Reflections on the work of Pheidas

Konstantinos Kartas

Sorbonne University

PLS 2024

Diophantine equations

Let $P\left(X_{1}, \ldots, X_{n}\right)=0$ be a polynomial equation with integer coefficients.

Diophantine equations

Let $P\left(X_{1}, \ldots, X_{n}\right)=0$ be a polynomial equation with integer coefficients.

Questions:

Diophantine equations

Let $P\left(X_{1}, \ldots, X_{n}\right)=0$ be a polynomial equation with integer coefficients.

Questions:

1. Is it solvable in \mathbb{Z} ?

Diophantine equations

Let $P\left(X_{1}, \ldots, X_{n}\right)=0$ be a polynomial equation with integer coefficients.

Questions:

1. Is it solvable in \mathbb{Z} ?
2. If yes, what does the solution set look like? For instance, is it finite or infinite?

Diophantine equations

Let $P\left(X_{1}, \ldots, X_{n}\right)=0$ be a polynomial equation with integer coefficients.

Questions:

1. Is it solvable in \mathbb{Z} ?
2. If yes, what does the solution set look like? For instance, is it finite or infinite?

Example

1. $x^{2}+y^{2}=z^{2}$. There are infinitely many integer solutions which are precisely the Pythagorean triples:

Diophantine equations

Let $P\left(X_{1}, \ldots, X_{n}\right)=0$ be a polynomial equation with integer coefficients.

Questions:

1. Is it solvable in \mathbb{Z} ?
2. If yes, what does the solution set look like? For instance, is it finite or infinite?

Example

1. $x^{2}+y^{2}=z^{2}$. There are infinitely many integer solutions which are precisely the Pythagorean triples:

$$
x=m^{2}-n^{2}, y=2 m n, z=m^{2}+n^{2}
$$

Diophantine equations

Let $P\left(X_{1}, \ldots, X_{n}\right)=0$ be a polynomial equation with integer coefficients.

Questions:

1. Is it solvable in \mathbb{Z} ?
2. If yes, what does the solution set look like? For instance, is it finite or infinite?

Example

1. $x^{2}+y^{2}=z^{2}$. There are infinitely many integer solutions which are precisely the Pythagorean triples:

$$
x=m^{2}-n^{2}, y=2 m n, z=m^{2}+n^{2}
$$

(Book X, Euclid 300 BC)

Diophantine equations

Let $P\left(X_{1}, \ldots, X_{n}\right)=0$ be a polynomial equation with integer coefficients.

Questions:

1. Is it solvable in \mathbb{Z} ?
2. If yes, what does the solution set look like? For instance, is it finite or infinite?

Example

1. $x^{2}+y^{2}=z^{2}$. There are infinitely many integer solutions which are precisely the Pythagorean triples:

$$
x=m^{2}-n^{2}, y=2 m n, z=m^{2}+n^{2}
$$

(Book X, Euclid 300 BC)
2. $x^{n}+y^{n}=z^{n}$ and $n>2$. It has no integer solutions with $x y z \neq 0$. (Wiles 1994)

Diophantine equations

Let $P\left(X_{1}, \ldots, X_{n}\right)=0$ be a polynomial equation with integer coefficients.

Questions:

1. Is it solvable in \mathbb{Z} ?
2. If yes, what does the solution set look like? For instance, is it finite or infinite?

Example

1. $x^{2}+y^{2}=z^{2}$. There are infinitely many integer solutions which are precisely the Pythagorean triples:

$$
x=m^{2}-n^{2}, y=2 m n, z=m^{2}+n^{2}
$$

(Book X, Euclid 300 BC)
2. $x^{n}+y^{n}=z^{n}$ and $n>2$. It has no integer solutions with $x y z \neq 0$. (Wiles 1994)
[$n=4$ Fermat (1637),

Diophantine equations

Let $P\left(X_{1}, \ldots, X_{n}\right)=0$ be a polynomial equation with integer coefficients.

Questions:

1. Is it solvable in \mathbb{Z} ?
2. If yes, what does the solution set look like? For instance, is it finite or infinite?

Example

1. $x^{2}+y^{2}=z^{2}$. There are infinitely many integer solutions which are precisely the Pythagorean triples:

$$
x=m^{2}-n^{2}, y=2 m n, z=m^{2}+n^{2}
$$

(Book X, Euclid 300 BC)
2. $x^{n}+y^{n}=z^{n}$ and $n>2$. It has no integer solutions with $x y z \neq 0$. (Wiles 1994)
[$n=4$ Fermat (1637), $n=3$ Euler (1750)]

Diophantine equations

Let $P\left(X_{1}, \ldots, X_{n}\right)=0$ be a polynomial equation with integer coefficients.

Questions:

1. Is it solvable in \mathbb{Z} ?
2. If yes, what does the solution set look like? For instance, is it finite or infinite?

Example

1. $x^{2}+y^{2}=z^{2}$. There are infinitely many integer solutions which are precisely the Pythagorean triples:

$$
x=m^{2}-n^{2}, y=2 m n, z=m^{2}+n^{2}
$$

(Book X, Euclid 300 BC)
2. $x^{n}+y^{n}=z^{n}$ and $n>2$. It has no integer solutions with $x y z \neq 0$. (Wiles 1994)
[$n=4$ Fermat (1637), $n=3$ Euler (1750)]
3. Does $x^{3}+y^{3}+z^{3}=33$ have integer solutions?

Diophantine equations

Let $P\left(X_{1}, \ldots, X_{n}\right)=0$ be a polynomial equation with integer coefficients.

Questions:

1. Is it solvable in \mathbb{Z} ?
2. If yes, what does the solution set look like? For instance, is it finite or infinite?

Example

1. $x^{2}+y^{2}=z^{2}$. There are infinitely many integer solutions which are precisely the Pythagorean triples:

$$
x=m^{2}-n^{2}, y=2 m n, z=m^{2}+n^{2}
$$

(Book X, Euclid 300 BC)
2. $x^{n}+y^{n}=z^{n}$ and $n>2$. It has no integer solutions with $x y z \neq 0$. (Wiles 1994)
[$n=4$ Fermat (1637), $n=3$ Euler (1750)]
3. Does $x^{3}+y^{3}+z^{3}=33$ have integer solutions? No one knows.

