14™ Panhellenic Logic Symposium, Thessaloniki, 1-5 July 2024

TUTORIAL

Part I: Formalising mathematics with proof assistants

Part Il Getting started with Isabelle/HOL & bonus example: Aristotle’s
Assertoric Syllogistic in Isabelle/HOL

Angeliki Koutsoukou-Argyraki o ROl

| HOLLOWAY

Royal Holloway, University of London, UK
and
University of Cambridge, UK

UNIVERSITY OF
CAMBRIDGE



My memories of the PLS
* Athens 2013 (National Technical University of Athens)

* Samos 2015 .

Invited Speakers

J.-Y. Beziau (University of Rio de Janeiro, Bra

L. Crosilla (University of Leeds, UK)

P. D'Aquino (University of Napoli Il)

V. Gregoriades (TU Darmstadt, Germany), Y

R. Sklinos (University of Lyon 1, Fran 4

M. Soskova (Sﬁﬂﬂ'umverslty Bulga

N. Tzevelekos (Queen Mary University'of Lol gon, UK)

X. Vidaux (University of Concepcion, »Chlle)

Organizing Committee

Charalampos Cornaros (Chair)
Costas Dil
Nikola

- Web site

;f,amoswe! A-]

SPONSORS
B s S [ 1 i

Yo

cinema




My memories of the PLS

* Delphi 2017










A bit of history
Leibniz (1666)

“Dissertatio de arte combinatoria”: proposes the development of a symbolic

language that could express any rational thought (characteristica universalis)
and a mechanical method to determine its truth (calculus ratiocinator). To
resolve any dispute: “Let us calculate!”/ “Calculemus!”

Boole (1847)

“The mathematical analysis of logic”: propositional logic.

Frege (1879)

“Begriffsschrift’: an expressive formal language equipped with logical axioms
and rules of inference.



A bit of history
Whitehead and Russell (1910-1913)

“Principia Mathematica”: (logicism) goal to express all mathematical
propositions in symbolic logic & solve paradoxes of set theory.Developed

type theory.
Hilbert (1920)

Formalism and Hilbert’'s program: All mathematical statements should be
written in a precise formal language, follow from a provably consistent finite
system of axioms, according to well-defined rules. Completeness,
Consistency, Conservation, Decidability.

Note: Godel’s Incompleteness Theorems (1931)



A bit of history

de Bruijn (late 1960s)

AUTOMATH: a predecessor of modern proof assistants based on type
theory. Used Curry—Howard correspondence. Late 1970’s: van Benthem
Jutting translated Landau’s “Foundations of Analysis” into AUTOMATH.

The QED Manifesto (1994)

A proposal for a central computer-based library of all
known mathematics fully formalised and formally verified
(automatically checked by computers)

The project was soon abandoned.
(Or was it?)



The QED Manifesto (1994)

A proposal for a central computer-based library of all known
mathematics fully formalised and formally verified (automatically
checked by computers).

The QED Manifesto*

May 15, 1994

The development of mathematics to-
ward greater precision has led, as is
well known, to the formalization of
large tracts of it, so that one can
prove any theorem using nothing but
a few mechanical rules.

— K. Gédel

If civilization continues to advance,
in the next two thousand years
the overwhelming novelty in human
thought will be the dominance of
mathematical understanding.

— A. N. Whitehead

1 What Is the QED
Project and Why Is It
Important?

OFED ic the vrorv tentative Fi+le of a vralart +4

of all, or even of the most important, mathe-
matical results something beyond the capacity
of any human. For example, few mathemati-
cians, if any, will ever understand the entirety
of the recently settled structure of simple finite
groups or the proof of the four color theorem.
Remarkably, however, the creation of mathe-
matical logic and the advance of computing
technology have also provided the means for
building a computing system that represents
all important mathematical knowledge in an
entirely rigorous and mechanically usable fash-
ion. The QED system we imagine will pro-
vide a means by which mathematicians and
scientists can scan the entirety of mathemat-
ical knowledge for relevant results and, using
tools of the QED system, build upon such re-
sults with reliability and confidence but with-
out the need for minute comprehension of the
details or even the ultimate foundations of the
parts of the system upon which they build.

The project was soon abandoned.

(Or was it?)



Today

Modern proof assistants (interactive theorem provers)

Software tools for formal verification/ the development of formal proofs by user-
computer interaction. A human user writes the proof in a formal language via an
Interactive interface to be checked by a computer. Intermediate proof steps are
often given by automation.

A variety of proof assistants available, based on different logical formalisms:
Based on: set theory (e.g. Mizar, Metamath); simple type theory (e.g. HOL4,
HOL Light, Isabelle); dependent type theory (e.g. Coq, Agda,Lean, PVS).
Extensive libraries of formalised mathematics available.

For a direct comparison with examples, see, e.g. the webpage maintained by
Wiedijk, “Formalising 100 theorems”.



Why formalise mathematics?

...a comment on my original personal

motivation: insights into the nature of
proofs

Work in applied proof theory/proof mining: pen-and-paper extraction of

constructive/quantitative information from proofs in the form of computable
bounds...

...Provokes the question:

What is it that makes a “good” proof?



* a shorter proof;
*a more “elegant” proof;

*a simpler proof (consider Hilbert’s 24th problem (1900)): “find criteria for
simplicity of proofs, or, to show that certain proofs are simpler than any
others.”;

*In terms of Reverse Mathematics — a proof in a weaker subsystem of
Second Order Arithmetic;

*an interdisciplinary proof (e.g. a geometric proof for an algebraic
problem or vice-versa would be considered to give a deeper
mathematical insight);

*a proof that is easier to reuse i.e. if it provides some algorithm or
technique or intermediate result that can be useful in different contexts
too:



*a proof giving “better” computational
content.

What do we mean by “better’ computational
content?

*a bound of lower complexity?

*a bound that is more precise numerically?

*a bound that is more “elegant”?



Why formalise mathematics?

* Verification: eliminating mathematical mistakes (Example: the Fields medalist
Vladimir Voevodsky started working in formalisation after discovering errors in his own

work).

- . : : 2014
The Origins and Motivations of Univalent Foundations (2014)
Professor Voevodsky’s Personal Mission to Develop Computer Proof Verification to Avoid Mathematical Mistakes

BY VLADIMIR VOEVODSKY is hardly ever checked in detail.
But this is not the only problem that allows mistakes in mathematical texts tc
n January 1984, Alexander Grothendieck submitted to the French National Cen- persist. In October 1998, Carlos Simpson submitted to the arXiv preprint server
tre for Scientific Research his proposal “Esquisse d'un Programme.” Soon copies paper called “Homotopy Types of Strict 3-groupoids.” It claimed to provide an argu.
of this text started circulating among mathematicians. A few months later, as a first- ment that implied that the main result of the “co-groupoids” paper, which Kapranox

year undergraduate at Moscow University, [ was given a copy of it by George Shabat, and [ had published in 1989, cannot be true. However, Kapranov and I had consid
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How to write a 215¢ century proof

Leslie Lamport

To D. Palais

Abstract. A method of writing proofs is described that makes it harder
to prove things that are not true. The method, based on hierarchical
structuring, is simple and practical. The author’s twenty years of expe-
rience writing such proofs is discussed.

Mathematics Subject Classification (2010). 03B35, 03F07.
Keywords. Structured proofs, teaching proofs.

In addition to developing the students’ intuition about the beauti-
ful concepts of analysis, it is surely equally important to persuade
them that precision and rigor are neither deterrents to intuition,
nor ends in themselves, but the natural medium in which to for-
mulate and think about mathematical questions.

Michael Spivak, Calculus [7]



Why formalise mathematics?

