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Two Branches of Computability Theory

Degree Theory
▷ studies degrees of algorithmic unsolvability of various

problems.
▷ initiated by Post (1944), Kleene-Post (1954), ...
▷ many-one degree, truth-table degree, Turing degree,

enumeration degree, ...

Realizability Theory
▷ aims at providing computability-theoretic models of

constructive systems.
▷ initiated by Kleene (1945), ...
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New Interactions

Applying Realizability Theory to Degree Theory.
▷ Classical theory has some shortcoming: the degree of

unsolvability of “natural problems” almost entirely determined
by counting the “number of alternations of quantifiers.”
▷ i.e., natural problems ≈ master codes

▷ Using realizability theory, one can reveal the hidden true
structure of “natural problems.”

Applying Degree Theory to Realizability Theory.
▷ Realizability theory discusses the structure of realizability

models and their internal logic, and so on.
▷ Using degree theory, one can clarify the specific shape of the

structure of subtoposes of realizability toposes.
▷ Also, degree theory enable us to flexibly construct realizability

models of (semi-)constructive systems.
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Tutorial 1

Realizability Theory→ Degree Theory
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Realizability Interpretation

Key Observation: Formulas involve the notion of witness:
▷ A formula ∃xφ(x) may involve existential witnesses
▷ For φ ∨ ψ, information about which is correct.

Kleene (1945): Realizability Interpretation
⟨a, b⟩ realizes φ ∧ ψ ⇐⇒ a realizes φ and b realizes ψ.
⟨i, a⟩ realizes φ ∨ ψ

⇐⇒ if i = 0 then a realizes φ, otherwise a realizes ψ.
e realizes φ → ψ ⇐⇒ if a realizes φ then e ∗ a realizes ψ.
⟨t, a⟩ realizes ∃x ∈ N φ(x) ⇐⇒ a realizes φ(t).
e realizes ∀x ∈ N φ(x) ⇐⇒ for any n, e ∗ n realizes φ(n).
▷ Here, e ∗ a means the result of feeding input a to program e

This gives an interpretation of intuitionistic arithmetic.
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Many One Degrees: A Realizability Theoretic Perspective

Definition (Post 1944)

For problems A and B, we say that A is reducible to B if
there exists a well-behaved function h such that

(∀x) A(x) is true ⇐⇒ B(h(x)) is true.

▷ well-behaved: computable or polytime computable or continuous or Borel
measurable or ...

(1) For Computability Theorists:
▷ Problems are subsets of ω; well-behaved means computable.
▷ This reducibility is known as many-one reducibility.

(2) For Descriptive Set Theorists:
▷ Problems are subsets of ωω; well-behaved means continuous.
▷ This reducibility is known as Wadge reducibility.

(3) For Complexity Theorists:
▷ Problems are subsets of Σ∗; well-behaved means PTIME.
▷ This reducibility is known as Karp reducibility.

As for natural problems, (1) and (2) have a roughly similar structure.
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Completeness for Natural Decision Problems

A problem A is Γ-complete if A ∈ Γ and any B ∈ Γ is reducible to A.

Empirical Fact (for many-one/Wadge reducibility)

Any natural decision problem is Σ0
n- or Π0

n-complete for some
n ∈ N whenever it is arithmetically definable.

Σ0
2
-complete problems:

Decide if a given countable poset is bounded.
Decide if a given countable poset has finite width.

Π0
2
-complete problems:

Decide if a given countable graph is connected.
Decide if a given countable linear order is dense.

This merely count the “number of alternations of quantifiers.”
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A Few More Details

Σ0
2
-complete problems:

Decide if a given countable poset is bounded.
▷ φ(P) ≡ ∃t, b ∈ P∀p ∈ P (b ≤P p ≤P t).

Decide if a given countable poset has finite width.
▷ φ(P) ≡ ∃n ∈ N ∀p0, . . . , pn ∈ P ∃i, j ≤ n (i , j and pi ≤P pj).

Π0
2
-complete problems:

Decide if a given countable graph is connected.
▷ φ(G) ≡ ∀u, v ∈ G ∃γ (γ is a path connecting u and v).

Decide if a given countable linear order is dense.
▷ φ(L) ≡ ∀a, b ∈ L ∃c ∈ L (a <L b → a <L c <L b).

This merely count the “number of alternations of (unbdd) quantifiers.”
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The Realizability Interpretation of Many One Reducibility

Definition (Levin 1973)
For problems A and B, we say that A is reducible to B (A ≤ B) if
there exist well-behaved functions h, r−, r+ such that

r− is a realizer for [A(x) is true =⇒ B(h(x)) is true]; that is,
▷ if a is a witness for A(x) then r−(a, x) is a witness for B(h(x)).

r+ is a realizer for [A(x) is true⇐= B(h(x)) is true]; that is,
▷ if b is a witness for B(h(x)) then r+(b, x) is a witness for A(x).