Hilbert's tenth problem (1900)

Hilbert's tenth problem (1900)

H10 Problem: Find an algorithm to decide whether a given polynomial equation $P\left(X_{1}, \ldots, X_{n}\right)=0$ with integer coefficients is solvable in \mathbb{Z}.

Hilbert's tenth problem (1900)

H10 Problem: Find an algorithm to decide whether a given polynomial equation $P\left(X_{1}, \ldots, X_{n}\right)=0$ with integer coefficients is solvable in \mathbb{Z}.
One can also consider systems but this reduces to one equation.

Hilbert's tenth problem (1900)

H10 Problem: Find an algorithm to decide whether a given polynomial equation $P\left(X_{1}, \ldots, X_{n}\right)=0$ with integer coefficients is solvable in \mathbb{Z}.
One can also consider systems but this reduces to one equation. (e.g., $P_{1}=P_{2}=0 \Longleftrightarrow P_{1}^{2}+P_{2}^{2}=0$)

Hilbert's tenth problem (1900)

H10 Problem: Find an algorithm to decide whether a given polynomial equation $P\left(X_{1}, \ldots, X_{n}\right)=0$ with integer coefficients is solvable in \mathbb{Z}.
One can also consider systems but this reduces to one equation. (e.g., $P_{1}=P_{2}=0 \Longleftrightarrow P_{1}^{2}+P_{2}^{2}=0$)

Theorem (DPRM '70)
No such algorithm exists. Equivalently, $T h_{\exists+}(\mathbb{Z})$ is undecidable in $L_{\text {rings }}=\{+, \cdot, 0,1\}$.

Hilbert's tenth problem (1900)

H10 Problem: Find an algorithm to decide whether a given polynomial equation $P\left(X_{1}, \ldots, X_{n}\right)=0$ with integer coefficients is solvable in \mathbb{Z}.
One can also consider systems but this reduces to one equation. (e.g., $P_{1}=P_{2}=0 \Longleftrightarrow P_{1}^{2}+P_{2}^{2}=0$)

Theorem (DPRM '70)
No such algorithm exists. Equivalently, $T h_{\exists+}(\mathbb{Z})$ is undecidable in $L_{\text {rings }}=\{+, \cdot, 0,1\}$.
This would certainly come as a surprise to Hilbert.

Hilbert's tenth problem (1900)

H10 Problem: Find an algorithm to decide whether a given polynomial equation $P\left(X_{1}, \ldots, X_{n}\right)=0$ with integer coefficients is solvable in \mathbb{Z}.
One can also consider systems but this reduces to one equation.

$$
\text { (e.g., } P_{1}=P_{2}=0 \Longleftrightarrow P_{1}^{2}+P_{2}^{2}=0 \text {) }
$$

Theorem (DPRM '70)
No such algorithm exists. Equivalently, $T h_{\exists+}(\mathbb{Z})$ is undecidable in $L_{\text {rings }}=\{+, \cdot, 0,1\}$.
This would certainly come as a surprise to Hilbert.
There are (at least) three possible ways of extending H 10 problem:

Hilbert's tenth problem (1900)

H10 Problem: Find an algorithm to decide whether a given polynomial equation $P\left(X_{1}, \ldots, X_{n}\right)=0$ with integer coefficients is solvable in \mathbb{Z}.
One can also consider systems but this reduces to one equation.

$$
\text { (e.g., } P_{1}=P_{2}=0 \Longleftrightarrow P_{1}^{2}+P_{2}^{2}=0 \text {) }
$$

Theorem (DPRM '70)
No such algorithm exists. Equivalently, $T h_{\exists+}(\mathbb{Z})$ is undecidable in $L_{\text {rings }}=\{+, \cdot, 0,1\}$.
This would certainly come as a surprise to Hilbert.
There are (at least) three possible ways of extending H 10 problem:

1. Change the domain where we look for solutions. (H10/R)

Hilbert's tenth problem (1900)

H10 Problem: Find an algorithm to decide whether a given polynomial equation $P\left(X_{1}, \ldots, X_{n}\right)=0$ with integer coefficients is solvable in \mathbb{Z}.
One can also consider systems but this reduces to one equation.
(e.g., $P_{1}=P_{2}=0 \Longleftrightarrow P_{1}^{2}+P_{2}^{2}=0$)

Theorem (DPRM '70)
No such algorithm exists. Equivalently, $T h_{\exists+}(\mathbb{Z})$ is undecidable in $L_{\text {rings }}=\{+, \cdot, 0,1\}$.
This would certainly come as a surprise to Hilbert.
There are (at least) three possible ways of extending H 10 problem:

1. Change the domain where we look for solutions. ($\mathrm{H} 10 / R$) (e.g., instead of \mathbb{Z}, consider \mathbb{C}

Hilbert's tenth problem (1900)

H10 Problem: Find an algorithm to decide whether a given polynomial equation $P\left(X_{1}, \ldots, X_{n}\right)=0$ with integer coefficients is solvable in \mathbb{Z}.
One can also consider systems but this reduces to one equation.
(e.g., $P_{1}=P_{2}=0 \Longleftrightarrow P_{1}^{2}+P_{2}^{2}=0$)

Theorem (DPRM '70)
No such algorithm exists. Equivalently, $T h_{\exists+}(\mathbb{Z})$ is undecidable in $L_{\text {rings }}=\{+, \cdot, 0,1\}$.
This would certainly come as a surprise to Hilbert.
There are (at least) three possible ways of extending H 10 problem:

1. Change the domain where we look for solutions. ($\mathrm{H} 10 / R$) (e.g., instead of \mathbb{Z}, consider \mathbb{C} or \mathbb{R}

Hilbert's tenth problem (1900)

H10 Problem: Find an algorithm to decide whether a given polynomial equation $P\left(X_{1}, \ldots, X_{n}\right)=0$ with integer coefficients is solvable in \mathbb{Z}.
One can also consider systems but this reduces to one equation.
(e.g., $P_{1}=P_{2}=0 \Longleftrightarrow P_{1}^{2}+P_{2}^{2}=0$)

