Degrees of Unsolvability: A Realizability-Theoretic Perspective

Takayuki Kihara

Nagoya University, Japan

PLS14: 14th Panhellenic Logic Symposium, Thessaloniki, Greece July 6, 2024

Two Branches of Computability Theory

- Degree Theory
\triangleright studies degrees of algorithmic unsolvability of various problems.
\triangleright initiated by Post (1944), Kleene-Post (1954), ...
\triangleright many-one degree, truth-table degree, Turing degree, enumeration degree, ...
- Realizability Theory
- aims at providing computability-theoretic models of constructive systems.
- initiated by Kleene (1945), ...

New Interactions

- Applying Realizability Theory to Degree Theory.
\triangleright Classical theory has some shortcoming: the degree of unsolvability of "natural problems" almost entirely determined by counting the "number of alternations of quantifiers."
\triangleright i.e., natural problems \approx master codes
\triangleright Using realizability theory, one can reveal the hidden true structure of "natural problems."
- Applying Degree Theory to Realizability Theory.
\triangleright Realizability theory discusses the structure of realizability models and their internal logic, and so on.
\triangleright Using degree theory, one can clarify the specific shape of the structure of subtoposes of realizability toposes.
\triangleright Also, degree theory enable us to flexibly construct realizability models of (semi-)constructive systems.

Tutorial 1

Realizability Theory \rightarrow Degree Theory

Realizability Interpretation

- Key Observation: Formulas involve the notion of witness:
\triangleright A formula $\exists x \varphi(x)$ may involve existential witnesses
\triangleright For $\varphi \vee \psi$, information about which is correct.
- Kleene (1945): Realizability Interpretation
- $\langle\boldsymbol{a}, \boldsymbol{b}\rangle$ realizes $\varphi \wedge \psi \Longleftrightarrow \boldsymbol{a}$ realizes φ and \boldsymbol{b} realizes ψ.
- $\langle i, a\rangle$ realizes $\varphi \vee \psi$
\Longleftrightarrow if $i=\mathbf{0}$ then \boldsymbol{a} realizes φ, otherwise \boldsymbol{a} realizes ψ.
- \boldsymbol{e} realizes $\varphi \rightarrow \psi \Longleftrightarrow$ if \boldsymbol{a} realizes φ then $\boldsymbol{e} * \boldsymbol{a}$ realizes ψ.
- $\langle t, a\rangle$ realizes $\exists x \in \mathbb{N} \varphi(x) \Longleftrightarrow a$ realizes $\varphi(t)$.
- e realizes $\forall x \in \mathbb{N} \varphi(x) \Longleftrightarrow$ for any $n, e * n$ realizes $\varphi(n)$.
\triangleright Here, $\boldsymbol{e} * \boldsymbol{a}$ means the result of feeding input \boldsymbol{a} to program \boldsymbol{e}
This gives an interpretation of intuitionistic arithmetic.

Many One Degrees: A Realizability Theoretic Perspective

Definition (Post 1944)

For problems \boldsymbol{A} and \boldsymbol{B}, we say that \boldsymbol{A} is reducible to \boldsymbol{B} if there exists a well-behaved function \boldsymbol{h} such that

$(\forall x) \quad \boldsymbol{A}(\boldsymbol{x})$ is true $\Longleftrightarrow \boldsymbol{B}(\boldsymbol{h}(\boldsymbol{x})$) is true.

- well-behaved: computable or polytime computable or continuous or Borel measurable or ...
(1) For Computability Theorists:
\triangleright Problems are subsets of ω; well-behaved means computable.
- This reducibility is known as many-one reducibility.
(2) For Descriptive Set Theorists:
\triangleright Problems are subsets of ω^{ω}; well-behaved means continuous.
- This reducibility is known as Wadge reducibility.
(3) For Complexity Theorists:
\triangleright Problems are subsets of Σ^{*}; well-behaved means PTIME.
\triangleright This reducibility is known as Karp reducibility.
As for natural problems, (1) and (2) have a roughly similar structure.

Completeness for Natural Decision Problems

A problem \boldsymbol{A} is $\boldsymbol{\Gamma}$-complete if $\boldsymbol{A} \in \boldsymbol{\Gamma}$ and any $\boldsymbol{B} \in \boldsymbol{\Gamma}$ is reducible to \boldsymbol{A}.

