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§1. Introduction



First aim:

To characterize a novel philosophy of arithmetic:
󰝢󰝝󰝝󰝒󰝟 󰝙󰝜󰝔󰝖󰝐󰝖󰝠󰝚 (󰝢󰝝󰝝󰝒󰝟) about arithmetic.



Second aim:

To present a couple of results on the
relationship between modal type theory and
arithmetic which lend support to 󰝢󰝝󰝝󰝒󰝟.



Third aim:

To offer some reasons in favor of 󰝓󰝖󰝛󰝖󰝡󰝎󰝟󰝦
󰝝󰝙󰝒󰝛󰝖󰝡󰝢󰝑󰝒 (a distinctive commitment of 󰝢󰝝󰝝󰝒󰝟).



Motto:

‘Arithmetic is nothing but a part of higher-order
modal logic’.



§2. Context



§2.1. The double life of number words



Natural number expressions seemingly occur
both as proper nouns and as determiners.



E.g.:

– Proper noun: ‘Two is a prime number’

– Determiner: ‘Two students are playing football’



Proper nouns are usually taken to have
individuals as their meanings.



E.g.:

– In ‘Cristiano Ronaldo is a striker’, ‘Cristiano
Ronaldo’ has as its meaning an individual.

(Specifically, its meaning is Ronaldo)



Determiners are usually taken to have as their
meanings properties of properties.



E.g.:

– In ‘everything is physical’, ‘everything’ has as
its meaning a property of properties.

(Specifically, its meaning is that property that a
property has just in case it is had by every thing)



In general, a realist philosophical account of
arithmetic will eventually have to take a stand
on whether the natural numbers are individuals
or instead properties of properties.



§2.2. Fregean and neoFregean logicisms



Frege’s and neoFregean forms of logicism are
the most popular forms of logicism.



An underlying assumption of these views is that
the natural numbers are individuals.



F󰝟󰝒󰝔󰝒’󰝠 󰝙󰝜󰝔󰝖󰝐󰝖󰝠󰝚 (1884, 1893): Arithmetic is
analytically true owing to being derivable . . .



. . . in classical second-order logic ` 󰝏󰝎󰝠󰝖󰝐 󰝙󰝎󰝤 V;



. . . from “individualist”, purely logical
characterizations of the arithmetical primitives.



B󰝎󰝠󰝖󰝐 L󰝎󰝤 V: Properties F and G have the same
extension if and only if every individual is an
F if and only if it is a G.



As it turns out, F󰝟󰝒󰝔󰝒’󰝠 󰝙󰝜󰝔󰝖󰝐󰝖󰝠󰝚 is unviable.



For Russell (1902) showed that 󰝏󰝎󰝠󰝖󰝐 L󰝎󰝤 V is
inconsistent in the context of classical
second-order logic.



N󰝒󰝜F󰝟󰝒󰝔󰝒󰝎󰝛 󰝙󰝜󰝔󰝖󰝐󰝖󰝠󰝚 (Hale & Wright 2001):
Arithmetic is analytically true owing to being
derivable. . .



. . . in classical logic + H󰝢󰝚󰝒’󰝠 󰝝󰝟󰝖󰝛󰝐󰝖󰝝󰝙󰝒;



. . . from “individualist”, purely logical
characterizations of the arithmetical primitives.



H󰝢󰝚󰝒’󰝠 󰝝󰝟󰝖󰝛󰝐󰝖󰝝󰝙󰝒: The number of F is identical
to the number of G if and only if F and G are
equinumerous (i.e., can be put in 1-1
correspondence).
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H󰝢󰝚󰝒’󰝠 󰝝󰝟󰝖󰝛󰝐󰝖󰝝󰝙󰝒 is an abstraction principle.



I.e., it is a principle of the form

Abs”pF q “ Abs”pGq if and only if F ” G,

where ” is an equivalence relation and Abs”p¨q
is a function mapping the entities in its domain
to individuals

(e.g., Abs”pF q is the abstract of F with respect to
the equivalence relation ”).



N󰝒󰝜F󰝟󰝒󰝔󰝒󰝎󰝛 󰝙󰝜󰝔󰝖󰝐󰝖󰝠󰝚 is plagued with
difficulties stemming from its commitment to
H󰝢󰝚󰝒’󰝠 󰝝󰝟󰝖󰝛󰝐󰝖󰝝󰝙󰝒 being analytically true in
virtue of it being an abstraction principle.

– E.g., the bad company objection.