* (Future of?) Reviewing.

* Preserving mathematical knowledge in big libraries of formalised mathematics:
databases with an enormous potential for the creation of future Al tools to assist
mathematicians in the discovery(/invention) of new results.



Why formalise mathematics?

* Deeper understanding, new insights: even familiar material can be seen in a new
light when using new tools. High level of detail in which a formalised proof must be
written forces to think and rethink proofs and definitions.

The computer as a “magic mirror”




Why formalise mathematics?

* A way of keeping track of all the details of a complicated proof.

the other way around! The Lean Proof Assistant was really that: An assistant in navigating

through the thick jungle that this proof is. Really, one key problem I had when I was trying F) et er S C h 0 I ze (F | e I d S M e d al 2 O 1 8)

to find this proof was that I was essentially unable to keep all the objects in my “RAM”,
and I think the same problem occurs when trying to read the proof. Lean always gives you J une 2 O 2 1 . Xe na P rOJ ect B I (@) g
a clear formulation of the current goal, and Johan confirmed to me that when he
formalized the proof of Theorem 9.4, he could — with the help of Lean — really only see
one or two steps ahead, formalize those, and then proceed to the next step. So I think here
we have witnessed an experiment where the proof assistant has actually assisted in
understanding the proof.

The Blueprint tool by Patrick Massot for Lean shows interdependency of proof parts,
tracks formalisation progress.

* Educational tools.

* Last but not least: it is fulfilling and fun!



A vision for the future of research mathematics:

To create an interactive assistant that would help research
mathematicians in their creative work by

* providing “brainstorming”/ hints:

proof recommendations, counterexamples, proofs of auxiliary
lemmas/intermediate steps;

* suggesting conjectures;

* providing information on relevant literature results;

* helping with bookkeeping on the proof structure/proof goals and
detalls;

* formally verifying the new results.

The goal is to assist mathematicians, not to replace them.



A vision for the future of research mathematics:

Timothy Gowers (Fields Medal 1998) describes how a "dialogue” between a
user and a computer would ideally look like in the future to
interactively assist the human mathematician to arrive at (new) conclusions.

The computer would have access to an extensive database of mathematical
material.

W.T. Gowers (2010). Rough Structure and Classification. In: Alon, N.,
Bourgain, J., Connes, A., Gromov, M., Milman, V. (eds) Visions in
Mathematics. Modern Birkhauser Classics. Birkhduser Basel. https://doi.org/
10.1007/978-3-0346-0422-2 4



“We believe that when later generations look back at the development of mathematics one
will recognise four important steps:

(1) the Egyptian-Babylonian-Chinese phase, in which correct computations
were made, without proofs;

(2) the ancient Greeks with the development of “proof”;

(3) the end of the nineteenth century when mathematics became “rigorous”,
(4) the present, when mathematics (supported by computer) finally becomes
fully precise andjﬁﬁ:fullytransparent;”

-

Barendregt, H. and Wiedijk, F. (The challenge of computer mathematics, Philos. Trans.
- Royal Soc., Math. Phys. Eng. Sci. 36(1835):2351-2375 (2005)).



Towards a new era in Mathematics?

A big shift: Formalisation was until recently an area of computer science.
Now it is quickly attracting the interest of working mathematicians and
mathematics students too. Enthusiastic online communities and tools e.g.
Zulip enable massive collaborative projects. Libraries of formal proofs are
expanding at an increasingly high pace, day-by-day. Student-run projects are
emerging too. Everyone welcome to join.

* The 2020 Mathematics Subject Classification includes for the first time

subject classes on the formalisation of mathematics using proof assistants
(68VXX).

* Kevin Buzzard and Georges Gonthier invited at the 2022 International
Congress of Mathematicians to talk about the formalisation of mathematics.

* May-August 2024: Trimester Program “Prospects of Formal Mathematics”,
Hausdorff Research Institute for Mathematics, Bonn.



Some milestones & recent advances

* Formalisation of the proof of the four-colour theorem in Coq
by Gonthier (2008).

* Gonthier has also formalised the Feit—Thompson proof of
the odd-order theorem in Coq (2012).

* Formalisation of the proof (1998 publ. 2005) by Hales of the
Kepler conjecture (sphere packing problem) in HOL Light and

Isabelle/HOL by Hales et al. (Flyspeck project, 2003-compl.
2014).

* Formalisation of G6del's Incompleteness theorems in
Isabelle/HOL by Paulson (2013).



Some milestones & recent advances

* Formalisation of an irrationality proof of {(3) by Apéry (evaluation of
the Riemann zeta function) in Coq by Chyzak, Mahboubi, Sibut-Pinote
& Tassi (2014).

* Verification of an algorithm with Isabelle/HOL to verify Tucker’s proof
that the Lorenz attractor is chaotic in a rigorous mathematical sense by
Immler (2015).

* Formalisation of Scholze’s perfectoid spaces in Lean by Buzzard,
Commelin and Massot (2019).

* Grothendieck’s schemes in Lean by Buzzard, Hughes, Lau,
Livingston, Fernandez Mir, R., Morrison, S. (2020).
Independently in Isabelle/HOL by Bordg, Li and Paulson (2021).



Some milestones & recent advances

* Formalisation of a substantial amount of material in analytic

number theory in Isabelle/HOL by Eberl (2019), Eberl, Paulson,
Bordg and Li (2023).

* The independence of the Continuum Hypothesis by Han &
van Doorn in Lean (2021). Independently in Isabelle/ZF by
Gunther, Pagano, Sanchez Terraf & Steinberg (2022).

* Formalisation of the solution to the cap set problem (Ellenberg
& Gijswijt, 2017) by Dahmen, Ho6lzl and Lewis in Lean (2019).

* Szemerédi’'s Regularity Lemma and Roth’s Theorem on
Arithmetic Progressions in Isabelle/HOL by Edmonds,

Koutsoukou-Argyraki and Paulson. Independently in Lean by
Dillies and Mehta (2021)



* Formalising Szemerédi's Regularity Lemma and Roth's Theorem on Arithmetic
Progressions in Isabelle/HOL (Chelsea Edmonds, A. K.-A. & Lawrence C.
Paulson, Journal of Automated Reasoning, vol. 67, Article number: 2 (2023),
online 19/12/2022.)

Fundamental results in extremal graph theory and combinatorics/number theory.
(simultaneously and independently formalised in Lean by Mehta and Dillies)

AFP entries:

-Roth's Theorem on Arithmetic Progressions (Edmonds, A. K.-A. & Paulson,
2021).

-Szemereédi's Regularity Lemma (Edmonds, A. K.-A. & Paulson, 2021).

Main sources: book by Y. Zhao, notes from course by W. T. Gowers.



The upper asymptotic density of a set A C Z is defined as

lim sup At |1 2]
N —o0 N .

Szemerédi (1975)

Every set of integers A with positive upper asymptotic density contains a k-term
arithmetic progression for every k € N.

Roth (1953)

Every subset of the integers with positive upper asymptotic density contains a 3-
term arithmetic progression.

theorem RothArithmeticProgressions:
assumes "upper asymptotic density A > 0"
shows "dJk d. d>0 A progression3 k d C A"



For sets of vertices X, Y C V(G), let e(X,Y) be the number of edges between
X and Y. That is,

e(X,Y) = [{(z,y) e X xY : zy € E(G)}|

Given a graph G, for sets of vertices X,Y C V(G), we define the edge density
between X and Y to be
e(X,Y)

My ¥)=
XY =107

Given a graph G and € > 0, for sets of vertices X, Y C V(G), we call (X,Y)
an e-regular pair (in G) if for all A C X, B C Y with |A| > ¢|X]|, |B| > €|Y]|, one
has

|d(A,B) —d(X,Y)| <e.