Theorem (DPRM '70)
No such algorithm exists. Equivalently, $T h_{\exists+}(\mathbb{Z})$ is undecidable in $L_{\text {rings }}=\{+, \cdot, 0,1\}$.
This would certainly come as a surprise to Hilbert.
There are (at least) three possible ways of extending H 10 problem:

1. Change the domain where we look for solutions. ($\mathrm{H} 10 / R$) (e.g., instead of \mathbb{Z}, consider \mathbb{C} or \mathbb{R} or \mathbb{Q}_{p}

Hilbert's tenth problem (1900)

H10 Problem: Find an algorithm to decide whether a given polynomial equation $P\left(X_{1}, \ldots, X_{n}\right)=0$ with integer coefficients is solvable in \mathbb{Z}.
One can also consider systems but this reduces to one equation.

$$
\text { (e.g., } P_{1}=P_{2}=0 \Longleftrightarrow P_{1}^{2}+P_{2}^{2}=0 \text {) }
$$

Theorem (DPRM '70)
No such algorithm exists. Equivalently, $T h_{\exists+}(\mathbb{Z})$ is undecidable in $L_{\text {rings }}=\{+, \cdot, 0,1\}$.
This would certainly come as a surprise to Hilbert.
There are (at least) three possible ways of extending H 10 problem:

1. Change the domain where we look for solutions. ($\mathrm{H} 10 / R$) (e.g., instead of \mathbb{Z}, consider \mathbb{C} or \mathbb{R} or \mathbb{Q}_{p} or $\mathbb{Q}(!)$

Hilbert's tenth problem (1900)

H10 Problem: Find an algorithm to decide whether a given polynomial equation $P\left(X_{1}, \ldots, X_{n}\right)=0$ with integer coefficients is solvable in \mathbb{Z}.
One can also consider systems but this reduces to one equation.

$$
\text { (e.g., } P_{1}=P_{2}=0 \Longleftrightarrow P_{1}^{2}+P_{2}^{2}=0 \text {) }
$$

Theorem (DPRM '70)
No such algorithm exists. Equivalently, $T h_{\exists+}(\mathbb{Z})$ is undecidable in $L_{\text {rings }}=\{+, \cdot, 0,1\}$.
This would certainly come as a surprise to Hilbert.
There are (at least) three possible ways of extending H 10 problem:

1. Change the domain where we look for solutions. (H10/R) (e.g., instead of \mathbb{Z}, consider \mathbb{C} or \mathbb{R} or \mathbb{Q}_{p} or $\left.\mathbb{Q}(!)\right)$

Hilbert's tenth problem (1900)

H10 Problem: Find an algorithm to decide whether a given polynomial equation $P\left(X_{1}, \ldots, X_{n}\right)=0$ with integer coefficients is solvable in \mathbb{Z}.
One can also consider systems but this reduces to one equation.

$$
\text { (e.g., } P_{1}=P_{2}=0 \Longleftrightarrow P_{1}^{2}+P_{2}^{2}=0 \text {) }
$$

Theorem (DPRM '70)
No such algorithm exists. Equivalently, $T h_{\exists+}(\mathbb{Z})$ is undecidable in $L_{\text {rings }}=\{+, \cdot, 0,1\}$.
This would certainly come as a surprise to Hilbert.
There are (at least) three possible ways of extending H 10 problem:

1. Change the domain where we look for solutions. ($\mathrm{H} 10 / R$) (e.g., instead of \mathbb{Z}, consider \mathbb{C} or \mathbb{R} or \mathbb{Q}_{p} or $\left.\mathbb{Q}(!)\right)$
2. Consider more general sentences (not just existential ones). (It was already known in the '30s that $\operatorname{Th}(\mathbb{Z})$ is undecidable, Gödel, Church, Turing.)

Hilbert's tenth problem (1900)

H10 Problem: Find an algorithm to decide whether a given polynomial equation $P\left(X_{1}, \ldots, X_{n}\right)=0$ with integer coefficients is solvable in \mathbb{Z}.
One can also consider systems but this reduces to one equation.
(e.g., $P_{1}=P_{2}=0 \Longleftrightarrow P_{1}^{2}+P_{2}^{2}=0$)

Theorem (DPRM '70)
No such algorithm exists. Equivalently, $T h_{\exists+}(\mathbb{Z})$ is undecidable in $L_{\text {rings }}=\{+, \cdot, 0,1\}$.
This would certainly come as a surprise to Hilbert.
There are (at least) three possible ways of extending H 10 problem:

1. Change the domain where we look for solutions. (H10/R) (e.g., instead of \mathbb{Z}, consider \mathbb{C} or \mathbb{R} or \mathbb{Q}_{p} or $\left.\mathbb{Q}(!)\right)$
2. Consider more general sentences (not just existential ones). (It was already known in the '30s that $\operatorname{Th}(\mathbb{Z})$ is undecidable, Gödel, Church, Turing.)
3. Change the language.

Hilbert's tenth problem (1900)

H10 Problem: Find an algorithm to decide whether a given polynomial equation $P\left(X_{1}, \ldots, X_{n}\right)=0$ with integer coefficients is solvable in \mathbb{Z}.
One can also consider systems but this reduces to one equation.
(e.g., $P_{1}=P_{2}=0 \Longleftrightarrow P_{1}^{2}+P_{2}^{2}=0$)

Theorem (DPRM '70)
No such algorithm exists. Equivalently, $T h_{\exists+}(\mathbb{Z})$ is undecidable in $L_{\text {rings }}=\{+, \cdot, 0,1\}$.
This would certainly come as a surprise to Hilbert.
There are (at least) three possible ways of extending H 10 problem:

1. Change the domain where we look for solutions. (H10/R) (e.g., instead of \mathbb{Z}, consider \mathbb{C} or \mathbb{R} or \mathbb{Q}_{p} or $\left.\mathbb{Q}(!)\right)$
2. Consider more general sentences (not just existential ones). (It was already known in the '30s that $\operatorname{Th}(\mathbb{Z})$ is undecidable, Gödel, Church, Turing.)
3. Change the language.
(For instance, $(\mathbb{Z},+)$ is decidable.)

