\mathsf{Just}\langle\mathsf{Nothing},[]\rangle, \begin{bmatrix}\mathsf{Nothing}\\\mathsf{Just}\langle\mathsf{Nothing},[]\rangle\end{bmatrix}\rangle, []\rangle$$

- Vertical dimension for tupling.
- Horizontal dimension for $\text{Just}\langle -, \rangle$.
- Depth dimension for internal structure.
- Root at the front.
- Nothing-marked leaves at the rear.

Every time we construct a new element, we gain new symbols of various arities.

Write \mathcal{S} for the class of all signatures.

Let G be a broad signature—a function $\mathcal{T} \to \mathcal{S}$.

Write $\mathsf{Broad}(G)$ for the class of all G-broad numbers. It's the least class such that

- Nothing $\in X$
- for any $x \in X$ such that $Gx = (K_i)_{i \in I}$, and any $i \in I$ and K_i -tuple y within X, we have $\mathsf{Just}\langle x, i, y \rangle \in X$.

Full Broad Infinity says that Broad(G) is a set.

I look at the changing sea and sky And try to picture Infinity

(Noel Coward)

Updated version

I look at the 3D trees outside And picture Broad Infinity Ord is the class of all ordinals.

A limit is an ordinal that is neither 0 nor a successor.

An initial ordinal is not in bijection with a smaller ordinal. Examples are the finite ordinals, ω and ω_1 .

When AC is assumed, they are called cardinals.

We shall consider the following principles:

- Blass's axiom: There are unboundedly many regular limits. (Provable from AC.)
- Mahlo's principle: There are stationarily many regular limits.

We first define regularity and stationarity.

Each of these has many equivalent definitions.

A limit κ is *regular* when, for all $\alpha < \kappa$,

the supremum function $\operatorname{Ord}^{\alpha} \to \operatorname{Ord}$ restricts to a function $\kappa^{\alpha} \to \kappa$.

That is: for all
$$lpha < \kappa$$

and $eta_i < \kappa$ for all $i < lpha$
we have $\bigvee_{i \in I} eta_i < \kappa$

Non-example: \aleph_{ω} .

Regular implies initial, so ω is the only regular limit that is countable.

Blass's axiom says there are arbitrarily large regular limits.

Provable from AC.

But not without.

Gitik's result

Assuming ZFC + "There are arbitrarily large strongly compact cardinals" is consistent,

ZF cannot prove that there is an uncountable regular limit.

- For a function $F : \mathsf{Ord} \to \mathsf{Ord}$,
- a limit λ is *F*-closed when *R* restricts to a function $\lambda \rightarrow \lambda$.
- A class of limits D is stationary when
- for all $F: \mathsf{Ord} \to \mathsf{Ord}$, there's an F-closed ordinal in D.

This implies

- \bullet D is unbounded
- for all $F: \mathsf{Ord} \to \mathsf{Ord}_{,}$ there are stationarily many ordinals in D.

Mahlo's principle says there are stationarily many regular limits. Implies Blass's axiom.

Implies there are arbitrarily large inaccessibles. By taking suitable F. And α -inaccessibles, hyper-inaccessibles etc. Appealing though Mahlo's principle may be,

I consider it deficient as an axiom scheme, in two respects.

- It falls short of the ZF standard of simplicity.
- It's entangled with choice.

Each ZF axiom, other than Extensionality and Foundation,

says that some easily grasped things form a set.

Examples

Infinity the natural numbers.

Powerset the subsets of a set.

Separation the elements of a set that satisfy a property.

Replacement the images of a set's elements.

Mahlo's principle doesn't do this.

Gitik: ZF does not imply the existence of an uncountable regular limit. Arguably, any principle that does imply it is entangled with choice. In particular, Mahlo's principle.

Counterpoint: a choiceless reflection argument

"For any $F: Ord \to Ord$, the property of being a F-closed regular limit can be reflected down from Ord to an ordinal."

We avoid such thinking.

I wanted an axiom scheme with these properties:

- **1** It's equivalent to Mahlo's principle, assuming AC.
- It asserts that some easily grasped things form a set.
- It doesn't imply (given only ZF) that an uncountable regular limit exists.

- Is it equivalent to Mahlo's principle, assuming AC?
 Yes.
- Does it asserts that some easily grasped things form a set?I think so.
- Ooes it imply (given only ZF) that an uncountable regular limit exists? Not as far as I know.

Simple Broad Infinity is designed to be plausible, minimizing the mental effort needed to believe it. Surely desirable for an axiom scheme. Disentanglement from choice helps to achieve this: even for a person who find AC intuitively convincing, it's easier to accept one intuition at a time. Arrow is inclusion of theories i.e. reverse implication.

- My second goal was to find a scheme equivalent to Mahlo's principle that is useful,
- minimizing the effort needed to apply it.
- The Broad Set Generation scheme:
- Every broad rubric on a class generates a subset.
- There's also a Wide version, equivalent to Blass's axiom.

