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Diophantine equations
Let P(X1, ...,Xn) = 0 be a polynomial equation with integer
coefficients.

Questions:

1. Is it solvable in Z?
2. If yes, what does the solution set look like? For instance, is it

finite or infinite?

Example

1. x2 + y2 = z2. There are infinitely many integer solutions
which are precisely the Pythagorean triples:

x = m2 − n2, y = 2mn, z = m2 + n2

(Book X, Euclid 300 BC)

2. xn + yn = zn and n > 2. It has no integer solutions with
xyz 6= 0. (Wiles 1994)
[ n = 4 Fermat (1637), n = 3 Euler (1750) ]

3. Does x3 + y3 + z3 = 33 have integer solutions? No one knows.
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Hilbert’s tenth problem (1900)

H10 Problem: Find an algorithm to decide whether a given
polynomial equation P(X1, ...,Xn) = 0 with integer coefficients is
solvable in Z.
One can also consider systems but this reduces to one equation.
(e.g., P1 = P2 = 0 ⇐⇒ P2

1 + P2
2 = 0)

Theorem (DPRM ’70)

No such algorithm exists. Equivalently, Th∃+(Z) is undecidable in
Lrings = {+, ·, 0, 1}.
This would certainly come as a surprise to Hilbert.
There are (at least) three possible ways of extending H10 problem:

1. Change the domain where we look for solutions. (H10/R)
(e.g., instead of Z, consider C or R or Qp or Q (!))

2. Consider more general sentences (not just existential ones).
(It was already known in the ’30s that Th(Z) is undecidable,
Gödel, Church, Turing.)

3. Change the language.
(For instance, (Z,+) is decidable.)
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Pheidas’ journey towards Ithaka (H10/Q)

Perhaps the prominent open problem in the area is H10/Q:

Problem
Is there an algorithm to decide whether a given polynomial
equation P(X1, ...,Xn) = 0 with rational coefficients is solvable in
Q?

Remarks:
I Most experts expect the answer to be negative (just as

H10/Z).
I It sounds like this should follow easily from the case over Z by

simply ”clearing denominators” but this is not the case!

I Towards an answer to H10/Q, it may be instructive to look at
fields whose arithmetic is similar to Q.

I There is a classical analogy between Q and fields of rational
functions F (t) (F a field), whose elements are of the form
f (t)/g(t), where f (t), g(t) ∈ F [t] and g(t) 6≡ 0.

Pheidas did some work on H10/Q but the most definitive and
striking results he obtained were about function fields.
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Function Field Analogy (A. Weil ’40)

Q vs Fp(t)

These two fields are remarkably similar:

1. They both have a notion of a ”ring of integers”.
(Z ⊆ Q vs Fp[t] ⊆ Fp(t).)

2. Both rings have a notion of a ”prime” element and satisfy a
version of the fundamental theorem of arithmetic.

3. Each ”prime” defines an absolute value and the completed
field w.r.t. that absolute value is locally compact (just like R).

3.1 The prime 2 gives rise to | |2: To compute |m|2, write
m = 2s · n with 2 - n. Then |m|2 = 1/2s . The completion of Q
w.r.t. | |2 is denoted by Q2.

3.2 The ’prime’ t gives rise to | |t : To compute |f |t , write
f = ts · g with t - g . Then |f |t = 1/2s . We write s = ordt(x).
The completion of Fp(t) w.r.t. ordt(x) is denoted by Fp((t)).

Remark: Properties (1)-(3) in fact ”axiomatize” completely these
fields. (Artin-Whaples ’45)
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Hilbert’s tenth problem over function fields

Theorem (Pheidas ’91 for p > 2, Videla ’94 for p = 2)

Hilbert’s tenth problem over Fp(t) is undecidable. Equivalently,
the existential theory of Fp(t) is undecidable in the language of
rings with a constant for t.

Why is this result important?

I It is perhaps the strongest piece of evidence that H10 over Q
should be undecidable.

There is also a uniform version which is even more suggestive:

Theorem (Pasten-Pheidas-Vidaux ’13)

There is no algorithm to decide whether a system of polynomial
equations with coefficients in Z[t] has a solution in Fp[t] for all but
finitely many p.

cf. (Ax 1967)
There is an algorithm to decide whether a system of polynomial
equations with coefficients in Z has a solution in Fp for all but
finitely many primes p.
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equations with coefficients in Z has a solution in Fp for all but
finitely many primes p.
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H10 over function fields is undecidable: The proof

Theorem (Pheidas ’91 for p > 2, Videla ’94 for p = 2)

Hilbert’s tenth problem over Fp(t) is undecidable.

Pheidas encodes Hilbert’s 10th problem over Z in an ingenious way.
Key steps in the proof:

1. We identify Z = {ordt(x) : x ∈ Fp(t)}.
(The relation ordt(x) ≥ 0 is ∃+-definable, so we can encode
the ∃+-theory of (Z, <).)

2. Note that ordt(xy) = ordt(x) + ordt(y), so we can encode the
∃+-theory of (Z,+, <). How to encode multiplication?

3. Pheidas first encodes the relation

m |p n :⇐⇒ n = ps ·m for some s ∈ N

(By showing that ”x = yp
s
” is ∃+-definable in Fp(t).)

4. In previous work, Pheidas showed that multiplication is
∃+-definable in (Z,+, <, |p).

5. Thus, we can encode the ∃+-theory of (Z,+, ·), which is
undecidable by the DPRM theorem.



Hilbert’s tenth problem over Fp((t))

Does the situation improve if we replace Fp(t) with Fp((t))?

Problem
Is Hilbert’s tenth problem over Fp((t)) is decidable? Equivalently, is
Th∃(Fp((t))) decidable in Lrings with a constant for t?

Note:
Hilbert’s 10th problem over C((t)) is decidable and also the full
first-order theory of C((t)). (Ax-Kochen/Ershov ’66)

Theorem (Denef-Schoutens ’03, K. ’22,
Anscombe-Dittmann-Fehm ’23)

H10 over Fp((t)) is decidable, if one assumes resolution of
singularities (or some weak local version of it).

Theorem (Pheidas ’87)

The existential theory of Fp((t)) is undecidable in the language of
rings with a constant for t and a predicate for P = {1, t, t2, ...}.
See Leo Gitin’s talk for more details.
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