Pheidas' journey towards Ithaka (H10/Q)

Pheidas' journey towards Ithaka $(\mathrm{H} 10 / \mathbb{Q})$

Perhaps the prominent open problem in the area is $\mathrm{H} 10 / \mathbb{Q}$:

Pheidas' journey towards Ithaka $(\mathrm{H} 10 / \mathbb{Q})$

Perhaps the prominent open problem in the area is $\mathrm{H} 10 / \mathbb{Q}$:

Problem

Is there an algorithm to decide whether a given polynomial equation $P\left(X_{1}, \ldots, X_{n}\right)=0$ with rational coefficients is solvable in \mathbb{Q} ?

Pheidas' journey towards Ithaka $(\mathrm{H} 10 / \mathbb{Q})$

Perhaps the prominent open problem in the area is $\mathrm{H} 10 / \mathbb{Q}$:

Problem

Is there an algorithm to decide whether a given polynomial equation $P\left(X_{1}, \ldots, X_{n}\right)=0$ with rational coefficients is solvable in \mathbb{Q} ?

Remarks:

Pheidas' journey towards Ithaka $(\mathrm{H} 10 / \mathbb{Q})$

Perhaps the prominent open problem in the area is $\mathrm{H} 10 / \mathbb{Q}$:

Problem

Is there an algorithm to decide whether a given polynomial equation $P\left(X_{1}, \ldots, X_{n}\right)=0$ with rational coefficients is solvable in \mathbb{Q} ?

Remarks:

- Most experts expect the answer to be negative (just as $\mathrm{H} 10 / \mathbb{Z})$.

Pheidas' journey towards Ithaka $(\mathrm{H} 10 / \mathbb{Q})$

Perhaps the prominent open problem in the area is $\mathrm{H} 10 / \mathbb{Q}$:

Problem

Is there an algorithm to decide whether a given polynomial equation $P\left(X_{1}, \ldots, X_{n}\right)=0$ with rational coefficients is solvable in \mathbb{Q} ?

Remarks:

- Most experts expect the answer to be negative (just as $\mathrm{H} 10 / \mathbb{Z}$).
- It sounds like this should follow easily from the case over \mathbb{Z} by simply "clearing denominators" but this is not the case!

Pheidas' journey towards Ithaka $(\mathrm{H} 10 / \mathbb{Q})$

Perhaps the prominent open problem in the area is $\mathrm{H} 10 / \mathbb{Q}$:

Problem

Is there an algorithm to decide whether a given polynomial equation $P\left(X_{1}, \ldots, X_{n}\right)=0$ with rational coefficients is solvable in \mathbb{Q} ?

Remarks:

- Most experts expect the answer to be negative (just as $\mathrm{H} 10 / \mathbb{Z}$).
- It sounds like this should follow easily from the case over \mathbb{Z} by simply "clearing denominators" but this is not the case!
- Towards an answer to $\mathrm{H} 10 / \mathbb{Q}$, it may be instructive to look at fields whose arithmetic is similar to \mathbb{Q}.

Pheidas' journey towards Ithaka $(\mathrm{H} 10 / \mathbb{Q})$

Perhaps the prominent open problem in the area is $\mathrm{H} 10 / \mathbb{Q}$:

Problem

Is there an algorithm to decide whether a given polynomial equation $P\left(X_{1}, \ldots, X_{n}\right)=0$ with rational coefficients is solvable in \mathbb{Q} ?

Remarks:

- Most experts expect the answer to be negative (just as $\mathrm{H} 10 / \mathbb{Z}$).
- It sounds like this should follow easily from the case over \mathbb{Z} by simply "clearing denominators" but this is not the case!
- Towards an answer to $\mathrm{H} 10 / \mathbb{Q}$, it may be instructive to look at fields whose arithmetic is similar to \mathbb{Q}.
- There is a classical analogy between \mathbb{Q} and fields of rational functions $F(t)$ (F a field),

Pheidas' journey towards Ithaka $(\mathrm{H} 10 / \mathbb{Q})$

Perhaps the prominent open problem in the area is $\mathrm{H} 10 / \mathbb{Q}$:

Problem

Is there an algorithm to decide whether a given polynomial equation $P\left(X_{1}, \ldots, X_{n}\right)=0$ with rational coefficients is solvable in \mathbb{Q} ?

Remarks:

- Most experts expect the answer to be negative (just as $\mathrm{H} 10 / \mathbb{Z}$).
- It sounds like this should follow easily from the case over \mathbb{Z} by simply "clearing denominators" but this is not the case!
- Towards an answer to $\mathrm{H} 10 / \mathbb{Q}$, it may be instructive to look at fields whose arithmetic is similar to \mathbb{Q}.
- There is a classical analogy between \mathbb{Q} and fields of rational functions $F(t)$ (F a field), whose elements are of the form $f(t) / g(t)$, where $f(t), g(t) \in F[t]$ and $g(t) \not \equiv 0$.

Pheidas' journey towards Ithaka $(\mathrm{H} 10 / \mathbb{Q})$

Perhaps the prominent open problem in the area is $\mathrm{H} 10 / \mathbb{Q}$:

Problem

Is there an algorithm to decide whether a given polynomial equation $P\left(X_{1}, \ldots, X_{n}\right)=0$ with rational coefficients is solvable in \mathbb{Q} ?

Remarks:

- Most experts expect the answer to be negative (just as $\mathrm{H} 10 / \mathbb{Z}$).
- It sounds like this should follow easily from the case over \mathbb{Z} by simply "clearing denominators" but this is not the case!
- Towards an answer to $\mathrm{H} 10 / \mathbb{Q}$, it may be instructive to look at fields whose arithmetic is similar to \mathbb{Q}.
- There is a classical analogy between \mathbb{Q} and fields of rational functions $F(t)$ (F a field), whose elements are of the form $f(t) / g(t)$, where $f(t), g(t) \in F[t]$ and $g(t) \not \equiv 0$.
Pheidas did some work on $\mathrm{H} 10 / \mathbb{Q}$

Pheidas' journey towards Ithaka $(\mathrm{H} 10 / \mathbb{Q})$

Perhaps the prominent open problem in the area is $\mathrm{H} 10 / \mathbb{Q}$:

Problem

Is there an algorithm to decide whether a given polynomial equation $P\left(X_{1}, \ldots, X_{n}\right)=0$ with rational coefficients is solvable in \mathbb{Q} ?