Empirical Fact (for many-one/Wadge reducibility)

Any natural decision problem is $\boldsymbol{\Sigma}_{\boldsymbol{n}}^{\mathbf{0}}$ - or $\boldsymbol{\Pi}_{\boldsymbol{n}}^{\mathbf{0}}$-complete for some $\boldsymbol{n} \in \mathbb{N}$ whenever it is arithmetically definable.

- $\boldsymbol{\Sigma}_{\mathbf{2}}^{\mathbf{0}}$-complete problems:
- Decide if a given countable poset is bounded.
- Decide if a given countable poset has finite width.
- $\boldsymbol{\Pi}_{2}^{0}$-complete problems:
- Decide if a given countable graph is connected.
- Decide if a given countable linear order is dense.

This merely count the "number of alternations of quantifiers."

A Few More Detalls

- $\boldsymbol{\Sigma}_{\mathbf{2}}^{\mathbf{0}}$-complete problems:
- Decide if a given countable poset is bounded.
$\triangleright \varphi(P) \equiv \exists t, b \in P \forall p \in P\left(b \leq_{P} p \leq_{P} t\right)$.
- Decide if a given countable poset has finite width.
$\triangleright \varphi(P) \equiv \exists n \in \mathbb{N} \forall p_{0}, \ldots, p_{n} \in P \exists i, j \leq n\left(i \neq j\right.$ and $\left.p_{i} \leq_{P} p_{j}\right)$.
- Π_{2}^{0}-complete problems:
- Decide if a given countable graph is connected.
$\triangleright \varphi(G) \equiv \forall u, v \in G \exists \gamma(\gamma$ is a path connecting u and $v)$.
- Decide if a given countable linear order is dense.
$\triangleright \varphi(L) \equiv \forall a, b \in L \exists c \in L\left(a<_{L} b \rightarrow a<_{L} c<_{L} b\right)$.
This merely count the "number of alternations of (unbdd) quantifiers."

The Realizability Interpretation of Many One Reducibility

Definition (Levin 1973)

For problems \boldsymbol{A} and \boldsymbol{B}, we say that \boldsymbol{A} is reducible to $\boldsymbol{B}(\boldsymbol{A} \leq \boldsymbol{B})$ if there exist well-behaved functions $\boldsymbol{h}, \boldsymbol{r}_{-}, \boldsymbol{r}_{+}$such that

- r_{-}is a realizer for $[\boldsymbol{A}(\boldsymbol{x})$ is true $\Rightarrow \boldsymbol{B}(\boldsymbol{h}(\boldsymbol{x}))$ is true]; that is,
\triangleright if \boldsymbol{a} is a witness for $\boldsymbol{A}(\boldsymbol{x})$ then $\boldsymbol{r}_{-}(\boldsymbol{a}, \boldsymbol{x})$ is a witness for $\boldsymbol{B}(\boldsymbol{h}(\boldsymbol{x}))$.
- r_{+}is a realizer for $[\boldsymbol{A}(\boldsymbol{x})$ is true $\Longleftarrow \boldsymbol{B}(\boldsymbol{h}(\boldsymbol{x})$) is true]; that is,
\triangleright if \boldsymbol{b} is a witness for $\boldsymbol{B}(\boldsymbol{h}(\boldsymbol{x}))$ then $\boldsymbol{r}_{+}(\boldsymbol{b}, \boldsymbol{x})$ is a witness for $\boldsymbol{A}(\boldsymbol{x})$.
In other words, the following is realizable:
$(\forall x) \quad \boldsymbol{A}(\boldsymbol{x})$ is true $\Longleftrightarrow \boldsymbol{B}(\boldsymbol{h}(\boldsymbol{x})$) is true
- This is exactly the realizability interpretation of many-one reducibility.
- Levin introduced this notion for the classification of NP-problems.
\triangleright In Levin's setting, well-behaved \approx polytime computable.
\triangleright A witness \approx a certificate for a NP-problem.
- No Computability-Theorists seem to have studied this notion.

Existential Witnesses

- A "problem" is described by a formula.
- A $\boldsymbol{\Sigma}_{2}^{\mathbf{0}}$-problem $\exists \boldsymbol{a} \forall \boldsymbol{b} \varphi(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{x})$ may have an existential witness.
- Σ_{2}^{0}-complete problems:
- BddPos: Decide if a countable poset is bounded.
- FinWidth: Decide if a countable poset has finite width.
- DisConn: Decide if a countable graph is disconnected.
- NonDense: Decide if a countable linear order is non-dense.
- Classical reduction cannot distinguish between these four problems.