Given a graph G and € > 0, a partition P = {V;,...,V,} of V(G) is an e-regular
partition if
>, [VillVi| < €|V (G

(i.5)€[k]?
(Vi, Vj) not e-regular



Szemerédi (1975) Regularity Lemma

For every € > 0, there exists a constant M such that every graph has an e-regular
partition of its vertex set into at most M parts.

theorem Szemeredi-_Regular_'it&/_Lemmé:
assumes "¢ > 0"
obtains M where "AG. card (uverts G) > @ = dP. regular partition ¢ G P A card P < M"



Triangle Counting Lemma

Given a graph G, let X, Y, Z C V(G) so that (X,Y), (Y, Z),(Z, X) are all e-regular
pairs for some € > 0. Assuming that d(X,Y),d(X, Z2),d(Z,Y) > 2¢, the number of
triples (z,y,2) € X x Y x Z such that z,y, z form a triangle in G is at least

(1-2€6)(d(X,Y) —€)(d(X, Z) — €)(d(Y, Z) — €)| X][|Y]| Z].

theorem triangle counting lemma:

fixes £::real
assumes xss: "X C uverts G" and yss: "Y C uverts G" and zss: "Z C uverts G" and en0: "¢ > 0"

and finG: "finite (uverts G)" and wf: "uwellformed G"
and rpl: "regular pair XY G " and rp2: "regular pair Y Z G €" and rp3: "regular pair X Z G &"
and edl: "edge density X Y G > 2*¢" and ed2: "edge density X Z G > 2*<" and ed3: "edge density Y Z G > 2%

shows "card (triangle triples XY Z G)
> (1-2*%¢) * (edge density X Y G - ¢) * (edge density X Z G - ¢) * (edge density Y Z G - ¢)*

card X * card Y * card Z"



Triangle Removal Lemma

For all € > 0, there exists 6 > 0 such that any graph on IV vertices with less than
or equal to 6N triangles can be made triangle-free by removing at most e N? edges.

theorem triangle removal lemma:
fixes ¢ :: real
assumes egt: " > 0"
shows "Jé::real > 0. VG. card(uverts G) > 0 — uwellformed G —
card (triangle set G) < ¢ * card(uverts G) ~ 3 —
(3G'. triangle free graph G' A uverts G' = uverts G A uedges G' C uedges G A

card (uedges G - uedges G') < ¢ * (card (uverts G)) 2)"
(is "dd::real > 6. V6. — —  — (dGnew. ?® G Gnew)")




Some milestones & recent advances

* Massot, van Doorn and Nash formalised in Lean results in differential
topology on sphere eversion (2021).

* Mehta recently formalised in Lean a 2023 result by Campos, Griffiths, Morris
and Sahasrabudhe on an exponential improvement to the upper bound on
Ramsey numbers.

* Mehta and Bloom formalised (2022) in Lean a 2021 paper by
Bloom on unit fractions.

* A formalisation of the Balog—-Szemeredi-Gowers Theorem in Isabelle/HOL by
Koutsoukou-Argyraki, BakSys & Edmonds (2022).



Basic definitions:

Let A, B be finite subsets of an abelian group. The sumset A + B is the set
{a+0b|ae Abe B} The difference set A— B is the set {a —b|a € A, b€ B}.

For n many copies A + ... + A we write nA.

Let G be an abelian group. An additive quadruple in G is a quadruple (a, b, ¢,d) €
G4 such that a + b = ¢+ d. The additive energy of a subset A of G is the number
of additive quadruples in A* divided by |A|>.



* A formalisation of the Balog—-Szemeredi-Gowers Theorem in Isabelle/HOL
(A. K.-A., Mantas Baksys & Chelsea Edmonds, in CPP '23: 12th ACM
SIGPLAN, International Conference on Certified Programs and Proofs ).

A profound result in additive combinatorics which played a central role in

Gowers's proof deriving the first effective bounds for Szemerédi's Theorem
on arithmetic progressions.

Balog & Szemerédi (1994): Every finite subset of an abelian group of given
additive energy must contain a large subset whose sumset is small.

Gowers (2001): New proof with better bounds on the cardinalities.



Balog-Szemerédi-Gowers:

Let A be a finite subset of an abelian group. Suppose that A has additive en-

ergy 2c for some ¢ > 0. Then A has a subset A’ so that |A’| > ¢?|A|/4 and
|AI . A’| &z 230|A|/634.

theorem Balog Szemeredi Gowers: fixes A::"'a set" and c::real

assumes afin: "finite A" and "A # {}" and "c>0" and "additive energy A = 2 * c¢" and ass: "A C G"
obtains A' where "A' C A" and "card A' > ¢c”2 * card A / 4" and

"card (differenceset A' A') < 2730 * card A / c"34"

(Analogous version for sumsets).

The proof involves a fascinating interplay between graph theory,
probability theory, additive combinatorics: expressed via an
Implementation of locales, Isabelle’s module system.

Made use of a new, general undirected graph theory library by Edmonds.



Some milestones & recent advances

Student activity

* Kevin Buzzard’s London Lean community at Imperial College
London (Xena Project)

* A group of undergraduate students formalised in Isabelle/HOL
Matiyasevich's proof of the DPRM theorem (1970):

every recursively enumerable set of natural numbers is Diophantine. This
gives a negative solution to Hilbert's 10th problem over the integers.

AFP entry:
-Diophantine Equations and the DPRM Theorem

(Jonas Bayer, Marco David, Benedikt Stock, Abhik Pal, Yuri Matiyasevich
and Dierk Schleicher, 2022)



Some milestones & recent advances

The Liquid Tensor Experiment

i/\ Quantam: i Physics Mathematics Biology = Computer Science  Topics  Archive

Condensed Mathematics
(Clausen and Scholze)
Introduces condensed sets,
an alternative notion to topological L
spaces. Scholze posed a caryf o ke e g ol
formalisation challenge (Xena -
Project Blog, Dec. 2020) in this
area.The Lean Prover Community 5
took up the challenge: a huge collaborative effort Ied by
Commelin succeeded in formalising the proof

In July 2022.

Proof Assistant Makes Jump to Big-
League Math




nature
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NEWS | 18 June 2021

Mathematicians welcome
computer-assisted proofin‘grand
unification’ theory

Proof-assistant software handles an abstract concept at the cutting edge of research,
revealing a bigger role for software in mathematics.

Davide Castelvecchi
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Some milestones & recent advances

Important developments coming up

* Buzzard is starting in 2024 a new 5-year project to formalise in Lean much of
the mathematics involved in the proof of Fermat's Last Theorem.

* Terence Tao (Fields Medal 2006) announced on his blog (13/11/23) that he is
planning to formalize in Lean, together with Dillies and Mehta, the new Gowers—

Green—Manners—Tao proof of the Polynomial Freiman—Ruzsa conjecture (first
proposed by Katalin Marton).

The project was completed in about 3 weeks thanks to a group of Lean contributors.



The ALEXANDRIA Project at Cambridge (2017-2023)
“Large Scale Formal Proof for the Working Mathematician”
led by Professor Lawrence C. Paulson FRS

https://www.cl.cam.ac.uk/~Ip15/Grants/Alexandria/

UNIVERSITY OF

. . . _ CAMBRIDGE
* Expanding the body of formalised material on the Archive of Formal
Proofs and the Isabelle Libraries. erc

@@@@@@@@@

* Case studies to explore the limits of formalisation. BRI

* Tools for managing large bodies of formal mathematical knowledge  European Research Counci
(intelligent search/ computer-aided knowledge discovery).