Remarks:

- Most experts expect the answer to be negative (just as $\mathrm{H} 10 / \mathbb{Z}$).
- It sounds like this should follow easily from the case over \mathbb{Z} by simply "clearing denominators" but this is not the case!
- Towards an answer to $\mathrm{H} 10 / \mathbb{Q}$, it may be instructive to look at fields whose arithmetic is similar to \mathbb{Q}.
- There is a classical analogy between \mathbb{Q} and fields of rational functions $F(t)$ (F a field), whose elements are of the form $f(t) / g(t)$, where $f(t), g(t) \in F[t]$ and $g(t) \not \equiv 0$.
Pheidas did some work on $\mathrm{H} 10 / \mathbb{Q}$ but the most definitive and striking results he obtained were about function fields.

Function Field Analogy (A. Weil '40)

Function Field Analogy (A. Weil '40)

$$
\mathbb{Q} \text { vs } \mathbb{F}_{p}(t)
$$

Function Field Analogy (A. Weil '40)

$$
\mathbb{Q} \text { vs } \mathbb{F}_{p}(t)
$$

These two fields are remarkably similar:

Function Field Analogy (A. Weil '40)

$$
\mathbb{Q} \text { vs } \mathbb{F}_{p}(t)
$$

These two fields are remarkably similar:

1. They both have a notion of a "ring of integers".

Function Field Analogy (A. Weil '40)

$$
\mathbb{Q} \text { vs } \mathbb{F}_{p}(t)
$$

These two fields are remarkably similar:

1. They both have a notion of a "ring of integers".
$\left(\mathbb{Z} \subseteq \mathbb{Q}\right.$ vs $\left.\mathbb{F}_{p}[t] \subseteq \mathbb{F}_{p}(t).\right)$

Function Field Analogy (A. Weil '40)

$$
\mathbb{Q} \text { vs } \mathbb{F}_{p}(t)
$$

These two fields are remarkably similar:

1. They both have a notion of a "ring of integers".
$\left(\mathbb{Z} \subseteq \mathbb{Q}\right.$ vs $\left.\mathbb{F}_{p}[t] \subseteq \mathbb{F}_{p}(t).\right)$
2. Both rings have a notion of a "prime" element

Function Field Analogy (A. Weil '40)

$$
\mathbb{Q} \text { vs } \mathbb{F}_{p}(t)
$$

These two fields are remarkably similar:

1. They both have a notion of a "ring of integers".
$\left(\mathbb{Z} \subseteq \mathbb{Q}\right.$ vs $\mathbb{F}_{p}[t] \subseteq \mathbb{F}_{p}(t)$.)
2. Both rings have a notion of a "prime" element and satisfy a version of the fundamental theorem of arithmetic.

Function Field Analogy (A. Weil '40)

$$
\mathbb{Q} \text { vs } \mathbb{F}_{p}(t)
$$

These two fields are remarkably similar:

1. They both have a notion of a "ring of integers".
$\left(\mathbb{Z} \subseteq \mathbb{Q}\right.$ vs $\mathbb{F}_{p}[t] \subseteq \mathbb{F}_{p}(t)$.)
2. Both rings have a notion of a "prime" element and satisfy a version of the fundamental theorem of arithmetic.
3. Each "prime" defines an absolute value and the completed field w.r.t. that absolute value is locally compact (just like \mathbb{R}).

Function Field Analogy (A. Weil '40)

$$
\mathbb{Q} \text { vs } \mathbb{F}_{p}(t)
$$

These two fields are remarkably similar:

1. They both have a notion of a "ring of integers".
$\left(\mathbb{Z} \subseteq \mathbb{Q}\right.$ vs $\mathbb{F}_{p}[t] \subseteq \mathbb{F}_{p}(t)$.)
2. Both rings have a notion of a "prime" element and satisfy a version of the fundamental theorem of arithmetic.
3. Each "prime" defines an absolute value and the completed field w.r.t. that absolute value is locally compact (just like \mathbb{R}).
3.1 The prime 2 gives rise to $\left|\left.\right|_{2}\right.$:

Function Field Analogy (A. Weil '40)

$$
\mathbb{Q} \text { vs } \mathbb{F}_{p}(t)
$$

These two fields are remarkably similar:

1. They both have a notion of a "ring of integers".
$\left(\mathbb{Z} \subseteq \mathbb{Q}\right.$ vs $\left.\mathbb{F}_{p}[t] \subseteq \mathbb{F}_{p}(t).\right)$
2. Both rings have a notion of a "prime" element and satisfy a version of the fundamental theorem of arithmetic.
3. Each "prime" defines an absolute value and the completed field w.r.t. that absolute value is locally compact (just like \mathbb{R}).
3.1 The prime 2 gives rise to $\left.\left|\left.\right|_{2}\right.$: To compute $| m\right|_{2}$, write $m=2^{s} \cdot n$ with $2 \nmid n$.

Function Field Analogy (A. Weil '40)

$$
\mathbb{Q} \text { vs } \mathbb{F}_{p}(t)
$$

These two fields are remarkably similar:

1. They both have a notion of a "ring of integers".
$\left(\mathbb{Z} \subseteq \mathbb{Q}\right.$ vs $\left.\mathbb{F}_{p}[t] \subseteq \mathbb{F}_{p}(t).\right)$
2. Both rings have a notion of a "prime" element and satisfy a version of the fundamental theorem of arithmetic.
3. Each "prime" defines an absolute value and the completed field w.r.t. that absolute value is locally compact (just like \mathbb{R}).
3.1 The prime 2 gives rise to $\left.\left|\left.\right|_{2}\right.$: To compute $| m\right|_{2}$, write $m=2^{s} \cdot n$ with $2 \nmid n$. Then $|m|_{2}=1 / 2^{s}$.