Theorem (K. 202x) for realizable many-one/Wadge reducibility

BddPos < FinWidth < DisConn < NonDense

\triangleright This does not mean that this Levin-like degree structure is chaotic.
\triangleright Levin-like reducibility reveals the hidden structure of natural problems.
\triangleright There are clear reasons why the strength of these four problems differs.

New Classes of Formulas

What is the hidden structure of Σ_{2}^{0}-complete natural problems?

- ($\exists \curlyvee)$ Some is of the form $\exists a \forall b \varphi(a, b, x)$.
- (\cup^{∞}) Some is of the form $\exists a \forall b \geq a \varphi(b, x)$.
- ($\forall^{\infty} \forall$) Some is of the form $\exists a \forall b \geq a \forall c \varphi(b, c, x)$.

Theorem (K. 202x) for realizable many-one/Wadge reducibility

There are at least three levels of $\boldsymbol{\Sigma}_{\mathbf{2}}^{\mathbf{0}}$-complete natural problems.

$$
\forall^{\infty}, \quad \forall^{\infty} \forall \text { and } \exists \forall
$$

Indeed:

- BddPos is \forall^{∞}-complete.
- FinWidth is $\forall^{\infty} \forall$-complete.
- NonDense is $\exists \forall$-complete.

And computable/continuous Levin reducibility distinguishes between these.

Higher Levels

Π_{3}^{0}-complete problems:

- Lattice: Decide if a countable poset is a lattice.
- Atomic: Decide if a countable poset is atomic.
- LocFin: Decide if a countable graph is locally finite.
- FinBranch: Decide if a countable tree is finitely branching.
- Compl: Decide if a countable poset is complemented.
- InfWidth: Decide if an enumerated poset has infinite width.
- Cauchy: Decide if a rational sequence is Cauchy.
- Normal: Decide if a real is simply normal in base 2.
- Perfect: Decide if a countable binary tree is perfect.

Classical reduction cannot distinguish between these problems.

New Theorem!

The following are $\forall \forall^{\infty}$-bicomplete:

- Lattice: Decide if a countable poset is a lattice.
- Atomic: Decide if a countable poset is atomic.

The following are $\forall \forall^{\infty} \forall$-bicomplete:

- LocFin: Decide if a countable graph is locally finite.
- FinBranch: Decide if a countable tree is finitely branching.

The following is $\forall \exists \forall$-bicomplete:

- Compl: Decide if a countable poset is complemented.

The following is $\exists^{\infty} \exists \forall$-bicomplete:

- InfWidth: Decide if an enumerated poset has infinite width.

The following are $\forall^{\downarrow} \forall^{\infty}$-bicomplete:

- Cauchy: Decide if a rational sequence is Cauchy.
- Normal: Decide if a real is simply normal in base 2.

The following is $\forall(\forall \rightarrow \exists \forall)$-bicomplete:

- Perfect: Decide if a countable binary tree is perfect.

And computable/continuous Levin reducibility distinguishes between these.

Key Ideas

Historical Background

- The results described so far are new discoveries in classical mathematics.
\triangleright They are of interest to classical computability theorists.
- However, the origin of this research lies in Veldman's work in intuitionistic mathematics.
- Of course, a realizability interpretation gives a model of an intuitionistic system.
- Veldman was not simply introducing a intuitionistic version of many-one/Wadge reducibility, but was conducting truly new research including new counterexample constructions.
- Veldman's research had been ongoing since the 1980s, but because it was described in a very formal way in the context of intuitionistic mathematics, it seems that classical computability theorists did not realize its importance.

The origin of research into the realizability interpretation of many-one/Wadge reducibility is Veldman's series of studies:
\square W. Veldman, Investigations in intuitionistic hierarchy theory, Ph.D. Thesis, Katholieke Universiteit Nijmegen, 1981.
W. Veldman, A survey of intuitionistic descriptive set theory, in: P.P. Petkov (Ed.), Mathematical Logic, Proceedings of the Heyting Conference 1988, Plenum Press, New York, London, 1990, pp. 155-174.

W. Veldman, Two simple sets that are not positively Borel, Ann. Pure Appl. Logic 135 (2005) 151-209.

W. Veldman, The Borel hierarchy theorem from Brouwer's intuitionistic perspective, J. Symbolic Logic 73 (2008) 1-64.W. Veldman, The fine structure of the intuitionistic Borel hierarchy, Rev. Symb. Log. 2 (2009) 30-101.W. Veldman, Projective sets, intuitionistically. J. Log. Anal. 14 (2022), Paper No. 5, 85 pp.