 Automated and semi-automated environments and tools to aid
working mathematicians.

Postdocs: Wenda Li, Anthony Bordg, Yiannos Stathopoulos,
Angeliki Koutsoukou-Argyraki. PhD Student: Chelsea Edmonds.

Many external collaborators and interns.


https://www.cl.cam.ac.uk/~lp15/Grants/Alexandria/
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Large-Scale Formal Proof for the Working
Mathematician—Lessons Learnt
from the ALEXANDRIA Project

Lawrence C. Paulson

Conference paper | First Online: 28 August 2023

79 Accesses

Part of the Lecture Notes in Computer Science book series (LNAIl,volume 14101)

UNIVERSITY OF
CAMBRIDGE

European Research Council

Established by the European Commission



https://www.cl.cam.ac.uk/~lp15/Grants/Alexandria/

References on selected contributions of mine within
ALEXANDRIA

Summarized in recent talks:

* In mid-2022 | initiated a line of work to formalise material in additive
combinatorics, on the structure of sumsets of finite subsets of abelian groups.
(See my invited talk in the proceedings of the 14™ Conference on Interactive
Theorem Proving (ITP 2023)

DOI: 10.4230/LIPIcs.ITP.2023.1)

* See the slides for my two tutorials in Interactions of Proof Assistants and
Mathematics, International Summer School Regensburg, Germany, Sept. 18-29,
2023. T

‘e0® ° 'y
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UNIVERSITY OF
CAMBRIDGE European Research Council

Established by the European Commission



Conclusion: Lessons learned so far

* Formalisation goals accomplished

* Still yet to encounter any material impossible to formalise in simple type
theory

* Advanced mathematics within reach
* Locales can be very useful (to capture interaction between different
mathematical areas and to “cheat” by including unformalised material as

assumptions)

* The formalisation process can reveal the need for a higher level of
abstraction in prerequisites.



Conclusion: Lessons learned so far

* Sledgehammer’s automation (Isabelle) is practical and efficient

* Students can learn Isabelle very fast and formalise advanced material
successfully

* Collaborative work, filling in library gaps

* We still need: better automation, efficient organisation and management of
libraries (definitions, elementary properties and basics, advanced results)

* Qur libraries can grow increasingly fast!



Main Obstacles

* Better automation is needed to provide proofs for intermediate
proof steps (proofs are analysed in an extremely high level of
detail).

* Efficient search features.

* Efficient organisation and management of libraries.

* Readability of formal proofs by humans.

* Interoperability of proof systems, translation of proofs between

proof assistants needed (Goals of the Dedukti System/
EuroProofNet COST Action).



Where do we go from here?

The future (of mathematics) is hard to
predict...
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Al translates maths problems into
code to make them easier to solve

An artificial intelligence that can turn mathematical concepts written in English
into a formal proving language for computers could make problems easier for
other Als to solve

000e006
MATHEMATICS 6 June 2022 Autoformalization with Large Language
By Models

Wu, Y., Jiang, A. Q., Li, W., Rabe, M.
N., Staats, C., Jamnik, M., Szegedy, C.
arxXiv:2205.12615v1 in NeurlPS 2022.



(OpenAl, 2022

ormal Mathematics Statement Curriculum Learning

Stanislas Polu! Jesse Michael Han! Kunhao Zheng? Mantas Baksys® Igor Babuschkin' Ilya Sutskever !

Abstract

We explore the use of expert iteration in the con-
text of language modeling applied to formal math-
ematics. We show that at same compute bud-
get, expert iteration, by which we mean proof
search interleaved with learning, dramatically out-
performs proof search only. We also observe that
when applied to a collection of formal statements
of sufficiently varied difficulty, expert iteration is
capable of finding and solving a curriculum of in-
creasingly difficult problems, without the need for
associated ground-truth proofs. Finally, by apply-
ing this expert iteration to a manually curated set
of problem statements, we achieve state-of-the-art
on the miniF2F benchmark, automatically solving
multiple challenging problems drawn from high
school olympiads.

whether a trajectory (i.e. a proof) is successful (i.e. formally
correct). But the vast scope of formal mathematics means
that any strong reasoning result obtained in it will be more
meaningful than comparable results in games (e.g. finding
proofs to mathematical conjectures), and could even be
applicable to important practical problems (e.g. software
verification).

However, tackling formal mathematics involves two main
challenges that we must address in order to continue making
progress:

Infinite action space Not only does formal mathematics
have an extremely large search space (like Go for example),
it also has an infinite action space. At each step of proof
search, the model must choose not from a well-behaved
finite set of actions, but a complex and infinite set of tac-
tics, potentially involving exogenous mathematical terms
that have to be generated (e.g., generating a mathematical



* DeepMind’s Al suggests conjectures in research mathematics:
Machine learning as a mathematical collaborator.

Representation theory:

Blundell,C., Buesing, L., Davies, A.,
Velickovi¢, P. Williamson, G.,
“Towards combinatorial invariance for
Kazhdan-Lusztig

polynomials”, arXiv:2111.15161

nature

Explore content v  About the journal v  Publish with us v
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Article | Open Access | Published: 01 December 2021

Advancing mathematics by guiding human intuition
with Al

Alex Davies ™, Petar Veli¢kovié, Lars Buesing, Sam Blackwell, Daniel Zheng, Nenad Toma$ev, Richard

Tanburn, Peter Battaglia, Charles Blundell, Andras Juhasz, Marc Lackenby, Geordie Williamson, Demis

Hassabis & Pushmeet Kohli

Nature 600, 70-74 (2021) | Cite this article

203k Accesses | 62 Citations | 1624 Altmetric | Metrics

Not directly related to proof assistants but demonstrates the
pattern-matching efficiency of Al to assist research mathematicians.
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Where do we go from here?

* Reflection on the concept of mathematical proof and its evolution

MATHEMATICAL PROOF BETWEEN GENERATIONS

JONAS BAYER (3), CHRISTOPH BENZMULLER (b:2), KEVIN BUZZARD (<), MARCO DAVID (&),
LESLIE LAMPORT (¢), YURI MATIYASEVICH (), LAWRENCE PAULSON (g,
DIERK SCHLEICHER (), BENEDIKT STOCK (), AND EFIM ZELMANOV ()

What Can Formal Systems Do For Mathematics? A Discussion Through

Ate-Marillo Untvereies B. Lowe, D. Sarikaya (eds.), 60 Jahre DVMLG, Vol. 48 of Tributes,
University of Oxford

University of California, San Diego C0||ege PUb"CE]tiOI"IS, L0nd0n, 2022.

Appuistions. o The Lens Of Proof Assistants: Some Recent Advances.. Q & A with
(o) Otto-Friedrich Universitét Bamberg Jeremy Avigad, Jasmin Blanchette, Frédéric Blanqui, Kevin Buzzard,
mperia; ollege lL.ondon . - -
(@) Teolo Normale Supérieure de Pari Johan Commelin, Manuel Eberl, Timothy Gowers, Peter Koepke, Assia
¢) Microsoft Research . A . - .
(9 Stoklow Tnstioute of Mathematics ot St. Petersburg Mahboubi, Ursula Martin, Lawrence C. Paulson. Invited Contribution.
(g)
)
)
)

ABSTRACT. A proof is one of the most important concepts of mathematics. However,
there is a striking difference between how a proof is defined in theory and how it is
used in practice. This puts the unique status of mathematics as exact science into peril.
Now may be the time to reconcile theory and practice, i.e. precision and intuition,
through the advent of computer proof assistants. For the most time this has been a
topic for experts in specialized communities. However, mathematical proofs have become
increasingly sophisticated, stretching the boundaries of what is humanly comprehensible,
so that leading mathematicians have asked for formal verification of their proofs. At
the same time, major theorems in mathematics have recently been computer-verified
by people from outside of these communities, even by beginning students. This article
investigates the gap between the different definitions of a proof and possibilities to build
bridges. It is written as a polemic or a collage by different members of the communities
in mathematics and computer science at different stages of their careers, challenging
well-known preconceptions and exploring new perspectives.