Idea: the rubric tells you when to accept an element of $\ensuremath{\mathbb{N}}.$

• Rule 0 is binary and sends $\begin{bmatrix} m \\ m \end{bmatrix}$

$$\begin{bmatrix} m_0 \\ m_1 \end{bmatrix} \mapsto (m_0 + m_1 + p)_{p \ge 2m_0}.$$

• Rule 1 is nullary and sends $[] \mapsto (2p)_{p \ge 50}$.

Elements accepted by the rubric

- 100 has derivation $\langle 1, [], 50 \rangle$.
- 102 has derivation $\langle 1, [], 51 \rangle$.
- 402 has derivations $\langle 0, \begin{bmatrix} \langle 1, [], 50 \rangle \\ \langle 1, [], 50 \rangle \end{bmatrix}, 202 \rangle$ and $\langle 0, \begin{bmatrix} \langle 1, [], 50 \rangle \\ \langle 1, [], 51 \rangle \end{bmatrix}, 200 \rangle$.
- 7 has no derivation, so it is not accepted.

A wide rubric is a family of wide rules.

A wide rule $\langle K, R \rangle$ on C consists of

- a set *K*—the arity
- a function R sending each K-tuple [a_k]_{k∈K} within C to a family (y_p)_{p∈P}.

Idea Each tuple yields a wide rubric.

Broad rule A is nullary, and sends [] to the wide rubric \mathcal{R} .

Broad rule B is unary, and sends [7] to the following wide rubric:

• Rule 0 is binary and sends $\begin{bmatrix} m_0 \\ m_1 \end{bmatrix} \mapsto (m_0 + m_1 + 500p)_{p \ge 9}.$ and sends [100] to the following wide rubric: • Rule 0 is ternary and sends $\begin{vmatrix} m_0 \\ m_1 \\ m_2 \end{vmatrix} \mapsto (m_0 + m_1 m_2 + p)_{p \ge 17}.$ • Rule 1 is nullary and sends $[] \mapsto (p+3)_{p \ge 1000}$. • Rule 2 is binary and sends $\begin{bmatrix} m_0 \\ m_1 \end{bmatrix} \mapsto (m_1 + p)_{p \ge 4}.$

and sends [n] for $n\neq7,100$ to the empty wide rubric.

- 100 has derivation $\langle A, [], 1, [], 50 \rangle$.
- 102 has derivation $\langle \mathsf{A},[\,],1,[\,],51\rangle$
- 107 has derivation $\langle \mathsf{B}, [\langle \mathsf{A}, [], 1, [], 50 \rangle], 2, |$

$$\begin{bmatrix} \langle \mathsf{A}, [], 1, [], 50 \rangle \\ \langle \mathsf{A}, [], 1, [], 51 \rangle \end{bmatrix}, 5 \rangle$$

• 7 has no derivation, so it is not accepted.

A broad rubric is a family of wide rules.

A broad rule $\langle L,S\rangle$ on C consists of

- a set *L*—the arity
- a function S sending each L-tuple $[b_l]_{l \in L}$ within C to a wide rubric.

A Grothendieck universe is a transitive set \mathfrak{U} such that

- $\mathbb{N} \in \mathfrak{U}$.
- For every set of sets $\mathcal{A} \in \mathfrak{U}$, we have $\bigcup \mathcal{A} \in \mathfrak{U}$.
- For every set $A \in \mathfrak{U}$, we have $\mathcal{P}A \in \mathfrak{U}$.
- For every set $K \in \mathfrak{U}$ and K-tuple $[a_k]_{k \in K}$ within \mathfrak{U} , we have $\{a_k \mid k \in K\} \in \mathfrak{U}$.

The axiom of Universes says that every set \boldsymbol{X} is included in a Grothendieck universe.

Broad Set Generation directly gives this—no need for a detour through ordinals or cardinals.

- To get from Broad Infinity to Broad Set Generation (or equivalently to Mahlo's principle), we use AC.
- A weak form of AC known as WISC is sufficient.
- Those who don't accept AC can make do with Broad Derivation Set:
- For any broad rubric, the class of derivations is a set.
- This gives Tarski-style universes, used by type theorists.
- The sets in such a universe are indexed by "codes".

- Intuitionistic set theory
- Constructive set theory
- Restricted vs unrestricted quantification

- Broad Infinity is a ZF-style principle: some easily grasped things (the *F*-broad numbers) form a set.
- Every time we construct an element, we gain an arity.
- Given AC, it's equivalent to Mahlo's principle.
- Without AC, it seems to be weaker.
- Broad Set Generation is equivalent to Mahlo's principle and directly yields Grothendieck universes.
- Broad Derivation Set is equivalent to Broad Infinity and directly yields Tarski-style universes.
- Each Broad principle has a Wide counterpart that's ZFC-provable.