Reflections on the work of Pheidas

Konstantinos Kartas

Sorbonne University

PLS 2024

Let $P(X_1, ..., X_n) = 0$ be a polynomial equation with integer coefficients.

Let $P(X_1, ..., X_n) = 0$ be a polynomial equation with integer coefficients. Questions:

Let $P(X_1, ..., X_n) = 0$ be a polynomial equation with integer coefficients.

Questions:

1. Is it solvable in \mathbb{Z} ?

Let $P(X_1, ..., X_n) = 0$ be a polynomial equation with integer coefficients.

Questions:

- 1. Is it solvable in \mathbb{Z} ?
- 2. If yes, what does the solution set look like? For instance, is it finite or infinite?

Let $P(X_1, ..., X_n) = 0$ be a polynomial equation with integer coefficients.

Questions:

- 1. Is it solvable in \mathbb{Z} ?
- 2. If yes, what does the solution set look like? For instance, is it finite or infinite?

Example

1. $x^2 + y^2 = z^2$. There are infinitely many integer solutions which are precisely the Pythagorean triples:

Let $P(X_1, ..., X_n) = 0$ be a polynomial equation with integer coefficients.

Questions:

- 1. Is it solvable in \mathbb{Z} ?
- 2. If yes, what does the solution set look like? For instance, is it finite or infinite?

Example

1. $x^2 + y^2 = z^2$. There are infinitely many integer solutions which are precisely the Pythagorean triples:

$$x = m^2 - n^2, y = 2mn, z = m^2 + n^2$$

Let $P(X_1, ..., X_n) = 0$ be a polynomial equation with integer coefficients.

Questions:

- 1. Is it solvable in \mathbb{Z} ?
- 2. If yes, what does the solution set look like? For instance, is it finite or infinite?

Example

1. $x^2 + y^2 = z^2$. There are infinitely many integer solutions which are precisely the Pythagorean triples:

$$x = m^2 - n^2, y = 2mn, z = m^2 + n^2$$

(Book X, Euclid 300 BC)

Let $P(X_1, ..., X_n) = 0$ be a polynomial equation with integer coefficients.

Questions:

- 1. Is it solvable in \mathbb{Z} ?
- 2. If yes, what does the solution set look like? For instance, is it finite or infinite?

Example

1. $x^2 + y^2 = z^2$. There are infinitely many integer solutions which are precisely the Pythagorean triples:

$$x = m^2 - n^2, y = 2mn, z = m^2 + n^2$$

・ロト・日・・ヨ・・ヨ・ ・ つへで

(Book X, Euclid 300 BC)

2. $x^n + y^n = z^n$ and n > 2. It has no integer solutions with $xyz \neq 0$. (Wiles 1994)

Let $P(X_1, ..., X_n) = 0$ be a polynomial equation with integer coefficients.

Questions:

- 1. Is it solvable in \mathbb{Z} ?
- 2. If yes, what does the solution set look like? For instance, is it finite or infinite?

Example

1. $x^2 + y^2 = z^2$. There are infinitely many integer solutions which are precisely the Pythagorean triples:

$$x = m^2 - n^2, y = 2mn, z = m^2 + n^2$$

(Book X, Euclid 300 BC)

2.
$$x^n + y^n = z^n$$
 and $n > 2$. It has no integer solutions with $xyz \neq 0$. (Wiles 1994)
[$n = 4$ Fermat (1637),

Let $P(X_1, ..., X_n) = 0$ be a polynomial equation with integer coefficients.

Questions:

- 1. Is it solvable in \mathbb{Z} ?
- 2. If yes, what does the solution set look like? For instance, is it finite or infinite?

Example

1. $x^2 + y^2 = z^2$. There are infinitely many integer solutions which are precisely the Pythagorean triples:

$$x = m^2 - n^2, y = 2mn, z = m^2 + n^2$$

(Book X, Euclid 300 BC)

2.
$$x^n + y^n = z^n$$
 and $n > 2$. It has no integer solutions with $xyz \neq 0$. (Wiles 1994)
[$n = 4$ Fermat (1637), $n = 3$ Euler (1750)]

Let $P(X_1, ..., X_n) = 0$ be a polynomial equation with integer coefficients.

Questions:

- 1. Is it solvable in \mathbb{Z} ?
- 2. If yes, what does the solution set look like? For instance, is it finite or infinite?

Example

1. $x^2 + y^2 = z^2$. There are infinitely many integer solutions which are precisely the Pythagorean triples:

$$x = m^2 - n^2, y = 2mn, z = m^2 + n^2$$

(Book X, Euclid 300 BC)

xⁿ + yⁿ = zⁿ and n > 2. It has no integer solutions with xyz ≠ 0. (Wiles 1994)
 [n = 4 Fermat (1637), n = 3 Euler (1750)]
 Does x³ + y³ + z³ = 33 have integer solutions?

Let $P(X_1, ..., X_n) = 0$ be a polynomial equation with integer coefficients.

Questions:

- 1. Is it solvable in \mathbb{Z} ?
- 2. If yes, what does the solution set look like? For instance, is it finite or infinite?