Where do we go from here?

"Mathematical exploration is very much

like space exploration, but of a different kind of
space—a space of ideas. You don’t know what
you’ll find when you start. You send out probes

to test theories. You are captivated by mystery,
motivated by questions, undeterred by setbacks.
You make discoveries from a distance: because
the ideas themselves are not physical, you

access this space through reason. Exploration

and understanding are at the heart of what it means

to do mathematics [...] Exploration is a deep human
desire and a mark of human flourishing.”

Francis Su, Mathematics for Human Flourishing,
Yale University Press (2020).

MATHEMATICS
FOR
HUMR(

FLOURISHING




Where do we go from here?

* Mathematics is a profoundly human activity.

* 1 would not claim that every mathematical proof should be formalised to
be acceptable

* Mathematicians will always seek understanding

* Hope to use interactive theorem proving to support
and assist mathematical practice



Where do we go from here?

...conceivable to substantially
assist with...

* Large collaborative projects

*

*

*

Proof bookkeeping for modern, research-level mathematics
Faster and reliable reviewing for journal submissions
Supporting literature search

Educational support
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TUTORIAL

Part I: Formalising mathematics with proof assistants

Part Il Getting started with Isabelle/HOL & bonus example: Aristotle’s
Assertoric Syllogistic in Isabelle/HOL

Angeliki Koutsoukou-Argyraki o ROl

| HOLLOWAY

Royal Holloway, University of London, UK
and
University of Cambridge, UK
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Isabelle — A Quick Introduction

Developed by Lawrence C. Paulson (since late 1980’s),
Tobias Nipkow, Makarius Wenzel.

Interactive development of verifiable proofs

(Integrates automated reasoning tools in an interactive setting:

Proof scripts in Isabelle are interactive sessions between user and
theorem prover)

* Isabelle/HOL.: Higher Order Logic (HOL) (Includes AC; Proofs in classical
logic). Simple types.

 Emphasis on producing structured, easy-to-read proofs:
ISAR (Intelligible Semi-Automated Reasoning) proof language.
Internal languages: ML and Scala.

» Features efficient automation (Sledgehammer and counterexample-
finding tools like nitpick and Quickcheck).



& @ cl.cam.ac.uk/research/hvg/isabelle/index.html (I * ¢

3B UNIVERSITY C

Isabelle «¥ CAMBRIDG

Computer Laborato

Home
Isabelle is a generic proof assistant. It allows mathematical formulas to be expressed in a formal language and provides tools for proving those foi
Ovarie logical calculus. Isabelle was originally developed at the University of Cambridge and Technische Universitdt Miinchen, but now includes numerous ct
ey from institutions and individuals worldwide. See the Isabelle overview for a brief introduction.
WSS Nowavailable: Isabelle2023 (September2023)
Documentation
Site Mirrors:
T ﬂ'&q Download for
Munich (.de) A m
Sydney. (.au) 0l et macOS

Potsdam, NY (.us)

Download for Linux (Intel) - Download for Linux (ARM) - Download for Windows - Download for macOS
Hardware requirements:

« Small experiments: 4 GB memory, 2 CPU cores

« Medium applications: 8 GB memory, 4 CPU cores
 Large projects: 16 GB memory, 8 CPU cores

« Extra-large projects: 64 GB memory, 16 CPU cores

Some notable changes:

Documents: interactive document preparation via Isabelle/jEdit panel.
Documents: demos for well-known LaTeX classes.

Documents: more formal LaTeX citations.

HOL: various improvements of theory libraries, notably in HOL-Analysis.
HOL: updates and improvements of Sledgehammer.

nAal L. s 4 f.  ATSRAN A ) AL f . g% R N wegs %



Isabelle — A Quick Introduction
https://www.cl.cam.ac.uk/research/nvg/Isabelle/dist/library/HOL/index.html

Isabelle/HOL sessions

HOL
Classical Higher-order Logic.

HOL-Algebra
Author: Clemens Ballarin, started 24 September 1999, and many others
The Isabelle Algebraic Library.

HOL-Analysis

HOL.-Analysis-ex . . .
HOL-Auth A new approach to verifying authentication protocols.

HOL-Bali
HOL-Cardinals

Ordinals and Cardinals, Full Theories.

HOL.-Codegenerator_Test

HOL-Combinatorics

HOL-Complex_Analysis Corecursion Examples.
HOL-Computational_Algebra
HOL-Corec_Examples

HOL.-Data_Structures Big (co)datatypes.
HOL-Datatype_Benchmark
HOL-Datatype_Examples

(Co)datatype Examples.

HOL-Decision_Procs




Isabelle — A Quick Introduction
https://www.cl.cam.ac.uk/research/nvg/Isabelle/dist/library/HOL/HOL-Analysis/index.html

Session HOL-Analysis

View theory dependencies
View document
View manual

Theories

e [.2 Norm
e Inner Product
¢ Product Vector
¢ Euclidean Space
e Linear Algebra
Affine
Convex
Finite Cartesian Product
Cartesian Space
Determinants
Elementary Topology
Abstract Topology
« Abstract Topology 2
¢ Connected
e Abstract Limits
o Metric Arith
o File «metric_arith.ML>
¢ Elementary Metric Spaces




Isabelle — A Quick Introduction

Theory dependencies in the Analysis library
https://www.cl.cam.ac.uk/research/nvg/Isabelle/dist/library/HOL/HOL-Analysis/
session_graph.pdf




Example of a structured proof in Isabelle/HOL
(from Theory Weierstrass_Theorems in the Isabelle Analysis Library)

lemma has vector derivative polynomial function:

fixes p :: "real = 'a::euclidean_space"
assumes "polynomial function p"
obtains p' where "polynomial function p'" "Ax. (p has vector derivative (p' x)) (at x)"
proof -
{ fix b :: 'a
assume "b € Basis"
then
obtain p' where p': "real polynomial function p'" and pd: "Ax. ((Ax. p x e b) has real derivative p' x) (at x)"
using assms [unfolded polynomial function iff Basis inner] has real derivative polynomial function
by blast

have "polynomial function (Ax. p' x *p b)"
using <b € Basis> p' const [where 'a=real and c=0]
by (simp add: polynomial function iff Basis inner inner Basis)

then have "dq. polynomial function g A (Vx. ((Au. (p u e b) *g b) has vector derivative q x) (at x))"
by (fastforce intro: derivative eq intros pd)

}
then obtain qf where qf:
"Ab. b € Basis = polynomial function (gf b)"
"Ab x. b € Basis = ((Au. (p u e b) *g b) has vector derivative gf b x) (at x)"
by metis
show ?thesis
proof
show "Ax. (p has vector derivative (D> beBasis. gf b x)) (at x)"
apply (subst euclidean representation sum fun [of p, symmetric])
by (auto intro: has vector derivative sum qf)
ged (force intro: qgf)
ged
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Archive of Formal Proofs
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The Archive of Formal Proofs is a collection of proof libraries, examples, and larger scientific developments, mechanically

checked in the theorem prover Isabelle. It is organized in the way of a scientific journal, is indexed by dblp and has an ISSN:

2150-914x. Submissions are refereed and we encourage companion AFP submissions to conference and journal
publications. To cite an entry, please use the preferred citation style.