Function Field Analogy (A. Weil '40)

$$
\mathbb{Q} \text { vs } \mathbb{F}_{p}(t)
$$

These two fields are remarkably similar:

1. They both have a notion of a "ring of integers".
$\left(\mathbb{Z} \subseteq \mathbb{Q}\right.$ vs $\left.\mathbb{F}_{p}[t] \subseteq \mathbb{F}_{p}(t).\right)$
2. Both rings have a notion of a "prime" element and satisfy a version of the fundamental theorem of arithmetic.
3. Each "prime" defines an absolute value and the completed field w.r.t. that absolute value is locally compact (just like \mathbb{R}).
3.1 The prime 2 gives rise to $\left.\right|_{2}$: To compute $|m|_{2}$, write $m=2^{s} \cdot n$ with $2 \nmid n$. Then $|m|_{2}=1 / 2^{s}$. The completion of \mathbb{Q} w.r.t. $\mid \|_{2}$ is denoted by \mathbb{Q}_{2}.
3.2 The 'prime' t gives rise to $\left|\left.\right|_{t}\right.$:

Function Field Analogy (A. Weil '40)

$$
\mathbb{Q} \text { vs } \mathbb{F}_{p}(t)
$$

These two fields are remarkably similar:

1. They both have a notion of a " ring of integers".
$\left(\mathbb{Z} \subseteq \mathbb{Q}\right.$ vs $\left.\mathbb{F}_{p}[t] \subseteq \mathbb{F}_{p}(t).\right)$
2. Both rings have a notion of a "prime" element and satisfy a version of the fundamental theorem of arithmetic.
3. Each "prime" defines an absolute value and the completed field w.r.t. that absolute value is locally compact (just like \mathbb{R}).
3.1 The prime 2 gives rise to $\left.\left|\left.\right|_{2}\right.$: To compute $| m\right|_{2}$, write $m=2^{s} \cdot n$ with $2 \nmid n$. Then $|m|_{2}=1 / 2^{s}$. The completion of \mathbb{Q} w.r.t. $\mid \|_{2}$ is denoted by \mathbb{Q}_{2}.
3.2 The 'prime' t gives rise to $\left.\left|\left.\right|_{t}\right.$: To compute $| f\right|_{t}$, write $f=t^{s} \cdot g$ with $t \nmid g$.

Function Field Analogy (A. Weil '40)

$$
\mathbb{Q} \text { vs } \mathbb{F}_{p}(t)
$$

These two fields are remarkably similar:

1. They both have a notion of a " ring of integers".
$\left(\mathbb{Z} \subseteq \mathbb{Q}\right.$ vs $\left.\mathbb{F}_{p}[t] \subseteq \mathbb{F}_{p}(t).\right)$
2. Both rings have a notion of a "prime" element and satisfy a version of the fundamental theorem of arithmetic.
3. Each "prime" defines an absolute value and the completed field w.r.t. that absolute value is locally compact (just like \mathbb{R}).
3.1 The prime 2 gives rise to $\left.\left|\left.\right|_{2}\right.$: To compute $| m\right|_{2}$, write $m=2^{s} \cdot n$ with $2 \nmid n$. Then $|m|_{2}=1 / 2^{s}$. The completion of \mathbb{Q} w.r.t. $\mid \|_{2}$ is denoted by \mathbb{Q}_{2}.
3.2 The 'prime' t gives rise to $\left.\left|\left.\right|_{t}\right.$: To compute $| f\right|_{t}$, write $f=t^{s} \cdot g$ with $t \nmid g$. Then $|f|_{t}=1 / 2^{s}$.

Function Field Analogy (A. Weil '40)

$$
\mathbb{Q} \text { vs } \mathbb{F}_{p}(t)
$$

These two fields are remarkably similar:

1. They both have a notion of a " ring of integers".
$\left(\mathbb{Z} \subseteq \mathbb{Q}\right.$ vs $\left.\mathbb{F}_{p}[t] \subseteq \mathbb{F}_{p}(t).\right)$
2. Both rings have a notion of a "prime" element and satisfy a version of the fundamental theorem of arithmetic.
3. Each "prime" defines an absolute value and the completed field w.r.t. that absolute value is locally compact (just like \mathbb{R}).
3.1 The prime 2 gives rise to $\left.\left|\left.\right|_{2}\right.$: To compute $| m\right|_{2}$, write $m=2^{s} \cdot n$ with $2 \nmid n$. Then $|m|_{2}=1 / 2^{s}$. The completion of \mathbb{Q} w.r.t. $\left|\left.\right|_{2}\right.$ is denoted by \mathbb{Q}_{2}.
3.2 The 'prime' t gives rise to $\left.\left|\left.\right|_{t}\right.$: To compute $| f\right|_{t}$, write $f=t^{s} \cdot g$ with $t \nmid g$. Then $|f|_{t}=1 / 2^{s}$. We write $s=\operatorname{ord}_{t}(x)$.

Function Field Analogy (A. Weil '40)

$$
\mathbb{Q} \text { vs } \mathbb{F}_{p}(t)
$$

These two fields are remarkably similar:

1. They both have a notion of a " ring of integers".
$\left(\mathbb{Z} \subseteq \mathbb{Q}\right.$ vs $\mathbb{F}_{p}[t] \subseteq \mathbb{F}_{p}(t)$.)
2. Both rings have a notion of a "prime" element and satisfy a version of the fundamental theorem of arithmetic.
3. Each "prime" defines an absolute value and the completed field w.r.t. that absolute value is locally compact (just like \mathbb{R}).
3.1 The prime 2 gives rise to $\left.\left|\left.\right|_{2}\right.$: To compute $| m\right|_{2}$, write $m=2^{s} \cdot n$ with $2 \nmid n$. Then $|m|_{2}=1 / 2^{s}$. The completion of \mathbb{Q} w.r.t. $\mid \|_{2}$ is denoted by \mathbb{Q}_{2}.
3.2 The 'prime' t gives rise to $\left.\left|\left.\right|_{t}\right.$: To compute $| f\right|_{t}$, write $f=t^{s} \cdot g$ with $t \nmid g$. Then $|f|_{t}=1 / 2^{s}$. We write $s=\operatorname{ord}_{t}(x)$. The completion of $\mathbb{F}_{p}(t)$ w.r.t. $\operatorname{ord}_{t}(x)$ is denoted by $\mathbb{F}_{p}((t))$.