Example

1. $x^2 + y^2 = z^2$. There are infinitely many integer solutions which are precisely the Pythagorean triples:

$$x = m^2 - n^2, y = 2mn, z = m^2 + n^2$$

(Book X, Euclid 300 BC)

2. $x^n + y^n = z^n$ and n > 2. It has no integer solutions with $xyz \neq 0$. (Wiles 1994) [n = 4 Fermat (1637), n = 3 Euler (1750)]

3. Does $x^3 + y^3 + z^3 = 33$ have integer solutions? No one knows.

H10 Problem: Find an algorithm to decide whether a given polynomial equation $P(X_1, ..., X_n) = 0$ with integer coefficients is solvable in \mathbb{Z} .

H10 Problem: Find an algorithm to decide whether a given polynomial equation $P(X_1, ..., X_n) = 0$ with integer coefficients is solvable in \mathbb{Z} .

One can also consider systems but this reduces to one equation.

H10 Problem: Find an algorithm to decide whether a given polynomial equation $P(X_1, ..., X_n) = 0$ with integer coefficients is solvable in \mathbb{Z} .

One can also consider systems but this reduces to one equation.

(e.g., $P_1 = P_2 = 0 \iff P_1^2 + P_2^2 = 0$)

H10 Problem: Find an algorithm to decide whether a given polynomial equation $P(X_1, ..., X_n) = 0$ with integer coefficients is solvable in \mathbb{Z} .

One can also consider systems but this reduces to one equation.

(e.g.,
$$P_1 = P_2 = 0 \iff P_1^2 + P_2^2 = 0$$
)

Theorem (DPRM '70)

No such algorithm exists. Equivalently, Th_{\exists^+}(\mathbb{Z}) is undecidable in $L_{rings} = \{+, \cdot, 0, 1\}.$

H10 Problem: Find an algorithm to decide whether a given polynomial equation $P(X_1, ..., X_n) = 0$ with integer coefficients is solvable in \mathbb{Z} .

One can also consider systems but this reduces to one equation.

(e.g.,
$$P_1 = P_2 = 0 \iff P_1^2 + P_2^2 = 0$$
)

Theorem (DPRM '70)

No such algorithm exists. Equivalently, Th_{\exists^+}(\mathbb{Z}) is undecidable in $L_{rings} = \{+, \cdot, 0, 1\}.$

This would certainly come as a surprise to Hilbert.

H10 Problem: Find an algorithm to decide whether a given polynomial equation $P(X_1, ..., X_n) = 0$ with integer coefficients is solvable in \mathbb{Z} .

One can also consider systems but this reduces to one equation.

(e.g.,
$$P_1 = P_2 = 0 \iff P_1^2 + P_2^2 = 0$$
)

Theorem (DPRM '70)

No such algorithm exists. Equivalently, Th_{\exists^+}(\mathbb{Z}) is undecidable in L_{rings} = \{+,\cdot,0,1\}.

This would certainly come as a surprise to Hilbert.

There are (at least) three possible ways of extending H10 problem:

H10 Problem: Find an algorithm to decide whether a given polynomial equation $P(X_1, ..., X_n) = 0$ with integer coefficients is solvable in \mathbb{Z} .

One can also consider systems but this reduces to one equation.

(e.g.,
$$P_1 = P_2 = 0 \iff P_1^2 + P_2^2 = 0$$
)

Theorem (DPRM '70)

No such algorithm exists. Equivalently, Th_{\exists^+}(\mathbb{Z}) is undecidable in $L_{rings} = \{+, \cdot, 0, 1\}.$

This would certainly come as a surprise to Hilbert.

There are (at least) three possible ways of extending H10 problem:

1. Change the domain where we look for solutions. (H10/R)

H10 Problem: Find an algorithm to decide whether a given polynomial equation $P(X_1, ..., X_n) = 0$ with integer coefficients is solvable in \mathbb{Z} .

One can also consider systems but this reduces to one equation.

(e.g.,
$$P_1 = P_2 = 0 \iff P_1^2 + P_2^2 = 0$$
)

Theorem (DPRM '70)

No such algorithm exists. Equivalently, Th_{\exists^+}(\mathbb{Z}) is undecidable in $L_{rings} = \{+, \cdot, 0, 1\}.$

This would certainly come as a surprise to Hilbert.

There are (at least) three possible ways of extending H10 problem:

 Change the domain where we look for solutions. (H10/R) (e.g., instead of Z, consider C

>>>
>>>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
></p

H10 Problem: Find an algorithm to decide whether a given polynomial equation $P(X_1, ..., X_n) = 0$ with integer coefficients is solvable in \mathbb{Z} .

One can also consider systems but this reduces to one equation.

(e.g.,
$$P_1 = P_2 = 0 \iff P_1^2 + P_2^2 = 0$$
)

Theorem (DPRM '70)

No such algorithm exists. Equivalently, Th_{\exists^+}(\mathbb{Z}) is undecidable in $L_{rings} = \{+, \cdot, 0, 1\}.$

This would certainly come as a surprise to Hilbert.