A development version of the archive is available as well.
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Isabelle — A Quick Introduction
The Archive of Formal Proofs

A vast collection of formalised material in Mathematics,
Computer Science and Logic.

Growth in number of entries:

As of 24 June 2024:

700

Number of Entries: 837

Number of Authors: 502 |«

Number of Lemmas:

~272,000 N I I
Lines of Code: I I




SErAPIS: A concept-oriented search engine for the
Isabelle libraries and AFP

By Yiannos Stathopoulos and A. K.-A.

& C @& behemoth.cl.cam.ac.uk/search/ h w = O &

Menu - S .di m

[ Any fact \/I [ Method 8 (Hierarchical Concept ~

o O

Welcome to SErAPIS

SErAPIS ( “Search Engine by the ALEXANDRIA Project for ISabelle”) is a research search engine for the Isabelle 2021 and Archive of Formal Proofs 2021 libraries.
The main objectives of SErAPIS are:

» to provide search functionality for Isabelle users that does not rely on syntactically complex pattern matching. Instead, SErAPIS is “concept-oriented”: the search engine tries to understand the mathematical ideas
and topic behind a user's enquiry.

* to provide search that doesn't rely on the loaded libraries or theories at each session. SErAPIS searches all libraries and AFP using a pre-computed index.

* to enable research in Isabelle search. We aim to build a data set that will allow researchers to develop and evaluate retrieval models for mathematical facts in Isabelle.

In order to meet the above objectives, we store some cookies and collect anonymised information. Please see our privacy statement here.

We have prepared two short videos to get you started with using SErAPIS:

@ WNkier =



Please visit our YouTube channel for short demo videos, also see our user

manual.
9

SErAPIS Isabelle Search Engine

7 subscribers

HOME VIDEOS PLAYLISTS
\,\E“%@ Introducing SErAPIS s p,
(Search Engine by the Alexandria Project for Isabelle)

UNIVERSITY OF
CAMBRIDGE

SErAPIS search engine URLs:

cl.cam.ac

cl.cam.ac APIS_online _user_guide.pdf

Yiannos Stathopoulos,
Angeliki Koutsoukou-Argyraki and
Lawrence C. Paulson

Department of Computer Science and Technology
University of Cambridge

Supported by the ERC Advanced Grant ALEXANDRIA, Project 742178
https:/iwww.cl.cam.ac.uk/~Ip15/Grants/Alexandria/

European Research Council

CHANNELS

Uploads

Introduction to SErAPIS,
Video 2: Search Example an...

50 views * 1 year ago

p PLAY ALL

7:49

Introduction to SErAPIS,
Video 1: Search Controls

93 views * 1 year ago

ABOUT

Q

Welcome to the SErAPIS Isabelle Search Engine channel

47 views * 1 year ago

Introduction to the channel and the SErAPIS Isabelle search
engine.

The search engine: https://behemoth.cl.cam.ac.uk/search/
User guide: https://behemoth.cl.cam.ac.uk/search/...

p Introd: SErAPIS e
i
Welcome to the SErAPIS

Isabelle Search Engine...

47 views * 1 year ago



- C' & isabelle.systems

Isabelle Quick Access Links

Quick link: isabelle.systems/<code>, e.g. isabelle.systems/doc

¢ home: The official website and download page.

Communication

¢ dev-email: The Isabelle development e-mail list.

e dev: Isabelle development hub hosting the repository, ongoing tasks, build status information,
etc.

e email: The Isabelle users e-mail list.

¢ zulip: Real-time discussion platform to exchange ideas, ask questions, and collaborate on
Isabelle projects.

Infrastructure

¢ build: Build status information including performance statistics and graphs.
e Ci: Isabelle/Jenkins continuous integration service.
e repo: The development repository.



A friendly online community of

The Isabelle mailing list
Isabelle users

& C @& lists.cam.ac.uk/sympa/subscribe/cl-isabelle-users

P

cl-isabelle-users@lists.cam.ac.uk

Owners: Lawrence Paulson

A Home @ Search for List(s) {® Support

cl-isabelle-users - Isabelle Users List

Moderators: gerwin.klein, Lawrence Subject: Isabelle Users List
Paulson, W. Li i ) ; ;

You've made a subscription request to cl-isabelle-users. To confirm your request, please click the button below:
Contact owners

) Your e-mail address:
Unsubscribe Name:
Archive | subscribe to list cl-isabelle-users

(from early beginners to
experts) open to everyone




ZULIP

N

Log in to Zulip

Isabelle View without an account

https://isabelle.zulipchat.com

OR

Email
A cool place for beginners and experts alike playing with mal

mathematics and algorithms in the Isabelle theorem prover! ‘ ‘ |

Password

o

Also: Isabelle Zulip chat and = stackoverflow



Lawrence Paulson’s Blog:

< C' @ lawrencecpaulson.github.io

Machine Logic

At the junction of computation, logic and mathematics

The formal verification of computer systems has become practical. It has an essential role in tech
firms such as Amazon, AMD, Intel, Microsoft and Nvidia. In recent years, researchers have started
asking whether verification technology could also benefit research mathematicians. Here, we explore
every aspect of doing logic on the computer: its foundations, its applications and the issues involved
with formalising mathematics.

Archive

general examples Isabelle logic Isar Kurt_G6édel set_theory David_Hilbert

Archive_of_Formal_Proofs philosophy newbies NG_de_Bruijn Martin-Léf_type_theory verification



Lawrence Paulson’s course material:

& cl.cam.ac.uk/teaching/1718/L21/materials.html

UNIVERSITY OF
CAMBRIDGE

ES
%

» 0O

Do
TN

Contactus | A—Z | Advanced search

Department of Computer Science and Technology

Computer Laboratory » Teaching » Courses 2017-18 > Interactive Formal Verification » Course materials

Advanced Operating Systems

Advanced topics in mobile and
sensor systems and data
modelling

Affective Computing
Algebraic Path Problems

Category Theory, Type Theory and
Logic

Chip Multiprocessors

Computer Security: Principles and
Foundations

Computer Vision
Interactive Formal Verification

Introduction to Natural Language
Syntax and Parsing

Introduction to networking and
systems measurements

Large-scale data processing and
optimisation

Machine Learning and Algorithms

far Data Mininn

Course pages 2017—-18

Interactive Formal Verification

EYELIEE  Course materials

Course texts

The primary course text is "Concrete Semantics" by T. Nipkow and G. Klein, and is freely available here. A stripped-down version of this book is
supplied with the Isabelle distribution (click the "Documentation" button on the right, and then open "prog-prove" under the "Tutorials" heading), and is
called "Programming and proving with Isabelle/HOL". Some material is common to both, but numbered differently. I will reference both.

The additional technical manuals also found under the "Tutorials" heading in the Isabelle documentation panel are also suggested reading for anybody
who wishes to advance their usage of Isabelle. The older (but still relevant) Isabelle tutorial, found in the "Documentation" panel under the "Old
tutorials" heading also handles some subjects in more detail than "Programming and proving with Isabelle/HOL".

Students are also encouraged to read through existing Isabelle formalisations to learn idioms and tricks from experienced Isabelle users. A good source
of vetted Isabelle formalisations, covering a range of subjects in pure mathematics and computer science, is the Archive of Formal Proofs.

Installing Isabelle

Isabelle should be installed on laboratory machines. However, if you wish to install Isabelle on your own machine, then (assuming a Linux install):



Aristotle’s Assertoric Syllogistic

* Source: Robin Smith; Aristotle’s Logic, Stanford Encyclopedia of Philosophy, first
published 18/3/2000, substantive revision 17/2/2017, available on:

https://plato.stanford.edu/entries/aristotle-logic/

* Formal Proof Development: Angeliki Koutsoukou-Argyraki; Aristotle’s

Assertoric Syllogistic, Archive of Formal Proofs, first published 08/10/2019,
available on:

https://www.isa-afp.org/entries/Aristotles Assertoric_Syllogistic.html

(Only ~200 lines of Isar
code!)