Bad company objection (Boolos 1990, 1997):
How can H󰝢󰝚󰝒’󰝠 󰝝󰝟󰝖󰝛󰝐󰝖󰝝󰝙󰝒, as an abstraction
principle, be analytic, if other abstraction
principles are inconsistent with it.



For instance, the 󰝛󰝢󰝖󰝠󰝎󰝛󰝐󰝒 󰝝󰝟󰝖󰝛󰝐󰝖󰝝󰝙󰝒 (Boolos
1990, Wright 1997) is an abstraction principle
inconsistent with H󰝢󰝚󰝒’󰝠 󰝝󰝟󰝖󰝛󰝐󰝖󰝝󰝙󰝒:



N󰝢󰝖󰝠󰝎󰝛󰝐󰝒 󰝝󰝟󰝖󰝛󰝐󰝖󰝝󰝙󰝒: The nuisance of F is
identical to the nuisance of G if and only if F
and G differ with respect to at most finitely
many instances.



§2.3. Russell’s logicism



By contrast with Frege’s and neoFregean
logicisms, Russell’s logicism was based on the
assumption that the natural numbers are
properties of properties



– Specifically, on the assumption that they are
the finite cardinalities;

(i.e., n is the property of having being exactly n
instances)



R󰝢󰝠󰝠󰝒󰝙󰝙’󰝠 󰝙󰝜󰝔󰝖󰝐󰝖󰝠󰝚 (Whitehead and Russell
1910): Arithmetic is logically true owing to
being derivable . . .



. . . in type theory + 󰝎󰝥󰝖󰝜󰝚 󰝜󰝓 󰝖󰝛󰝓󰝖󰝛󰝖󰝡󰝦;



. . . from “higher-orderist”, purely logical
characterizations of the arithmetical primitives.



A󰝥󰝖󰝜󰝚 󰝜󰝓 󰝖󰝛󰝓󰝖󰝛󰝖󰝡󰝦: There are infinitely (i.e., not
inductively finitely) many individuals.



By contrast with Frege’s and neoFregean
logicisms, Russell’s is not plagued by Russell’s
paradox, nor by problems such as the bad
company problems.



(Indeed, higher-order versions of abstraction
principles are logical theorems in type theory)



Major difficulty for Russell’s logicism: reliance
on the 󰝎󰝥󰝖󰝜󰝚 󰝜󰝓 󰝖󰝛󰝓󰝖󰝛󰝖󰝡󰝦.



As Russell acknowledged, the 󰝎󰝥󰝖󰝜󰝚 󰝜󰝓 󰝖󰝛󰝓󰝖󰝛󰝖󰝡󰝦
seems to be neither a priori knowable nor
necessarily true.



So, there is reason to think that it is not a truth
of logic.



In such a case Russell’s reduction is not a
reduction of arithmetic to logic.



State of play:

Owing to the failures of Frege’s, Russell’s, and
neoFregean logicisms, the lore of the land is that
logicism is a dead-end.



Still, as Klement (2012) put it:



‘By comparison to the litany of problems that

continue to plague Abstractionist-style neo-

logicisms, [a Russellian or neo-Russellian

logicism] actually seems like a far less

daunting route for a twenty-first century

logicist to explore’.



§3. U󰝝󰝝󰝒󰝟 L󰝜󰝔󰝖󰝐󰝖󰝠󰝚



󰝢󰝝󰝝󰝒󰝟 󰝙󰝜󰝔󰝖󰝐󰝖󰝠󰝚 about arithmetic is the
conjunction of:

(1) H󰝖󰝔󰝕󰝒󰝟-󰝜󰝟󰝑󰝒󰝟󰝖󰝠󰝚;

(2) 󰝕󰝖󰝔󰝕󰝒󰝟-󰝡󰝦󰝝󰝒 󰝎󰝟󰝖󰝡󰝕󰝚󰝒󰝡󰝖󰝐󰝎󰝙 󰝜󰝛󰝡󰝜󰝙󰝜󰝔󰝦;

(3) L󰝜󰝔󰝖󰝐󰝎󰝙󰝖󰝡󰝦;

(4) N󰝒󰝐󰝒󰝠󰝠󰝖󰝡󰝦 󰝜󰝓 F󰝖󰝛󰝖󰝡󰝎󰝟󰝦 P󰝙󰝒󰝛󰝖󰝡󰝢󰝑󰝒;

(5) I󰝛󰝡󰝒󰝟󰝝󰝟󰝒󰝡󰝎󰝏󰝖󰝙󰝖󰝡󰝦 󰝜󰝓 󰝎󰝟󰝖󰝡󰝕󰝚󰝒󰝡󰝖󰝐;

(6) N󰝒󰝐󰝒󰝠󰝠󰝖󰝡󰝦 󰝜󰝓 󰝎󰝟󰝖󰝡󰝕󰝚󰝒󰝡󰝖󰝐.