There are (at least) three possible ways of extending H10 problem:

>>>
>>>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
></p

1. Change the domain where we look for solutions. (H10/R) (e.g., instead of \mathbb{Z} , consider \mathbb{C} or \mathbb{R}

H10 Problem: Find an algorithm to decide whether a given polynomial equation $P(X_1, ..., X_n) = 0$ with integer coefficients is solvable in \mathbb{Z} .

One can also consider systems but this reduces to one equation.

(e.g.,
$$P_1 = P_2 = 0 \iff P_1^2 + P_2^2 = 0$$
)

Theorem (DPRM '70)

No such algorithm exists. Equivalently, Th_{\exists^+}(\mathbb{Z}) is undecidable in $L_{rings} = \{+, \cdot, 0, 1\}.$

This would certainly come as a surprise to Hilbert.

There are (at least) three possible ways of extending H10 problem:

>>>
>>>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
></p

1. Change the domain where we look for solutions. (H10/R) (e.g., instead of \mathbb{Z} , consider \mathbb{C} or \mathbb{R} or \mathbb{Q}_p

H10 Problem: Find an algorithm to decide whether a given polynomial equation $P(X_1, ..., X_n) = 0$ with integer coefficients is solvable in \mathbb{Z} .

One can also consider systems but this reduces to one equation.

(e.g.,
$$P_1 = P_2 = 0 \iff P_1^2 + P_2^2 = 0$$
)

Theorem (DPRM '70)

No such algorithm exists. Equivalently, Th_{\exists^+}(\mathbb{Z}) is undecidable in $L_{rings} = \{+, \cdot, 0, 1\}.$

This would certainly come as a surprise to Hilbert.

There are (at least) three possible ways of extending H10 problem:

>>>
>>>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
></p

 Change the domain where we look for solutions. (H10/R) (e.g., instead of Z, consider C or R or Q_p or Q (!)

H10 Problem: Find an algorithm to decide whether a given polynomial equation $P(X_1, ..., X_n) = 0$ with integer coefficients is solvable in \mathbb{Z} .

One can also consider systems but this reduces to one equation.

(e.g.,
$$P_1 = P_2 = 0 \iff P_1^2 + P_2^2 = 0$$
)

Theorem (DPRM '70)

No such algorithm exists. Equivalently, Th_{\exists^+}(\mathbb{Z}) is undecidable in $L_{rings} = \{+, \cdot, 0, 1\}.$

This would certainly come as a surprise to Hilbert.

There are (at least) three possible ways of extending H10 problem:

>>>
>>>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
></p

 Change the domain where we look for solutions. (H10/R) (e.g., instead of Z, consider C or R or Q_p or Q (!))

H10 Problem: Find an algorithm to decide whether a given polynomial equation $P(X_1, ..., X_n) = 0$ with integer coefficients is solvable in \mathbb{Z} .

One can also consider systems but this reduces to one equation.

(e.g.,
$$P_1 = P_2 = 0 \iff P_1^2 + P_2^2 = 0$$
)

Theorem (DPRM '70)

No such algorithm exists. Equivalently, Th_{\exists^+}(\mathbb{Z}) is undecidable in $L_{rings} = \{+, \cdot, 0, 1\}.$

This would certainly come as a surprise to Hilbert.

There are (at least) three possible ways of extending H10 problem:

- Change the domain where we look for solutions. (H10/R) (e.g., instead of Z, consider C or R or Q_p or Q (!))
- 2. Consider more general sentences (not just existential ones). (It was already known in the '30s that $Th(\mathbb{Z})$ is undecidable, Gödel, Church, Turing.)

>>>
>>>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
></p

H10 Problem: Find an algorithm to decide whether a given polynomial equation $P(X_1, ..., X_n) = 0$ with integer coefficients is solvable in \mathbb{Z} .

One can also consider systems but this reduces to one equation.

(e.g.,
$$P_1 = P_2 = 0 \iff P_1^2 + P_2^2 = 0$$
)

Theorem (DPRM '70)

No such algorithm exists. Equivalently, Th_{\exists^+}(\mathbb{Z}) is undecidable in $L_{rings} = \{+, \cdot, 0, 1\}.$

This would certainly come as a surprise to Hilbert.

There are (at least) three possible ways of extending H10 problem:

- Change the domain where we look for solutions. (H10/R) (e.g., instead of Z, consider C or R or Q_p or Q (!))
- 2. Consider more general sentences (not just existential ones). (It was already known in the '30s that $Th(\mathbb{Z})$ is undecidable, Gödel, Church, Turing.)
- 3. Change the language.

H10 Problem: Find an algorithm to decide whether a given polynomial equation $P(X_1, ..., X_n) = 0$ with integer coefficients is solvable in \mathbb{Z} .

One can also consider systems but this reduces to one equation.

(e.g.,
$$P_1 = P_2 = 0 \iff P_1^2 + P_2^2 = 0$$
)

Theorem (DPRM '70)

No such algorithm exists. Equivalently, Th_{\exists^+}(\mathbb{Z}) is undecidable in $L_{rings} = \{+, \cdot, 0, 1\}.$

This would certainly come as a surprise to Hilbert.