2 Back to the
- origins :-)



Aristotle’s Assertoric Syllogistic

Syllogisms are structures of sentences each of which can meaningfully be called true
or false (assertions “apophanseis”).

A deduction is speech (logos) in which, certain things having been supposed,
something different from those supposed results of necessity because of their being
so. (Prior Analytics 1.2, 24b18-20).




Aristotle’s Assertoric Syllogistic

Assertions (apophanseis): every such sentence must have the same structure:
Subject (individual/universal); predicate (only universal); must either affirm or deny the
predicate of the subject.

Aristotle treats individual predications and general predications as similar in logical
form (“Socrates is an animal”, “Humans are animals”).
When the subject is a universal, predication can be either universal or particular.




Aristotle’s Assertoric Syllogistic

* Source: Robin Smith; Aristotle’s Logic, Stanford Encyclopedia of Philosophy, first
published 18/3/2000, substantive revision 17/2/2017, available on:
https://plato.stanford.edu/entries/aristotle-logic/

Affirmations Denials
Universal | P affirmed of all |Every §is | P denied of all |No Sis P
of § P, of §
All S is
(are) P
Particular | P affirmed of Some S is P denied of Some S is
some of § (are) P some of § not P,
Not every S
is P
Indefinite | P affirmed of § [Sis P P denied of § S is not P
Abbreviation | Sentence
Q |Aab a belongs to all b (Every b is a)
Eab a belongs to no b (No b is a)
lab a belongs to some b (Some b is a)

z Oab a does not belong to all » (Some b is not a)




definition
where "A

definition
where "A

definition
where "A

definition
where "A

niversal affirmation ::

=V beB.

niversal denial ::

S
VYV b € B.

b E A 1]

(b gA)

particular affirmation ::

I B=4db € B.

particular denial ::

Z B=4db € B.

(beA ™

(b¢gA)"

"'a set

"'a set ='a set = bool"

='a set

'a set ='a set

"'a set ='a set = bool"

= bool"

(infixr "Q" 80)
(infixr "E" 80)
(infixr "I" 80)

= bool"

(infixr "Z" 80)

text<« The above four definitions are known as the "square of opposition".>»

definition indefinite affirmation ::

where "A QI B =(( V b € B.

definition indefinite denial ::
where "A EZ B = (( V b € B.

(b € A)) Vv

'a set ='a set = bool"
(b € A))) "

(3 b € B.

"'a set ='a set = bool"
(b £ A)) v (d b € B.

(infixr "QI" 80)

(infixr "EZ" 80)

(b ¢ A))) "

(Note: Aristotle would never consider Ato be an 1-element set)



Eab — Eba
lab — Iba
Aab — Iba

lemma aristo conversionl :
assumes "A E B" shows "B E A"
using assms universal denial def by blast

lemma aristo conversion2 :
assumes "A I B" shows "B I A"
using assms unfolding particular affirmation def
by blast

lemma aristo conversion3 : assumes "A Q B" and "B #{} " shows "B I A"
using assms
unfolding universal affirmation def particular affirmation def by blast



Aristotle’s Assertoric Syllogistic: the Deductions In
the Figures (Moods)

* Source: Robin Smith; Aristotle’s Logic, Stanford Encyclopedia of Philosophy, first
published 18/3/2000, substantive revision 17/2/2017, available on:
https://plato.stanford.edu/entries/aristotle-logic/

First Figure Second Figure Third Figure

Predicate | Subject | Predicate | Subject | Predicate | Subject
Premise a b a b a c
Premise b c a c b c

Conclusion a c b C a b




Aristotle’s Assertoric Syllogistic: the Deductions In
the Figures (Moods)

Form | Mnemonic | Proof

FIRST FIGURE

Aab, Abc + Aac Barbara Perfect

Eab, Abc & Eac Celarent Perfect

Aab, Ibc - lac Darii Perfect; also by impossibility, from Camestres

Eab, Ibc - Oac Ferio Perfect; also by impossibility, from Cesare

SECOND FIGURE

Eab, Aac & Ebc Cesare (Eab, Aac) — (Eba, Aac) \c. Ebc

Aab, Eac + Ebc Camestres (Aab, Eac) — (Aab, Eca) t-ca Ecb — Ebc
= (Eca, Aab)

Eab, Iac + Obc Festino (Eab, Iac) — (Eba, Ilac) &g, Obc

Aab, Oac + Obc Baroco (Aab, Oac + Abc) Fimp Obe
Fpar (Aac, Oac)

THIRD FIGURE

Aac, Abc + Iab Darapti (Aac, Abc) — (Aac, Icb) Fpy lab

Eac,Abc + Oab Felapton (Eac, Abc) — (Eac, Ich) ey Oab

lac, Abc - Iab Disamis (Iac, Abc) — (Ica, Abc)V-pur Iba — Iab
= (Abc, Ica)

Aac, Ibc + Iab Datisi (Aac, Ibc) — (Aac, Icb) Fpar Iab

Oac, Abc + Qab Bocardo (Oac, +Aab, Abc) Fimp Oab
g (Aac, Oac)

Eac, Ibc - Oab Ferison (Eac, Ibc) — (Eac, Icb) bpe Oab

Table of the Deductions in the Figures

* Source: Robin Smith;
Aristotle’s Logic, Stanford
Encyclopedia of
Philosophy, first published
18/3/2000, substantive
revision 17/2/2017,
available on:
https://plato.stanford.edu/
entries/aristotle-logic/



Aristotle’s Assertoric Syllogistic: the Deductions In
the Figures (“Moods”) * Source: Robin Smith;

Form |Mnemonic |Proof AI’IStOt/e ’S LOgIC, Stanford
FIRST FIGURE EnCyC|Oped la Of

Aab, Abc + Aac Barbara Perfect P h I |OSOphy,

Eab,Abc v+ Eac Celarent Perfect https://platO.Stanford.ed u/
Aab, Ibc V lac Darii Perfect; also by impossibility, from Camestres . . .

Eab, Ibc + Oac Ferio Perfect; also by impossibility, from Cesare entrIeS/arIStOtle-log IC/

subsubsection<First Figure>

lemma Barbara:
assumes "A Q B " and "B Q C" shows "A Q C"
by (meson assms universal affirmation def)

lemma Celarent:
assumes "A EB " and "B Q C" shows "A E C"
by (meson assms universal affirmation def universal denial def)

lemma Darii:
assumes "A Q B" and "B I C" shows "A I C"
by (meson assms particular affirmation def universal affirmation def)

lemma Ferio:
assumes "A E B" and "B I C" shows "A Z C"
by (meson assms particular_affirmation def particular_denial def universal denial def)



text<Example of a deduction with general predication.>

Llemma GreekMortal
assumes "Mortal Q Human" and "Human Q Greek "
shows " Mortal Q Greek "

using assms Barbara by auto

text<Example of a deduction with individual predication.>

lemma SocratesMortal:
assumes "Socrates € Human " and "Mortal Q Human"
shows "Socrates € Mortal "

using assms by (simp add: universal affirmation def)



SECOND FIGURE * Source: Robin Smith;