The Result that Triggered this Research

Σ_{2}^{0}-completeness of Fin is "trivial" to those of us familiar with classical theory, but it is not necessarily true in intuitionistic mathematics.

Theorem (Veldman 2008)

In a certain intuitionistic system,
Fin $=\left\{\boldsymbol{x} \in \mathbb{N}^{\mathbb{N}}: \exists \boldsymbol{n} \forall m>\boldsymbol{n} . \boldsymbol{x}(\boldsymbol{m})=\mathbf{0}\right\}$ is not $\boldsymbol{\Sigma}_{2}^{\mathbf{0}}$-complete.

- It is a very interesting theorem...
but what the essence of this theorem is was unclear.
Our new perspective:
- It is not only Σ_{2}^{0}-definable, but also \forall^{∞}-definable
$\triangleright \vee^{\infty}$... "for all but finitely many ..."
- Indeed, Fin is a \vee^{∞}-complete problem.
- However, a \forall^{∞}-definable problem cannot be Σ_{2}^{0}-complete.

Qualitative Differences between Classes of Formulas

- $\forall^{\infty} \cdots \exists n \forall m \geq n \varphi(m, x)$
- $\forall^{\infty} \forall \cdots \exists n \forall m \geq n \forall k \varphi(m, k, x)$
- $\exists \forall \cdots \exists n \forall m \varphi(n, m, x)$
- Question: Why is \forall^{∞} different from $\exists \forall$?
- Answer: Amalgamability!
- Given finitely many candidates for realizers, if at least one of them is correct, then it is always possible to construct a correct realizer.
\triangleright (Example) If at least one of $\boldsymbol{n}_{0}, \boldsymbol{n}_{1}, \ldots, \boldsymbol{n}_{\boldsymbol{k}}$ is an existential witness for a \forall^{∞}-formula $\theta:=\exists n \forall m>n \varphi(m, x)$, then $\max \left\{n_{0}, n_{1}, \ldots, n_{k}\right\}$ is a correct existential witness for θ.
- Indeed, $V^{\infty} \vee$ has this property.
\triangleright No $\forall^{\infty} \forall$-definable problem is Σ_{2}^{0}-complete.

Qualitative Differences between Classes of Formulas II

- $\forall^{\infty} \cdots \exists n \forall m \geq n \varphi(m, x)$
- $\forall^{\infty} \forall \cdots \exists n \forall m \geq n \forall k \varphi(m, k, x)$
- ヨ丬 $\cdots \exists n \forall m \varphi(n, m, x)$
- Question: Why is \forall^{∞} different from $\forall^{\infty} \forall$?
- Answer: Unique witness property!
- Given a realizer, one can always construct a "special" realizer.
- (Example) If an existential witness n for a \forall^{∞}-formula $\theta:=\exists n \forall m>n \varphi(m, x)$ is given, then one can find the least existential witness for θ.
\triangleright (Proof) Given a witness \boldsymbol{n} for $\boldsymbol{\theta}$, find the least \boldsymbol{s} such that any $\boldsymbol{m} \in[\boldsymbol{s}, \boldsymbol{n}]$ satisfies the decidable formula $\varphi(\boldsymbol{m}, \boldsymbol{x})$.
- $\forall^{\infty} \vee$ does not have this property.
\triangleright No \forall^{∞}-definable problem is $\forall^{\infty} \forall$-complete.

Natural \forall^{∞}-Definable Problems

- Fin: Decide if an infinite sequence is eventually zero.
- Period: Decide if an infinite sequence is eventually periodic.
- BddPos: Decide if a countable poset is bounded.
\triangleright A poset is bounded if it has the top and bottom elements.

Fin, Period and BddPos are \forall^{∞}-complete.
Proof (using Unique witness property):

- For Fin, Period, given a witness, one can find the least witness.
\triangleright For completeness, add a new nonzero term if the current witness is refuted; otherwise keep adding zeros.
- For BddPos, the top and bottom elements are unique if they exist.
- For completeness, add new T and \perp if the current witness is refuted; otherwise keep the current T and \perp.

Natural $\forall^{\infty} \forall$-Definable Problems

- Bdd: Decide if an infinite sequence has an upper bound.
- FinWidth: Decide if a countable poset has finite width.
\triangleright The width of a poset is the size of a maximal antichain.
- FinHeight: Decide if a countable poset has finite height.
\triangleright The height of a poset is the size of a maximal chain.