There are (at least) three possible ways of extending H10 problem:

- Change the domain where we look for solutions. (H10/R) (e.g., instead of Z, consider C or R or Q_p or Q (!))
- 2. Consider more general sentences (not just existential ones). (It was already known in the '30s that $Th(\mathbb{Z})$ is undecidable, Gödel, Church, Turing.)

3. Change the language. (For instance, $(\mathbb{Z}, +)$ is decidable.)

< □ > < □ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ) < @

Perhaps the prominent open problem in the area is $H10/\mathbb{Q}$:

Perhaps the prominent open problem in the area is $H10/\mathbb{Q}$:

Problem

Is there an algorithm to decide whether a given polynomial equation $P(X_1, ..., X_n) = 0$ with rational coefficients is solvable in \mathbb{Q} ?

Perhaps the prominent open problem in the area is $H10/\mathbb{Q}$:

Problem

Is there an algorithm to decide whether a given polynomial equation $P(X_1, ..., X_n) = 0$ with rational coefficients is solvable in \mathbb{Q} ?

Remarks:

Perhaps the prominent open problem in the area is $H10/\mathbb{Q}$:

Problem

Is there an algorithm to decide whether a given polynomial equation $P(X_1, ..., X_n) = 0$ with rational coefficients is solvable in \mathbb{Q} ?

Remarks:

► Most experts expect the answer to be negative (just as H10/ℤ).

Perhaps the prominent open problem in the area is $H10/\mathbb{Q}$:

Problem

Is there an algorithm to decide whether a given polynomial equation $P(X_1, ..., X_n) = 0$ with rational coefficients is solvable in \mathbb{Q} ?

Remarks:

- ► Most experts expect the answer to be negative (just as H10/Z).
- ► It sounds like this should follow easily from the case over Z by simply "clearing denominators" but this is not the case!

>>>
>>>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
></p

Perhaps the prominent open problem in the area is $H10/\mathbb{Q}$:

Problem

Is there an algorithm to decide whether a given polynomial equation $P(X_1, ..., X_n) = 0$ with rational coefficients is solvable in \mathbb{Q} ?

Remarks:

- ► Most experts expect the answer to be negative (just as H10/Z).
- ► It sounds like this should follow easily from the case over Z by simply "clearing denominators" but this is not the case!
- ► Towards an answer to H10/Q, it may be instructive to look at fields whose arithmetic is similar to Q.

>>>
>>>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
></p
Perhaps the prominent open problem in the area is $H10/\mathbb{Q}$:

Problem

Is there an algorithm to decide whether a given polynomial equation $P(X_1, ..., X_n) = 0$ with rational coefficients is solvable in \mathbb{Q} ?

Remarks:

- ► Most experts expect the answer to be negative (just as H10/Z).
- ► It sounds like this should follow easily from the case over Z by simply "clearing denominators" but this is not the case!
- ► Towards an answer to H10/Q, it may be instructive to look at fields whose arithmetic is similar to Q.
- ► There is a classical analogy between Q and fields of rational functions F(t) (F a field),

>>>
>>>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
></p

Perhaps the prominent open problem in the area is $H10/\mathbb{Q}$:

Problem

Is there an algorithm to decide whether a given polynomial equation $P(X_1, ..., X_n) = 0$ with rational coefficients is solvable in \mathbb{Q} ?

Remarks:

- ► Most experts expect the answer to be negative (just as H10/Z).
- ► It sounds like this should follow easily from the case over Z by simply "clearing denominators" but this is not the case!
- ► Towards an answer to H10/Q, it may be instructive to look at fields whose arithmetic is similar to Q.
- There is a classical analogy between Q and fields of rational functions F(t) (F a field), whose elements are of the form f(t)/g(t), where f(t), g(t) ∈ F[t] and g(t) ≠ 0.

>>>
>>>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
></p

Perhaps the prominent open problem in the area is $H10/\mathbb{Q}$:

Problem

Is there an algorithm to decide whether a given polynomial equation $P(X_1, ..., X_n) = 0$ with rational coefficients is solvable in \mathbb{Q} ?

Remarks:

- ► Most experts expect the answer to be negative (just as H10/Z).
- ► It sounds like this should follow easily from the case over Z by simply "clearing denominators" but this is not the case!
- ► Towards an answer to H10/Q, it may be instructive to look at fields whose arithmetic is similar to Q.
- There is a classical analogy between Q and fields of rational functions F(t) (F a field), whose elements are of the form f(t)/g(t), where f(t), g(t) ∈ F[t] and g(t) ≠ 0.

>>>
>>>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
></p

Pheidas did some work on $H10/\mathbb{Q}$

Perhaps the prominent open problem in the area is $H10/\mathbb{Q}$:

Problem

Is there an algorithm to decide whether a given polynomial equation $P(X_1, ..., X_n) = 0$ with rational coefficients is solvable in \mathbb{Q} ?

Remarks:

- ► Most experts expect the answer to be negative (just as H10/Z).
- ► It sounds like this should follow easily from the case over Z by simply "clearing denominators" but this is not the case!
- ► Towards an answer to H10/Q, it may be instructive to look at fields whose arithmetic is similar to Q.
- There is a classical analogy between Q and fields of rational functions F(t) (F a field), whose elements are of the form f(t)/g(t), where f(t), g(t) ∈ F[t] and g(t) ≠ 0.