Function Field Analogy (A. Weil '40)

\mathbb{Q} vs $\mathbb{F}_{p}(t)$

These two fields are remarkably similar:

1. They both have a notion of a "ring of integers".
$\left(\mathbb{Z} \subseteq \mathbb{Q}\right.$ vs $\mathbb{F}_{p}[t] \subseteq \mathbb{F}_{p}(t)$.)
2. Both rings have a notion of a "prime" element and satisfy a version of the fundamental theorem of arithmetic.
3. Each "prime" defines an absolute value and the completed field w.r.t. that absolute value is locally compact (just like \mathbb{R}).
3.1 The prime 2 gives rise to $\left.\left|\left.\right|_{2}\right.$: To compute $| m\right|_{2}$, write $m=2^{s} \cdot n$ with $2 \nmid n$. Then $|m|_{2}=1 / 2^{s}$. The completion of \mathbb{Q} w.r.t. $\mid \|_{2}$ is denoted by \mathbb{Q}_{2}.
3.2 The 'prime' t gives rise to $\left.\left|\left.\right|_{t}\right.$: To compute $| f\right|_{t}$, write $f=t^{s} \cdot g$ with $t \nmid g$. Then $|f|_{t}=1 / 2^{s}$. We write $s=\operatorname{ord}_{t}(x)$. The completion of $\mathbb{F}_{p}(t)$ w.r.t. $\operatorname{ord}_{t}(x)$ is denoted by $\mathbb{F}_{p}((t))$.
Remark: Properties (1)-(3) in fact "axiomatize" completely these fields. (Artin-Whaples '45)

Hilbert's tenth problem over function fields

Hilbert's tenth problem over function fields

Theorem (Pheidas ' 91 for $p>2$, Videla ' 94 for $p=2$) Hilbert's tenth problem over $\mathbb{F}_{p}(t)$ is undecidable.

Hilbert's tenth problem over function fields

Theorem (Pheidas ' 91 for $p>2$, Videla ' 94 for $p=2$) Hilbert's tenth problem over $\mathbb{F}_{p}(t)$ is undecidable. Equivalently, the existential theory of $\mathbb{F}_{p}(t)$ is undecidable in the language of rings with a constant for t.

Hilbert's tenth problem over function fields

Theorem (Pheidas ' 91 for $p>2$, Videla ' 94 for $p=2$) Hilbert's tenth problem over $\mathbb{F}_{p}(t)$ is undecidable. Equivalently, the existential theory of $\mathbb{F}_{p}(t)$ is undecidable in the language of rings with a constant for t.
Why is this result important?

Hilbert's tenth problem over function fields

Theorem (Pheidas ' 91 for $p>2$, Videla ' 94 for $p=2$) Hilbert's tenth problem over $\mathbb{F}_{p}(t)$ is undecidable. Equivalently, the existential theory of $\mathbb{F}_{p}(t)$ is undecidable in the language of rings with a constant for t.
Why is this result important?

- It is perhaps the strongest piece of evidence that H 10 over \mathbb{Q} should be undecidable.

Hilbert's tenth problem over function fields

Theorem (Pheidas '91 for $p>2$, Videla ' 94 for $p=2$) Hilbert's tenth problem over $\mathbb{F}_{p}(t)$ is undecidable. Equivalently, the existential theory of $\mathbb{F}_{p}(t)$ is undecidable in the language of rings with a constant for t.
Why is this result important?

- It is perhaps the strongest piece of evidence that H 10 over \mathbb{Q} should be undecidable.
There is also a uniform version which is even more suggestive:

Hilbert's tenth problem over function fields

Theorem (Pheidas '91 for $p>2$, Videla ' 94 for $p=2$) Hilbert's tenth problem over $\mathbb{F}_{p}(t)$ is undecidable. Equivalently, the existential theory of $\mathbb{F}_{p}(t)$ is undecidable in the language of rings with a constant for t.
Why is this result important?

- It is perhaps the strongest piece of evidence that H 10 over \mathbb{Q} should be undecidable.

There is also a uniform version which is even more suggestive:

Theorem (Pasten-Pheidas-Vidaux '13)

There is no algorithm to decide whether a system of polynomial equations with coefficients in $\mathbb{Z}[t]$ has a solution in $\mathbb{F}_{p}[t]$ for all but finitely many p.

Hilbert's tenth problem over function fields

 Theorem (Pheidas '91 for $p>2$, Videla ' 94 for $p=2$) Hilbert's tenth problem over $\mathbb{F}_{p}(t)$ is undecidable. Equivalently, the existential theory of $\mathbb{F}_{p}(t)$ is undecidable in the language of rings with a constant for t.Why is this result important?

- It is perhaps the strongest piece of evidence that H 10 over \mathbb{Q} should be undecidable.
There is also a uniform version which is even more suggestive:

Theorem (Pasten-Pheidas-Vidaux '13)

There is no algorithm to decide whether a system of polynomial equations with coefficients in $\mathbb{Z}[t]$ has a solution in $\mathbb{F}_{p}[t]$ for all but finitely many p.
cf. (Ax 1967)
There is an algorithm to decide whether a system of polynomial equations with coefficients in \mathbb{Z} has a solution in \mathbb{F}_{p} for all but finitely many primes p.