Bdd, FinWidth and FinHeight are $\vee^{\infty} \vee$-complete.
Proof (using Increasing witness property):

- If \boldsymbol{n} is a witness for $\exists \boldsymbol{n} \forall \boldsymbol{k} \geq \boldsymbol{n} \forall \boldsymbol{\ell} \ldots$, so is any $\boldsymbol{m} \geq \boldsymbol{n}$.
- For Bdd, if \boldsymbol{n} is an upper bound, so is any $\boldsymbol{m} \geq \boldsymbol{n}$.
\quad For completeness, the value of a new term is the smallest unrefuted witness.

Abstract framework

Categorical Formulation

Our results are implemented as an interpretation of reducibility in a certain category.

Thee main "algebras" ($\mathbb{A}, \mathbb{A}_{\text {eff }}, *$):

- Kleene's first algebra $\boldsymbol{K}_{\mathbf{1}}$
\triangleright The algebra of computability on natural numbers.
$\triangleright \mathbb{A}=\mathbb{A}_{\text {eff }}=\mathbb{N}$ and $e * x=\varphi_{e}(x)$
\triangle where φ_{e} is the e th partial computable function on \mathbb{N}.
- Kleene's second algebra \boldsymbol{K}_{2}
\triangleright The algebra of continuity on infinite strings.
$\triangleright \mathbb{A}=\mathbb{A}_{\text {eff }}=\mathbb{N}^{\mathbb{N}}$, and $e * x=\psi_{e}(x)$
\triangleright where ψ_{e} is the partial continuous function on $\mathbb{N}^{\mathbb{N}}$ coded by \boldsymbol{e}.
- Kleene-Vesley algebra $\boldsymbol{K} \boldsymbol{V}$
\triangleright The algebra of computability on infinite strings.
$\triangleright \mathbb{A}=\mathbb{N}^{\mathbb{N}}, \mathbb{A}_{e f f}=$ computable strings, and $e * x=\psi_{e}(x)$

Represented Spaces

Let $\left(\mathbb{A}, \mathbb{A}_{\text {eff }}, *\right)$ be a relative pca, i.e, $K_{1}, K_{2}, K V$ or so.

- An represented space is a pair of a set \boldsymbol{X} and a partial surjection $\delta: \subseteq \mathbb{A} \rightarrow X$.
\triangleright That $\delta(p)=x$ means that p is a code of $x \in X$.
- A function $f: X \rightarrow \boldsymbol{Y}$ is realizable if there exists $\boldsymbol{a} \in \boldsymbol{A}_{\text {eff }}$ such that if \boldsymbol{p} is a code of $\boldsymbol{x} \in \boldsymbol{X}$ then $\boldsymbol{a} * \boldsymbol{p}$ is a code of $f(\boldsymbol{x}) \in \boldsymbol{Y}$

A represented space is also known as a modest set.

- Fact: The category of represented spaces and realizable functions is a locally cartesian closed category with NNO, whose internal logic corresponds to the realizability interpretation.

Kleene (1945): Realizability Interpretation

- $\langle\boldsymbol{a}, \boldsymbol{b}\rangle$ realizes $\varphi \wedge \psi \Longleftrightarrow \boldsymbol{a}$ realizes φ and \boldsymbol{b} realizes ψ.
- $\langle i, a\rangle$ realizes $\varphi \vee \psi$
\Longleftrightarrow if $\boldsymbol{i}=\mathbf{0}$ then \boldsymbol{a} realizes φ, otherwise \boldsymbol{a} realizes ψ.
- e realizes $\varphi \rightarrow \psi \Longleftrightarrow$ if a realizes φ then $e * a$ realizes ψ.
- $\langle p, a\rangle$ realizes $\exists x \varphi(x) \Longleftrightarrow p$ codes x and a realizes $\varphi(t)$.
- e realizes $\forall x \varphi(x) \Longleftrightarrow$ if a codes x then $e * a$ realizes $\varphi(x)$.

LCCC structure of the category of represented spaces.

- $\langle a, b\rangle \operatorname{codes}(x, y) \in X \times Y \Longleftrightarrow a$ codes $x \in X$ and b codes $y \in Y$.
- $\langle i, a\rangle \operatorname{codes}(i, x) \in X+Y$
\Longleftrightarrow if $i=0$ then a codes $x \in X$, otherwise a realizes $x \in Y$.
- $e \operatorname{codes} f \in Y^{X} \Longleftrightarrow$ if $a \operatorname{codes} x \in X$ then $e * a \operatorname{codes} f(x) \in Y$.
- $\langle p, a\rangle$ codes $(t, x) \in \sum_{u \in I} X_{u} \Longleftrightarrow p$ codes $t \in I$ and a codes $x \in X_{t}$.
- $e \operatorname{codes} f \in \prod_{u \in I} X_{u} \Longleftrightarrow$ if $a \operatorname{codes} t \in I, e * a \operatorname{codes} f(t) \in X_{t}$.