Pheidas did some work on $H10/\mathbb{Q}$ but the most definitive and striking results he obtained were about function fields.

 \mathbb{Q} vs $\mathbb{F}_p(t)$

$$\mathbb{Q}$$
 vs $\mathbb{F}_p(t)$

・ロト・日・・ヨト ヨー りへで

These two fields are remarkably similar:

$$\mathbb{Q}$$
 vs $\mathbb{F}_p(t)$

These two fields are remarkably similar:

1. They both have a notion of a "ring of integers".

$$\mathbb{Q}$$
 vs $\mathbb{F}_p(t)$

These two fields are remarkably similar:

1. They both have a notion of a "ring of integers". $(\mathbb{Z} \subseteq \mathbb{Q} \text{ vs } \mathbb{F}_p[t] \subseteq \mathbb{F}_p(t).)$

$$\mathbb{Q}$$
 vs $\mathbb{F}_p(t)$

These two fields are remarkably similar:

- 1. They both have a notion of a "ring of integers". $(\mathbb{Z} \subseteq \mathbb{Q} \text{ vs } \mathbb{F}_p[t] \subseteq \mathbb{F}_p(t).)$
- 2. Both rings have a notion of a "prime" element

$$\mathbb{Q}$$
 vs $\mathbb{F}_p(t)$

These two fields are remarkably similar:

- 1. They both have a notion of a "ring of integers". $(\mathbb{Z} \subseteq \mathbb{Q} \text{ vs } \mathbb{F}_p[t] \subseteq \mathbb{F}_p(t).)$
- 2. Both rings have a notion of a "prime" element and satisfy a version of the fundamental theorem of arithmetic.

$$\mathbb{Q}$$
 vs $\mathbb{F}_p(t)$

These two fields are remarkably similar:

- 1. They both have a notion of a "ring of integers". $(\mathbb{Z} \subseteq \mathbb{Q} \text{ vs } \mathbb{F}_p[t] \subseteq \mathbb{F}_p(t).)$
- 2. Both rings have a notion of a "prime" element and satisfy a version of the fundamental theorem of arithmetic.
- 3. Each "prime" defines an absolute value and the completed field w.r.t. that absolute value is locally compact (just like ℝ).

$$\mathbb{Q}$$
 vs $\mathbb{F}_p(t)$

These two fields are remarkably similar:

- 1. They both have a notion of a "ring of integers". $(\mathbb{Z} \subseteq \mathbb{Q} \text{ vs } \mathbb{F}_p[t] \subseteq \mathbb{F}_p(t).)$
- 2. Both rings have a notion of a "prime" element and satisfy a version of the fundamental theorem of arithmetic.
- 3. Each "prime" defines an absolute value and the completed field w.r.t. that absolute value is locally compact (just like ℝ).

3.1 The prime 2 gives rise to $|_2$:

$$\mathbb{Q}$$
 vs $\mathbb{F}_p(t)$

These two fields are remarkably similar:

- 1. They both have a notion of a "ring of integers". $(\mathbb{Z} \subseteq \mathbb{Q} \text{ vs } \mathbb{F}_p[t] \subseteq \mathbb{F}_p(t).)$
- 2. Both rings have a notion of a "prime" element and satisfy a version of the fundamental theorem of arithmetic.
- 3. Each "prime" defines an absolute value and the completed field w.r.t. that absolute value is locally compact (just like ℝ).

3.1 The prime 2 gives rise to $||_2$: To compute $|m|_2$, write $m = 2^s \cdot n$ with $2 \nmid n$.

$$\mathbb{Q}$$
 vs $\mathbb{F}_p(t)$

These two fields are remarkably similar:

- 1. They both have a notion of a "ring of integers". $(\mathbb{Z} \subseteq \mathbb{Q} \text{ vs } \mathbb{F}_p[t] \subseteq \mathbb{F}_p(t).)$
- 2. Both rings have a notion of a "prime" element and satisfy a version of the fundamental theorem of arithmetic.
- 3. Each "prime" defines an absolute value and the completed field w.r.t. that absolute value is locally compact (just like ℝ).

3.1 The prime 2 gives rise to $||_2$: To compute $|m|_2$, write $m = 2^s \cdot n$ with $2 \nmid n$. Then $|m|_2 = 1/2^s$.

$$\mathbb{Q}$$
 vs $\mathbb{F}_p(t)$

These two fields are remarkably similar:

- 1. They both have a notion of a "ring of integers". $(\mathbb{Z} \subseteq \mathbb{Q} \text{ vs } \mathbb{F}_p[t] \subseteq \mathbb{F}_p(t).)$
- 2. Both rings have a notion of a "prime" element and satisfy a version of the fundamental theorem of arithmetic.
- 3. Each "prime" defines an absolute value and the completed field w.r.t. that absolute value is locally compact (just like ℝ).
 - 3.1 The prime 2 gives rise to $| |_2$: To compute $|m|_2$, write $m = 2^s \cdot n$ with $2 \nmid n$. Then $|m|_2 = 1/2^s$. The completion of \mathbb{Q} w.r.t. $| |_2$ is denoted by \mathbb{Q}_2 .