In other words, the following is realizable:

(∀x) A(x) is true ⇐⇒ B(h(x)) is true

This is exactly the realizability interpretation of many-one reducibility.

Levin introduced this notion for the classification of NP-problems.
▷ In Levin’s setting, well-behaved ≈ polytime computable.
▷ A witness ≈ a certificate for a NP-problem.

No Computability-Theorists seem to have studied this notion.
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ExistentialWitnesses

A “problem” is described by a formula.
A Σ0

2
-problem ∃a∀bφ(a, b, x) may have an existential witness.

Σ0
2
-complete problems:

BddPos: Decide if a countable poset is bounded.
FinWidth: Decide if a countable poset has finite width.
DisConn: Decide if a countable graph is disconnected.
NonDense: Decide if a countable linear order is non-dense.

Classical reduction cannot distinguish between these four problems.

Theorem (K. 202x) for realizable many-one/Wadge reducibility

BddPos < FinWidth < DisConn < NonDense

▷ This does not mean that this Levin-like degree structure is chaotic.

▷ Levin-like reducibility reveals the hidden structure of natural problems.

▷ There are clear reasons why the strength of these four problems differs.
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New Classes of Formulas

What is the hidden structure of Σ0
2
-complete natural problems?

(∃∀) Some is of the form ∃a∀b φ(a, b, x).
(∀∞) Some is of the form ∃a∀b ≥ a φ(b, x).
(∀∞∀) Some is of the form ∃a∀b ≥ a∀c φ(b, c, x).

Theorem (K. 202x) for realizable many-one/Wadge reducibility

There are at least three levels of Σ0
2
-complete natural problems.

∀∞, ∀∞∀ and ∃∀

Indeed:
BddPos is ∀∞-complete.

FinWidth is ∀∞∀-complete.

NonDense is ∃∀-complete.

And computable/continuous Levin reducibility distinguishes between these.
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Higher Levels

Π0
3
-complete problems:

Lattice: Decide if a countable poset is a lattice.

Atomic: Decide if a countable poset is atomic.

LocFin: Decide if a countable graph is locally finite.

FinBranch: Decide if a countable tree is finitely branching.

Compl: Decide if a countable poset is complemented.

InfWidth: Decide if an enumerated poset has infinite width.

Cauchy: Decide if a rational sequence is Cauchy.

Normal: Decide if a real is simply normal in base 2.

Perfect: Decide if a countable binary tree is perfect.

Classical reduction cannot distinguish between these problems.
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New Theorem!

The following are ∀∀∞-bicomplete:

Lattice: Decide if a countable poset is a lattice.

Atomic: Decide if a countable poset is atomic.

The following are ∀∀∞∀-bicomplete:

LocFin: Decide if a countable graph is locally finite.

FinBranch: Decide if a countable tree is finitely branching.

The following is ∀∃∀-bicomplete:

Compl: Decide if a countable poset is complemented.

The following is ∃∞∃∀-bicomplete:

InfWidth: Decide if an enumerated poset has infinite width.

The following are ∀↓∀∞-bicomplete:

Cauchy: Decide if a rational sequence is Cauchy.

Normal: Decide if a real is simply normal in base 2.

The following is ∀(∀ → ∃∀)-bicomplete:

Perfect: Decide if a countable binary tree is perfect.

And computable/continuous Levin reducibility distinguishes between these.
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Key Ideas
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Historical Background

The results described so far are new discoveries in classical
mathematics.
▷ They are of interest to classical computability theorists.

However, the origin of this research lies in Veldman’s work in
intuitionistic mathematics.

Of course, a realizability interpretation gives a model of an
intuitionistic system.

Veldman was not simply introducing a intuitionistic version of
many-one/Wadge reducibility, but was conducting truly new
research including new counterexample constructions.

Veldman’s research had been ongoing since the 1980s,
but because it was described in a very formal way in the context of
intuitionistic mathematics, it seems that classical computability
theorists did not realize its importance.
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The origin of research into the realizability interpretation of
many-one/Wadge reducibility is Veldman’s series of studies:

W. Veldman, Investigations in intuitionistic hierarchy theory, Ph.D. Thesis, Katholieke
Universiteit Nijmegen, 1981.

W. Veldman, A survey of intuitionistic descriptive set theory, in: P.P. Petkov (Ed.),
Mathematical Logic, Proceedings of the Heyting Conference 1988, Plenum Press,
New York, London, 1990, pp. 155-174.