Eab,Aac - Ebc Cesare (Eab, Aac) — (Eba,Aac) Fce Ebc Aristotle’s LOgiC, Stanford
Aab. Eac - Ebe Camestres (Aab, Eac) — (Aab, Eca) Fce; Ecb — Ebc Encvclopedia of
! — (Eca, Aab) cyclop
Eab, lac - Obc Festino (Eab, Iac) — (Eba,lac) Fg.r Obc PhllOSOphy,
Adb, Oac - Obe o (Aab, Oac + Abc) Fpmp Obe httpg.//pla_to.stanfor_d.edu/
Fpar (Aac, Oac) entries/aristotle-logic/

subsubsection<Second Figure>

lemma Cesare:
assumes "A E B " and "A Q C" shows "B E C"
using Celarent aristo conversionl assms by blast

Lemma Camestres:
assumes "A QB " and "A E C" shows "B E C "

using Cesare aristo conversionl assms by blast

Lemma Festino:
assumes "A EB " and "A I C" shows "B Z C "
using Ferio aristo conversionl assms by blast

lemma Baroco:
assumes "A Q B " and "A Z C" shows "B Z C !
by (meson assms particular denial def universal affirmation def)



THIRD FIGURE

Aac,Abc + Iab Darapti (Aac, Abc) — (Aac, Ich) Fp,, Iab

Eac, Abc - Oab Felapton (Eac,Abc) — (Eac,Icb) gy Oab

lac, Abe - Iab Disamis (Iac, Abc) — (Ica,Abc)Vpyr Iba — Iab
= (Abc, Ica)

Aac,Ibc + Iab Datisi (Aac, Ibc) — (Aac, Icb) Fpg, 1ab

Oac, Abc - Oab Bocardo (Oac, +Aab, Abc) +imp Oab
Fgqr (Aac, Oac)

Eac,Ibc + Oab Ferison (Eac, Ibc) — (Eac, Icb) Fg., Oab

* Source: Robin Smith; Aristotle’s
Logic, Stanford Encyclopedia of
Philosophy,
https://plato.stanford.edu/entries/
aristotle-logic/




subsubsection<Third Figure>

lemma Darapti:
assumes "A Q C " and "B Q C" and "C #{}" shows "A I B "
using Darii assms unfolding universal affirmation def particular affirmation def
by blast

lemma Felapton:
assumes "A E C" and "B Q C" and "C #{}" shows "A Z B"
using Festino aristo conversionl aristo conversion3 assms by blast

lemma Disamis:
assumes "A I C" and "B Q C" shows "A I B"
using Darii aristo conversion2 assms by blast

lemma Datisi:
assumes "A Q C" and "B I C" shows "A I B"
using Disamis aristo conversion2 assms by blast

lemma Bocardo:
assumes "A Z C" and "B Q C" shows "A Z B"
by (meson assms particular denial def universal affirmation def)

Llemma Ferison:
assumes "A E C " and "B I C" shows "A Z B "
using Ferio aristo conversion2 assms by blast



Aristotle’s Assertoric Syllogistic

A metatheorem by Aristotle:

All deductions can be reduced to Barbara/ Celarent.



Observations

1) Using Isabelle’s automation (Sledgehammer),
the proofs of the deductions in the Figures are straightforward (one-line)
The de Bruijn factor would be < 1'!

Example: Compare

Llemma Camestres:

assumes "A Q B " and "A E C" shows "B E C "
using Cesare aristo conversionl assms by blast

(note: Cesare
reduces to Celarent)
with the original proof:



Aristotle’s proof of Camestres

(Aab, Eac) — (Aab, Eca) tc. Ecb — Ebc

Aab, Eac v Eb
AR 556 — (Eca, Aab)

Camestres

“If a belongs to every b (:= every b is a) but to no ¢ (:=no c is a), then neither
will b belong to any ¢ (:=no c is b). For if a belongstonoc (:=nocis a), then
neither does c belong to any a (:= no ais c); but a belonged to every b
(:=every b is a); therefore, ¢ will belong to no b (:= no b is ¢) (for the first figure
has come about). And since the privative converts, neither will b belong to any
c(:=nocisbh).”

Written as:
(1) Aab, (2) Eac, To prove: Ebc.

(3) Eac (from (2))

(4) Eca (from (3) and conversion)
(5) Aab (from (1))

(6) Ecb (from (4), (5) and Celarent)
(7) Ebc (from (6) and conversion)



Observations

2) The metatheorem that all deductions can be reduced to Barbara/ Celarent can
be seen easily from the formal proofs:

subsection<Metatheoretical comments>

text<The following are presented to demonstrate one of Aristotle's metatheoretical

explorations. Namely, Aristotle's metatheorem that:

"All deductions in all three Figures can eventually be reduced to either Barbara or Celarent”

is demonstrated by the proofs below and by considering the proofs from the previous subsection. >

Llemma Darii reducedto Camestres:

assumes "A QB " and "B I C" and "A EC " (*assms, concl. of Darii and A E C *)
shows "A I C"
proof-

have "B E C" using Camestres < AQB > <AEC» by blast
show ?thesis using < BI C » <«BE C»
by (simp add: particular affirmation def universal denial def)
qed



text«It is already evident from the proofs in the previous subsection that:

Camestres can be reduced to Cesare.

Cesare can be reduced to Celarent.

Festino can be reduced to Ferio.>»

lemma Ferio reducedto Cesare: assumes

"AEB " and "B I C" and "A Q C " (*assms, concl. of Ferio and A Q C *)
shows "A Z C"

proof-

have "B E C" using Cesare <A E B > <A Q C> by blast

show ?thesis using «<B I C > <«B E C»

by (simp add: particular affirmation def universal denial def)

qed




lemma Baroco reducedto Barbara :

assumes "A QB "and " AZC " and " B QC"
shows "B Z C" (*assms , concl. of Baroco and B Q C *)
proof-

have "A Q C" using <A Q B »

<« B Q C > Barbara by blast
show ?thesis using <A Q C> <A ZC >
by

(simp add: particular _denial def universal affirmation def)
ged

lemma Bocardo reducedto Barbara :

assumes " A Z C" and "B Q C" and "A Q B"
shows "A Z B" (*assms, concl of Bocardo and A Q B *)
proof -

have "A Q C" using

<B Q C> < A Q B> using Barbara by blast
show ?thesis using <A Q C> <« A Z C>
by

(simp add: particular _denial def universal affirmation def)
ged



text<Finally, it is already evident from the proofs in the previous subsection that
Darapti can be reduced to Darii.

Felapton can be reduced to Festino.

Disamis can be reduced to Darii.

Datisi can be reduced to Disamis.

Ferison can be reduced to Ferio. »

text«In conclusion, the aforementioned deductions have thus been shown to be reduced to either
Barbara or Celarent as follows:

Baroco $\Rightarrow$ Barbara

Bocardo $\Rightarrow$ Barbara

Felapton $\Rightarrow$ Festino $\Rightarrow$ Ferio $\Rightarrow$ Cesare $\Rightarrow$ Celarent

Datisi $\Rightarrow$ Disamis $\Rightarrow$ Darii $\Rightarrow$ Camestres $\Rightarrow$ Cesare

Darapti $\Rightarrow$ Darii

Ferison $\Rightarrow$ Ferio
>




Observations

3) The assumption that sets at hand must be nonempty is picked up by Isabelle’s
counterexample tools. (Example)
o110|Lemma Felapton:

Lno assumes "A E C" and "B Q C" (* and "C #{}"*) shows "A Z B"
‘122 (* using Festino aristo conversionl aristo conversion3 assms by blast*)

Proof state Auto update Update  Search:

proof (prove)
goal (1 subgoal):

1. AZB
© Auto Quickcheck found a counterexample:
A= {}
- Cc={
L B = {}

lemma Felapton:
assumes "A E C" and "B Q C" and "C #{}" shows "A Z B"
using Festino aristo conversionl aristo conversion3 assms by blast



Thank you!
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