3.2 The 'prime' t gives rise to $|_t$:

$$\mathbb{Q}$$
 vs $\mathbb{F}_p(t)$

These two fields are remarkably similar:

- 1. They both have a notion of a "ring of integers". $(\mathbb{Z} \subseteq \mathbb{Q} \text{ vs } \mathbb{F}_p[t] \subseteq \mathbb{F}_p(t).)$
- 2. Both rings have a notion of a "prime" element and satisfy a version of the fundamental theorem of arithmetic.
- 3. Each "prime" defines an absolute value and the completed field w.r.t. that absolute value is locally compact (just like ℝ).
 - 3.1 The prime 2 gives rise to $| |_2$: To compute $|m|_2$, write $m = 2^s \cdot n$ with $2 \nmid n$. Then $|m|_2 = 1/2^s$. The completion of \mathbb{Q} w.r.t. $| |_2$ is denoted by \mathbb{Q}_2 .

3.2 The 'prime' t gives rise to $| |_t$: To compute $|f|_t$, write $f = t^s \cdot g$ with $t \nmid g$.

$$\mathbb{Q}$$
 vs $\mathbb{F}_p(t)$

These two fields are remarkably similar:

- 1. They both have a notion of a "ring of integers". $(\mathbb{Z} \subseteq \mathbb{Q} \text{ vs } \mathbb{F}_p[t] \subseteq \mathbb{F}_p(t).)$
- 2. Both rings have a notion of a "prime" element and satisfy a version of the fundamental theorem of arithmetic.
- 3. Each "prime" defines an absolute value and the completed field w.r.t. that absolute value is locally compact (just like ℝ).
 - 3.1 The prime 2 gives rise to $| |_2$: To compute $|m|_2$, write $m = 2^s \cdot n$ with $2 \nmid n$. Then $|m|_2 = 1/2^s$. The completion of \mathbb{Q} w.r.t. $| |_2$ is denoted by \mathbb{Q}_2 .

3.2 The 'prime' t gives rise to $| |_t$: To compute $|f|_t$, write $f = t^s \cdot g$ with $t \nmid g$. Then $|f|_t = 1/2^s$.

$$\mathbb{Q}$$
 vs $\mathbb{F}_p(t)$

These two fields are remarkably similar:

- 1. They both have a notion of a "ring of integers". $(\mathbb{Z} \subseteq \mathbb{Q} \text{ vs } \mathbb{F}_p[t] \subseteq \mathbb{F}_p(t).)$
- 2. Both rings have a notion of a "prime" element and satisfy a version of the fundamental theorem of arithmetic.
- 3. Each "prime" defines an absolute value and the completed field w.r.t. that absolute value is locally compact (just like ℝ).
 - 3.1 The prime 2 gives rise to $| |_2$: To compute $|m|_2$, write $m = 2^s \cdot n$ with $2 \nmid n$. Then $|m|_2 = 1/2^s$. The completion of \mathbb{Q} w.r.t. $| |_2$ is denoted by \mathbb{Q}_2 .
 - 3.2 The 'prime' t gives rise to $||_t$: To compute $|f|_t$, write $f = t^s \cdot g$ with $t \nmid g$. Then $|f|_t = 1/2^s$. We write $s = ord_t(x)$.

$$\mathbb{Q}$$
 vs $\mathbb{F}_p(t)$

These two fields are remarkably similar:

- 1. They both have a notion of a "ring of integers". $(\mathbb{Z} \subseteq \mathbb{Q} \text{ vs } \mathbb{F}_p[t] \subseteq \mathbb{F}_p(t).)$
- 2. Both rings have a notion of a "prime" element and satisfy a version of the fundamental theorem of arithmetic.
- 3. Each "prime" defines an absolute value and the completed field w.r.t. that absolute value is locally compact (just like ℝ).
 - 3.1 The prime 2 gives rise to $| |_2$: To compute $|m|_2$, write $m = 2^s \cdot n$ with $2 \nmid n$. Then $|m|_2 = 1/2^s$. The completion of \mathbb{Q} w.r.t. $| |_2$ is denoted by \mathbb{Q}_2 .
 - 3.2 The 'prime' t gives rise to $||_t$: To compute $|f|_t$, write $f = t^s \cdot g$ with $t \nmid g$. Then $|f|_t = 1/2^s$. We write $s = ord_t(x)$. The completion of $\mathbb{F}_p(t)$ w.r.t. $ord_t(x)$ is denoted by $\mathbb{F}_p(t)$.