H10 over function fields is undecidable: The proof

Theorem (Pheidas '91 for $p>2$, Videla '94 for $p=2$)
Hilbert's tenth problem over $\mathbb{F}_{p}(t)$ is undecidable.
Pheidas encodes Hilbert's 10th problem over \mathbb{Z} in an ingenious way.
Key steps in the proof:

1. We identify $\mathbb{Z}=\left\{\operatorname{ord}_{t}(x): x \in \mathbb{F}_{p}(t)\right\}$.
(The relation $\operatorname{ord}_{t}(x) \geq 0$ is \exists^{+}-definable, so we can encode the \exists^{+}-theory of $(\mathbb{Z},<)$.)
2. Note that $\operatorname{ord}_{t}(x y)=\operatorname{ord}_{t}(x)+\operatorname{ord}_{t}(y)$, so we can encode the \exists^{+}-theory of $(\mathbb{Z},+,<)$. How to encode multiplication?
3. Pheidas first encodes the relation

$$
\left.m\right|_{p} n: \Longleftrightarrow n=p^{s} \cdot m \text { for some } s \in \mathbb{N}
$$

(By showing that " $x=y^{p^{s} "}$ is \exists^{+}-definable in $\mathbb{F}_{p}(t)$.)
4. In previous work, Pheidas showed that multiplication is \exists^{+}-definable in $\left(\mathbb{Z},+,<,\left.\right|_{p}\right)$.
5. Thus, we can encode the \exists^{+}-theory of $(\mathbb{Z},+, \cdot)$, which is undecidable by the DPRM theorem.

Hilbert's tenth problem over $\mathbb{F}_{p}((t))$

Does the situation improve if we replace $\mathbb{F}_{p}(t)$ with $\mathbb{F}_{p}((t))$?
Problem
Is Hilbert's tenth problem over $\mathbb{F}_{p}((t))$ is decidable? Equivalently, is $T h_{\exists}\left(\mathbb{F}_{p}((t))\right)$ decidable in $L_{\text {rings }}$ with a constant for t ?

Hilbert's tenth problem over $\mathbb{F}_{p}((t))$

Does the situation improve if we replace $\mathbb{F}_{p}(t)$ with $\mathbb{F}_{p}((t))$?
Problem
Is Hilbert's tenth problem over $\mathbb{F}_{p}((t))$ is decidable? Equivalently, is $T h_{\exists}\left(\mathbb{F}_{p}((t))\right)$ decidable in $L_{\text {rings }}$ with a constant for t ?
Note:
Hilbert's 10th problem over $\mathbb{C}((t))$ is decidable

Hilbert's tenth problem over $\mathbb{F}_{p}((t))$

Does the situation improve if we replace $\mathbb{F}_{p}(t)$ with $\mathbb{F}_{p}((t))$?
Problem
Is Hilbert's tenth problem over $\mathbb{F}_{p}((t))$ is decidable? Equivalently, is $T h_{\exists}\left(\mathbb{F}_{p}((t))\right)$ decidable in $L_{\text {rings }}$ with a constant for t ?
Note:
Hilbert's 10th problem over $\mathbb{C}((t))$ is decidable and also the full first-order theory of $\mathbb{C}((t))$. (Ax-Kochen/Ershov '66)
Theorem (Denef-Schoutens '03, K. '22,
Anscombe-Dittmann-Fehm '23)
H10 over $\mathbb{F}_{p}((t))$ is decidable, if one assumes resolution of singularities

Hilbert's tenth problem over $\mathbb{F}_{p}((t))$

Does the situation improve if we replace $\mathbb{F}_{p}(t)$ with $\mathbb{F}_{p}((t))$?
Problem
Is Hilbert's tenth problem over $\mathbb{F}_{p}((t))$ is decidable? Equivalently, is $T h_{\exists}\left(\mathbb{F}_{p}((t))\right)$ decidable in $L_{\text {rings }}$ with a constant for t ?

Note:

Hilbert's 10th problem over $\mathbb{C}((t))$ is decidable and also the full first-order theory of $\mathbb{C}((t))$. (Ax-Kochen/Ershov '66)
Theorem (Denef-Schoutens '03, K. '22, Anscombe-Dittmann-Fehm '23)
H10 over $\mathbb{F}_{p}((t))$ is decidable, if one assumes resolution of singularities (or some weak local version of it).

Hilbert's tenth problem over $\mathbb{F}_{p}((t))$

Does the situation improve if we replace $\mathbb{F}_{p}(t)$ with $\mathbb{F}_{p}((t))$?
Problem
Is Hilbert's tenth problem over $\mathbb{F}_{p}((t))$ is decidable? Equivalently, is $T h_{\exists}\left(\mathbb{F}_{p}((t))\right)$ decidable in $L_{\text {rings }}$ with a constant for t ?

Note:

Hilbert's 10th problem over $\mathbb{C}((t))$ is decidable and also the full first-order theory of $\mathbb{C}((t))$. (Ax-Kochen/Ershov '66)
Theorem (Denef-Schoutens '03, K. '22,
Anscombe-Dittmann-Fehm '23)
H10 over $\mathbb{F}_{p}((t))$ is decidable, if one assumes resolution of singularities (or some weak local version of it).

Theorem (Pheidas '87)
The existential theory of $\mathbb{F}_{p}((t))$ is undecidable in the language of rings with a constant for t and a predicate for $P=\left\{1, t, t^{2}, \ldots\right\}$.

Hilbert's tenth problem over $\mathbb{F}_{p}((t))$

Does the situation improve if we replace $\mathbb{F}_{p}(t)$ with $\mathbb{F}_{p}((t))$?
Problem
Is Hilbert's tenth problem over $\mathbb{F}_{p}((t))$ is decidable? Equivalently, is $T h_{\exists}\left(\mathbb{F}_{p}((t))\right)$ decidable in $L_{\text {rings }}$ with a constant for t ?

Note:

Hilbert's 10th problem over $\mathbb{C}((t))$ is decidable and also the full first-order theory of $\mathbb{C}((t))$. (Ax-Kochen/Ershov '66)
Theorem (Denef-Schoutens '03, K. '22,
Anscombe-Dittmann-Fehm '23)
H10 over $\mathbb{F}_{p}((t))$ is decidable, if one assumes resolution of singularities (or some weak local version of it).

Theorem (Pheidas '87)
The existential theory of $\mathbb{F}_{p}((t))$ is undecidable in the language of rings with a constant for t and a predicate for $P=\left\{1, t, t^{2}, \ldots\right\}$.
See Leo Gitin's talk for more details.