In the category of represented spaces:

- A formula is interpreted as something like a "witness-search problem (or a realizer-search problem)"

Example: The type $\mathbb{N}^{\mathbb{N}}$ formula " $\varphi(x) \equiv \exists n \forall m \geq n . x(m)=0$ " is interpreted as a subobject $F I N \mapsto \mathbb{N}^{\mathbb{N}}$ such that

- the underlying set is $\left\{x \in \mathbb{N}^{\mathbb{N}}: \exists \boldsymbol{n} \forall \boldsymbol{m} \geq \boldsymbol{n} . \boldsymbol{x}(\boldsymbol{m})=\mathbf{0}\right\}$
- a name of $\boldsymbol{x} \in \boldsymbol{F I N}$ is a pair of $\langle\boldsymbol{x}, \boldsymbol{n}\rangle$, where \boldsymbol{n} is an existential witness.

Fact: Every subobject of \boldsymbol{X} has a representative of the following form:

- an underlying set \boldsymbol{A} is a subset of \boldsymbol{X}
- a name of $\boldsymbol{x} \in \boldsymbol{A}$ is the pair of a name \boldsymbol{p} of $\boldsymbol{x} \in \boldsymbol{X}$ and some $\boldsymbol{q} \in \mathbb{A}$. This \boldsymbol{q} is considered as a "witness".

Roughly speaking:

- A subobject is a subset with witnesses.
- A regular subobject is a subset without witnesses.

Recall: A problem \boldsymbol{A} is reducible to \boldsymbol{B} (written $\boldsymbol{A} \leq \boldsymbol{B}$) iff \exists well-behaved $\varphi \forall x(x \in A \Longleftrightarrow \varphi(x) \in B)$
That is, $\boldsymbol{A}=\boldsymbol{\varphi}^{-1}[\boldsymbol{B}]$.
Its categorical version would be something like:
Def: Let $\boldsymbol{X}, \boldsymbol{Y}$ be objects in a category \boldsymbol{C} having pullbacks.
A mono $\boldsymbol{A} \stackrel{\alpha}{\rightarrow} X$ is reducible to $\boldsymbol{B} \stackrel{\beta}{\mapsto} \boldsymbol{Y}$ if $\boldsymbol{A} \stackrel{\alpha}{\mapsto} X$ is a pullback of $\boldsymbol{B} \stackrel{\beta}{\mapsto} \boldsymbol{Y}$ along some morphism $\varphi: X \rightarrow Y$.

When this notion is interpreted in the category of represented spaces, we obtain (computable/continuous) Levin reducibility.

New Theorem!

The following are $\forall \forall^{\infty}$-bicomplete:

- Lattice: Decide if a countable poset is a lattice.
- Atomic: Decide if a countable poset is atomic.

The following are $\forall \forall^{\infty} \forall$-bicomplete:

- LocFin: Decide if a countable graph is locally finite.
- FinBranch: Decide if a countable tree is finitely branching.

The following is $\forall \exists \forall$-bicomplete:

- Compl: Decide if a countable poset is complemented.

The following is $\exists^{\infty} \exists \forall$-bicomplete:

- InfWidth: Decide if an enumerated poset has infinite width.

The following are $\forall^{\downarrow} \forall^{\infty}$-bicomplete:

- Cauchy: Decide if a rational sequence is Cauchy.
- Normal: Decide if a real is simply normal in base 2.

The following is $\forall(\forall \rightarrow \exists \forall)$-bicomplete:

- Perfect: Decide if a countable binary tree is perfect.

And computable/continuous Levin reducibility distinguishes between these.

Summary:

- Constructive mathematics gives us ideas for good definitions.
- Classical mathematics gives us ideas for powerful proof techniques.
- The combination of the two, when well harmonized, yields beautiful results.

Bibliography:
国
T. Kihara, Many-one reducibility with realizability, 37 pages, arXiv:2403.16027, 2024.T. Kihara, The arithmetical hierarchy with realizability, 50 pages, 2024.
G. Glowacki, T. Kihara, K. Takayanagi, and K. Yokoyama. work in progress. 2024.