 \mathbb{Q} vs $\mathbb{F}_p(t)$

These two fields are remarkably similar:

- 1. They both have a notion of a "ring of integers". $(\mathbb{Z} \subseteq \mathbb{Q} \text{ vs } \mathbb{F}_p[t] \subseteq \mathbb{F}_p(t).)$
- 2. Both rings have a notion of a "prime" element and satisfy a version of the fundamental theorem of arithmetic.
- Each "prime" defines an absolute value and the completed field w.r.t. that absolute value is locally compact (just like ℝ).
 - 3.1 The prime 2 gives rise to $| |_2$: To compute $|m|_2$, write $m = 2^s \cdot n$ with $2 \nmid n$. Then $|m|_2 = 1/2^s$. The completion of \mathbb{Q} w.r.t. $| |_2$ is denoted by \mathbb{Q}_2 .
 - 3.2 The 'prime' t gives rise to $| |_t$: To compute $|f|_t$, write $f = t^s \cdot g$ with $t \nmid g$. Then $|f|_t = 1/2^s$. We write $s = ord_t(x)$. The completion of $\mathbb{F}_p(t)$ w.r.t. $ord_t(x)$ is denoted by $\mathbb{F}_p((t))$.

Remark: Properties (1)-(3) in fact "axiomatize" completely these fields. (Artin-Whaples '45)

Theorem (Pheidas '91 for p > 2, Videla '94 for p = 2) Hilbert's tenth problem over $\mathbb{F}_p(t)$ is undecidable.

Theorem (Pheidas '91 for p > 2, Videla '94 for p = 2) Hilbert's tenth problem over $\mathbb{F}_p(t)$ is undecidable. Equivalently, the existential theory of $\mathbb{F}_p(t)$ is undecidable in the language of rings with a constant for t.

Theorem (Pheidas '91 for p > 2, Videla '94 for p = 2) Hilbert's tenth problem over $\mathbb{F}_p(t)$ is undecidable. Equivalently, the existential theory of $\mathbb{F}_p(t)$ is undecidable in the language of rings with a constant for t.

Why is this result important?

Theorem (Pheidas '91 for p > 2, Videla '94 for p = 2) Hilbert's tenth problem over $\mathbb{F}_p(t)$ is undecidable. Equivalently, the existential theory of $\mathbb{F}_p(t)$ is undecidable in the language of rings with a constant for t.

Why is this result important?

It is perhaps the strongest piece of evidence that H10 over Q should be undecidable.

Theorem (Pheidas '91 for p > 2, Videla '94 for p = 2) Hilbert's tenth problem over $\mathbb{F}_p(t)$ is undecidable. Equivalently, the existential theory of $\mathbb{F}_p(t)$ is undecidable in the language of rings with a constant for t.

Why is this result important?

It is perhaps the strongest piece of evidence that H10 over Q should be undecidable.

900 E (E) (E) (E) (D)

There is also a uniform version which is even more suggestive:

Theorem (Pheidas '91 for p > 2, Videla '94 for p = 2) Hilbert's tenth problem over $\mathbb{F}_p(t)$ is undecidable. Equivalently, the existential theory of $\mathbb{F}_p(t)$ is undecidable in the language of rings with a constant for t.

Why is this result important?

- It is perhaps the strongest piece of evidence that H10 over Q should be undecidable.
- There is also a uniform version which is even more suggestive:

Theorem (Pasten-Pheidas-Vidaux '13)

There is no algorithm to decide whether a system of polynomial equations with coefficients in $\mathbb{Z}[t]$ has a solution in $\mathbb{F}_p[t]$ for all but finitely many p.

Theorem (Pheidas '91 for p > 2, Videla '94 for p = 2) Hilbert's tenth problem over $\mathbb{F}_p(t)$ is undecidable. Equivalently, the existential theory of $\mathbb{F}_p(t)$ is undecidable in the language of rings with a constant for t.

Why is this result important?

- It is perhaps the strongest piece of evidence that H10 over Q should be undecidable.
- There is also a uniform version which is even more suggestive:

Theorem (Pasten-Pheidas-Vidaux '13)

There is no algorithm to decide whether a system of polynomial equations with coefficients in $\mathbb{Z}[t]$ has a solution in $\mathbb{F}_p[t]$ for all but finitely many p.

cf. (Ax 1967)

There is an algorithm to decide whether a system of polynomial equations with coefficients in \mathbb{Z} has a solution in \mathbb{F}_p for all but finitely many primes p.

H10 over function fields is undecidable: The proof

Theorem (Pheidas '91 for p > 2, Videla '94 for p = 2)

Hilbert's tenth problem over $\mathbb{F}_p(t)$ is undecidable.

Pheidas encodes Hilbert's 10th problem over \mathbb{Z} in an ingenious way. Key steps in the proof:

- We identify Z = {ord_t(x) : x ∈ F_p(t)}. (The relation ord_t(x) ≥ 0 is ∃⁺-definable, so we can encode the ∃⁺-theory of (Z, <).)
- 2. Note that $ord_t(xy) = ord_t(x) + ord_t(y)$, so we can encode the \exists^+ -theory of $(\mathbb{Z}, +, <)$. How to encode multiplication?
- 3. Pheidas first encodes the relation

$$m \mid_{p} n : \iff n = p^{s} \cdot m$$
 for some $s \in \mathbb{N}$

(By showing that " $x = y^{p^s}$ " is \exists^+ -definable in $\mathbb{F}_p(t)$.)