(1) H󰝖󰝔󰝕󰝒󰝟-󰝜󰝟󰝑󰝒󰝟󰝖󰝠󰝚:

Predicates have a semantic role distinct from
those of individual (and of plural) terms.

Quantification into predicate position is
legitimate and irreducible to first-order singular
(or to plural) quantification.



On 󰝕󰝖󰝔󰝕󰝒󰝟-󰝜󰝟󰝑󰝒󰝟󰝖󰝠󰝚:

The adoption of 󰝕󰝖󰝔󰝕󰝒󰝟-󰝜󰝟󰝑󰝒󰝟󰝖󰝠󰝚 lends support
to simple type-theory’s underlying type
distinctions, and to its axioms’ logicality.



Otherwise, these would seem unmotivated at
best.



(2) H󰝖󰝔󰝕󰝒󰝟-󰝡󰝦󰝝󰝒 󰝎󰝟󰝖󰝡󰝕󰝚󰝒󰝡󰝖󰝐󰝎󰝙 󰝜󰝛󰝡󰝜󰝙󰝜󰝔󰝦:

Natural numbers are finite cardinalities, and the
Russellian characterization of arithmetic’s
primitives – natural number, zero and successor –
are all true.



On 󰝕󰝖󰝔󰝕󰝒󰝟-󰝡󰝦󰝝󰝒 󰝎󰝟󰝖󰝡󰝕󰝚󰝒󰝡󰝖󰝐󰝎󰝙 󰝜󰝛󰝡󰝜󰝙󰝜󰝔󰝦:

Gets motivation from:

(a) The use of number words as determiners;

(b) Frege’s constraint.



According to Frege’s constraint (Wright 2000), the
canonical applications of mathematical entities
to the characterization of the world must be
contained within their nature.



Finite cardinalities presumably contain the
canonical application of natural numbers –
specifically, to counting – within their nature.



After all, to count is to attribute a cardinality
property.



(3) L󰝜󰝔󰝖󰝐󰝎󰝙󰝖󰝡󰝦:

The metaphysically necessary truths formulated
in a pure modal and type-theoretic language are
all logically true.



On 󰝙󰝜󰝔󰝖󰝐󰝎󰝙󰝖󰝡󰝦:

It is a consequence of the view (Shapiro 1998,
2005) that the logical truths are those necessary
truths expressible solely in terms of logical
vocabulary, provided that the necessity
operator is taken to be logical.



Insofar as Russell did not make room for modal
resources in his logical framework, 󰝙󰝜󰝔󰝖󰝐󰝎󰝙󰝖󰝡󰝦
constitutes one important difference between
󰝢󰝝󰝝󰝒󰝟 and R󰝢󰝠󰝠󰝒󰝙󰝙’󰝠 󰝙󰝜󰝔󰝖󰝐󰝖󰝠󰝚.



The appeal to modal resources nicely dovetails
with 󰝕󰝖󰝔󰝕󰝒󰝟-󰝜󰝟󰝑󰝒󰝟󰝖󰝠󰝚.



For instance, in general, values of predicate
variables are distinct from sets and values of
plural variables insofar as the latter, but not the
former, have their members essentially.



Similarly, the appeal to modal resources also
dovetails nicely with 󰝕󰝖󰝔󰝕󰝒󰝟-󰝡󰝦󰝝󰝒 󰝎󰝟󰝖󰝡󰝕󰝚󰝒󰝡󰝖󰝐󰝎󰝙
󰝜󰝛󰝡󰝜󰝙󰝜󰝔󰝦.



For instance, it seems that it is contingent
whether a property falls under a finite
cardinality.



E.g., though Mars (actually) has two moons, it
could have had more.



(4) N󰝒󰝐󰝒󰝠󰝠󰝖󰝡󰝦 󰝜󰝓 FP:

F󰝖󰝛󰝖󰝡󰝎󰝟󰝦 P󰝙󰝒󰝛󰝖󰝡󰝢󰝑󰝒 is necessarily true.



F󰝖󰝛󰝖󰝡󰝎󰝟󰝦 󰝝󰝙󰝒󰝛󰝖󰝡󰝢󰝑󰝒: Every finite cardinality
property could have been instantiated.



On 󰝛󰝒󰝐󰝒󰝠󰝠󰝖󰝡󰝦 󰝜󰝓 FP:

It is another commitment of 󰝢󰝝󰝝󰝒󰝟 not shared
with R󰝢󰝠󰝠󰝒󰝙󰝙’󰝠 󰝙󰝜󰝔󰝖󰝐󰝖󰝠󰝚.