W. Veldman, Two simple sets that are not positively Borel, Ann. Pure Appl. Logic 135
(2005) 151-209.

W. Veldman, The Borel hierarchy theorem from Brouwer’s intuitionistic perspective, J.
Symbolic Logic 73 (2008) 1-64.

W. Veldman, The fine structure of the intuitionistic Borel hierarchy, Rev. Symb. Log. 2
(2009) 30-101.

W. Veldman, Projective sets, intuitionistically. J. Log. Anal. 14 (2022), Paper No. 5, 85
pp.
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The Result that Triggered this Research

Σ0
2
-completeness of Fin is “trivial” to those of us familiar with classical

theory, but it is not necessarily true in intuitionistic mathematics.

Theorem (Veldman 2008)
In a certain intuitionistic system,
Fin = {x ∈ NN : ∃n∀m > n. x(m) = 0} is not Σ0

2
-complete.

It is a very interesting theorem...
but what the essence of this theorem is was unclear.

Our new perspective:

It is not only Σ0
2
-definable, but also ∀∞-definable

▷ ∀∞ · · · “for all but finitely many ...”

Indeed, Fin is a ∀∞-complete problem.

However, a ∀∞-definable problem cannot be Σ0
2
-complete.
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Qualitative Differences between Classes of Formulas

∀∞ · · · ∃n∀m ≥ nφ(m, x)
∀∞∀ · · · ∃n∀m ≥ n∀kφ(m, k, x)
∃∀ · · · ∃n∀mφ(n,m, x)

Question: Why is ∀∞ different from ∃∀?

Answer: Amalgamability!
▷ Given finitely many candidates for realizers, if at least one of them is

correct, then it is always possible to construct a correct realizer.

▷ (Example) If at least one of n0, n1, . . . , nk is an existential
witness for a ∀∞-formula θ := ∃n∀m > nφ(m, x),
then max{n0, n1, . . . , nk} is a correct existential witness for θ.

Indeed, ∀∞∀ has this property.
▷ No ∀∞∀-definable problem is Σ0

2
-complete.
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Qualitative Differences between Classes of Formulas II

∀∞ · · · ∃n∀m ≥ nφ(m, x)
∀∞∀ · · · ∃n∀m ≥ n∀kφ(m, k, x)
∃∀ · · · ∃n∀mφ(n,m, x)

Question: Why is ∀∞ different from ∀∞∀?

Answer: Unique witness property!
▷ Given a realizer, one can always construct a “special” realizer.

▷ (Example) If an existential witness n for
a ∀∞-formula θ := ∃n∀m > nφ(m, x) is given,
then one can find the least existential witness for θ.

▷ (Proof) Given a witness n for θ, find the least s such that
any m ∈ [s, n] satisfies the decidable formula φ(m, x).

∀∞∀ does not have this property.
▷ No ∀∞-definable problem is ∀∞∀-complete.

Takayuki Kihara (Nagoya) Degrees of Unsolvability



Natural ∀∞-Definable Problems

Fin: Decide if an infinite sequence is eventually zero.

Period: Decide if an infinite sequence is eventually periodic.

BddPos: Decide if a countable poset is bounded.
▷ A poset is bounded if it has the top and bottom elements.

Fin, Period and BddPos are ∀∞-complete.

Proof (using Unique witness property):

For Fin, Period, given a witness, one can find the least witness.
▷ For completeness, add a new nonzero term if the current

witness is refuted; otherwise keep adding zeros.

For BddPos, the top and bottom elements are unique if they exist.
▷ For completeness, add new ⊤ and ⊥ if the current witness is

refuted; otherwise keep the current ⊤ and ⊥.
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Natural ∀∞∀-Definable Problems

Bdd: Decide if an infinite sequence has an upper bound.

FinWidth: Decide if a countable poset has finite width.
▷ The width of a poset is the size of a maximal antichain.

FinHeight: Decide if a countable poset has finite height.
▷ The height of a poset is the size of a maximal chain.

Bdd, FinWidth and FinHeight are ∀∞∀-complete.

Proof (using Increasing witness property):

If n is a witness for ∃n∀k ≥ n∀ℓ..., so is any m ≥ n.

For Bdd, if n is an upper bound, so is any m ≥ n.
▷ For completeness, the value of a new term is the smallest

unrefuted witness.
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Abstract framework
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Categorical Formulation

Our results are implemented as an interpretation of reducibility in a
certain category.

Thee main “algebras” (A,Aeff , ∗):
Kleene’s first algebra K1

▷ The algebra of computability on natural numbers.
▷ A = Aeff = N and e ∗ x = φe(x)
▷ where φe is the eth partial computable function on N.

Kleene’s second algebra K2

▷ The algebra of continuity on infinite strings.
▷ A = Aeff = NN, and e ∗ x = ψe(x)
▷ where ψe is the partial continuous function on NN coded by e.