- 4. In previous work, Pheidas showed that multiplication is \exists^+ -definable in $(\mathbb{Z}, +, <, |_p)$.
- Thus, we can encode the ∃⁺-theory of (Z, +, ·), which is undecidable by the DPRM theorem.

Hilbert's tenth problem over $\mathbb{F}_{p}((t))$

Does the situation improve if we replace $\mathbb{F}_{\rho}(t)$ with $\mathbb{F}_{\rho}((t))$?

Problem

Is Hilbert's tenth problem over $\mathbb{F}_{p}((t))$ is decidable? Equivalently, is $Th_{\exists}(\mathbb{F}_{p}((t)))$ decidable in L_{rings} with a constant for t?

Hilbert's tenth problem over $\mathbb{F}_p((t))$

Does the situation improve if we replace $\mathbb{F}_{\rho}(t)$ with $\mathbb{F}_{\rho}((t))$?

Problem

Is Hilbert's tenth problem over $\mathbb{F}_{p}((t))$ is decidable? Equivalently, is $Th_{\exists}(\mathbb{F}_{p}((t)))$ decidable in L_{rings} with a constant for t?

Note:

Hilbert's 10th problem over $\mathbb{C}((t))$ is decidable

Hilbert's tenth problem over $\mathbb{F}_p((t))$

Does the situation improve if we replace $\mathbb{F}_{\rho}(t)$ with $\mathbb{F}_{\rho}((t))$?

Problem

Is Hilbert's tenth problem over $\mathbb{F}_{p}((t))$ is decidable? Equivalently, is $Th_{\exists}(\mathbb{F}_{p}((t)))$ decidable in L_{rings} with a constant for t?

Note:

Hilbert's 10th problem over $\mathbb{C}((t))$ is decidable and also the full first-order theory of $\mathbb{C}((t))$. (Ax-Kochen/Ershov '66)

Theorem (Denef-Schoutens '03, K. '22, Anscombe-Dittmann-Fehm '23)

H10 over $\mathbb{F}_p((t))$ is decidable, if one assumes resolution of singularities

>>>
>>>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
></p

Hilbert's tenth problem over $\mathbb{F}_{p}((t))$

Does the situation improve if we replace $\mathbb{F}_{\rho}(t)$ with $\mathbb{F}_{\rho}((t))$?

Problem

Is Hilbert's tenth problem over $\mathbb{F}_{p}((t))$ is decidable? Equivalently, is $Th_{\exists}(\mathbb{F}_{p}((t)))$ decidable in L_{rings} with a constant for t?

Note:

Hilbert's 10th problem over $\mathbb{C}((t))$ is decidable and also the full first-order theory of $\mathbb{C}((t))$. (Ax-Kochen/Ershov '66)

Theorem (Denef-Schoutens '03, K. '22, Anscombe-Dittmann-Fehm '23)

H10 over $\mathbb{F}_p((t))$ is decidable, if one assumes resolution of singularities (or some weak local version of it).

>>>
>>>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
></p

Hilbert's tenth problem over $\mathbb{F}_p((t))$

Does the situation improve if we replace $\mathbb{F}_{\rho}(t)$ with $\mathbb{F}_{\rho}((t))$?

Problem

Is Hilbert's tenth problem over $\mathbb{F}_{p}((t))$ is decidable? Equivalently, is $Th_{\exists}(\mathbb{F}_{p}((t)))$ decidable in L_{rings} with a constant for t?

Note:

Hilbert's 10th problem over $\mathbb{C}((t))$ is decidable and also the full first-order theory of $\mathbb{C}((t))$. (Ax-Kochen/Ershov '66)

Theorem (Denef-Schoutens '03, K. '22, Anscombe-Dittmann-Fehm '23)

H10 over $\mathbb{F}_p((t))$ is decidable, if one assumes resolution of singularities (or some weak local version of it).

Theorem (Pheidas '87)

The existential theory of $\mathbb{F}_p((t))$ is undecidable in the language of rings with a constant for t and a predicate for $P = \{1, t, t^2, ...\}$.

Hilbert's tenth problem over $\mathbb{F}_p((t))$

Does the situation improve if we replace $\mathbb{F}_{\rho}(t)$ with $\mathbb{F}_{\rho}((t))$?

Problem

Is Hilbert's tenth problem over $\mathbb{F}_{p}((t))$ is decidable? Equivalently, is $Th_{\exists}(\mathbb{F}_{p}((t)))$ decidable in L_{rings} with a constant for t?

Note:

Hilbert's 10th problem over $\mathbb{C}((t))$ is decidable and also the full first-order theory of $\mathbb{C}((t))$. (Ax-Kochen/Ershov '66)

Theorem (Denef-Schoutens '03, K. '22, Anscombe-Dittmann-Fehm '23)

H10 over $\mathbb{F}_p((t))$ is decidable, if one assumes resolution of singularities (or some weak local version of it).

Theorem (Pheidas '87)

The existential theory of $\mathbb{F}_p((t))$ is undecidable in the language of rings with a constant for t and a predicate for $P = \{1, t, t^2, ...\}$. See Leo Gitin's talk for more details.