Kleene-Vesley algebra KV
▷ The algebra of computability on infinite strings.
▷ A = NN, Aeff = computable strings, and e ∗ x = ψe(x)
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Represented Spaces

Let (A,Aeff , ∗) be a relative pca, i.e, K1,K2,KV or so.

An represented space is a pair of a set X and a partial surjection
δ :⊆ A → X.
▷ That δ(p) = x means that p is a code of x ∈ X.

A function f : X → Y is realizable if there exists a ∈ Aeff such that
if p is a code of x ∈ X then a ∗ p is a code of f (x) ∈ Y

A represented space is also known as a modest set.

Fact: The category of represented spaces and realizable functions
is a locally cartesian closed category with NNO,
whose internal logic corresponds to the realizability interpretation.
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Kleene (1945): Realizability Interpretation

⟨a, b⟩ realizes φ ∧ ψ ⇐⇒ a realizes φ and b realizes ψ.

⟨i, a⟩ realizes φ ∨ ψ
⇐⇒ if i = 0 then a realizes φ, otherwise a realizes ψ.

e realizes φ → ψ ⇐⇒ if a realizes φ then e ∗ a realizes ψ.

⟨p, a⟩ realizes ∃x φ(x) ⇐⇒ p codes x and a realizes φ(t).
e realizes ∀x φ(x) ⇐⇒ if a codes x then e ∗ a realizes φ(x).

LCCC structure of the category of represented spaces.

⟨a, b⟩ codes (x, y) ∈ X × Y ⇐⇒ a codes x ∈ X and b codes y ∈ Y.

⟨i, a⟩ codes (i, x) ∈ X + Y
⇐⇒ if i = 0 then a codes x ∈ X, otherwise a realizes x ∈ Y.

e codes f ∈ YX ⇐⇒ if a codes x ∈ X then e ∗ a codes f (x) ∈ Y.

⟨p, a⟩ codes (t, x) ∈ ∑u∈I Xu ⇐⇒ p codes t ∈ I and a codes x ∈ Xt.

e codes f ∈ ∏u∈I Xu ⇐⇒ if a codes t ∈ I, e ∗ a codes f (t) ∈ Xt.
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In the category of represented spaces:

A formula is interpreted as something like
a “witness-search problem (or a realizer-search problem)”

Example: The type NN formula “φ(x) ≡ ∃n∀m ≥ n. x(m) = 0”
is interpreted as a subobject FIN ↣ NN such that

the underlying set is {x ∈ NN : ∃n∀m ≥ n. x(m) = 0}
a name of x ∈ FIN is a pair of ⟨x, n⟩,
where n is an existential witness.

Fact: Every subobject of X has a representative of the following form:

an underlying set A is a subset of X
a name of x ∈ A is the pair of a name p of x ∈ X and some q ∈ A.
This q is considered as a “witness”.

Roughly speaking:

A subobject is a subset with witnesses.

A regular subobject is a subset without witnesses.
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Recall: A problem A is reducible to B (written A ≤ B) iff

∃ well-behaved φ ∀x (x ∈ A ⇐⇒ φ(x) ∈ B)

That is, A = φ−1[B].

Its categorical version would be something like:

Def: Let X, Y be objects in a category C having pullbacks.

A mono A
α
↣ X is reducible to B

β
↣ Y if A

α
↣ X is a pullback of B

β
↣ Y

along some morphism φ : X → Y.

A //
��

��

B
��

��
X

φ
// Y

When this notion is interpreted in the category of represented spaces,
we obtain (computable/continuous) Levin reducibility.
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New Theorem!

The following are ∀∀∞-bicomplete:

Lattice: Decide if a countable poset is a lattice.

Atomic: Decide if a countable poset is atomic.

The following are ∀∀∞∀-bicomplete:

LocFin: Decide if a countable graph is locally finite.

FinBranch: Decide if a countable tree is finitely branching.

The following is ∀∃∀-bicomplete:

Compl: Decide if a countable poset is complemented.

The following is ∃∞∃∀-bicomplete:

InfWidth: Decide if an enumerated poset has infinite width.

The following are ∀↓∀∞-bicomplete:

Cauchy: Decide if a rational sequence is Cauchy.

Normal: Decide if a real is simply normal in base 2.

The following is ∀(∀ → ∃∀)-bicomplete:

Perfect: Decide if a countable binary tree is perfect.

And computable/continuous Levin reducibility distinguishes between these.
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Summary:

Constructive mathematics gives us ideas for good definitions.

Classical mathematics gives us ideas for powerful proof techniques.

The combination of the two, when well harmonized, yields beautiful
results.
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