By contrast with the 󰝎󰝥󰝖󰝜󰝚 󰝜󰝓 󰝖󰝛󰝓󰝖󰝛󰝖󰝡󰝦, the
󰝛󰝒󰝐󰝒󰝠󰝠󰝖󰝡󰝦 󰝜󰝓 FP is consistent with it being
necessary that there are only finitely many
individuals.



Also, note that, given 󰝙󰝜󰝔󰝖󰝐󰝎󰝙󰝖󰝡󰝦, if 󰝛󰝒󰝐󰝒󰝠󰝠󰝖󰝡󰝦 󰝜󰝓
FP can be shown, then its logicality will have
been established.

Later on we will say more in defense of
󰝛󰝒󰝐󰝒󰝠󰝠󰝖󰝡󰝦 󰝜󰝓 FP.



(5) I󰝛󰝡󰝒󰝟󰝝󰝟󰝒󰝡󰝎󰝏󰝖󰝙󰝖󰝡󰝦 󰝜󰝓 󰝎󰝟󰝖󰝡󰝕󰝚󰝒󰝡󰝖󰝐:

There is a deductive system, formulated in a
pure modal and type-theoretic language and
including FP among its axioms, whose
theorems are necessary truths, and include the
󰝕󰝖󰝔󰝕󰝒󰝟-󰝡󰝦󰝝󰝒 󰝎󰝟󰝖󰝡󰝕󰝚󰝒󰝡󰝖󰝐󰝎󰝙 󰝜󰝛󰝡󰝜󰝙󰝜󰝔󰝦-respecting
translations of all theorems of PA2.



On 󰝖󰝛󰝡󰝒󰝟󰝝󰝟󰝒󰝡󰝎󰝏󰝖󰝙󰝖󰝡󰝦 󰝜󰝓 󰝎󰝟󰝖󰝡󰝕󰝚󰝒󰝡󰝖󰝐:

I’ll later present a result that arguably
establishes 󰝖󰝛󰝡󰝒󰝟󰝝󰝟󰝒󰝡󰝎󰝏󰝖󰝙󰝖󰝡󰝦 󰝜󰝓 󰝎󰝟󰝖󰝡󰝕󰝚󰝒󰝡󰝖󰝐.



The adoption of modal resources brings with it
a novel challenge:

– To account for the interaction between
modality and quantification in a way which is
relatively uncontroversial.



The system in which the result is proven is
neutral on the status of highly controversial
theses such as the following:



For each type τ :

B󰝎󰝟󰝐󰝎󰝛 󰝓󰝜󰝟󰝚󰝢󰝙󰝎τ : “Every possible xτ actually
exists.”

C󰝜󰝛󰝣󰝒󰝟󰝠󰝒 B󰝎󰝟󰝐󰝎󰝛 󰝓󰝜󰝟󰝚󰝢󰝙󰝎τ : “Every xτ
necessarily exists.”

N󰝒󰝐󰝒󰝠󰝠󰝖󰝡󰝖󰝠󰝚τ : Necessarily, every xτ necessarily
exists.



In addition, the propositional modal logic
required for the formal result supporting
󰝖󰝛󰝡󰝒󰝟󰝝󰝟󰝒󰝡󰝎󰝏󰝖󰝙󰝖󰝡󰝦 󰝜󰝓 󰝎󰝟󰝖󰝡󰝕󰝚󰝒󰝡󰝖󰝐 is just K, the
weakest propositional modal logic.

– It is uncontroversially true of metaphysical
necessity.



(6) N󰝒󰝐󰝒󰝠󰝠󰝖󰝡󰝦 󰝜󰝓 A󰝟󰝖󰝡󰝕󰝚󰝒󰝡󰝖󰝐:

The purely arithmetical truths expressible in the
language of PA2 are all metaphysically necessary
truths also expressible in a pure modal type
theory.



On 󰝛󰝒󰝐󰝒󰝠󰝠󰝖󰝡󰝦 󰝜󰝓 󰝎󰝟󰝖󰝡󰝕󰝚󰝒󰝡󰝖󰝐:

Gödel’s incompleteness theorems pose an
important limitation to Frege’s, neoFregean and
Russell’s logicisms.



For any given effectively axiomatizable system
of modal type theory, there will be arithmetical
truths which are not derivable in it.



But these arithmetical truths may nonetheless
still be logical.



Indeed, and given 󰝙󰝜󰝔󰝖󰝐󰝎󰝙󰝖󰝡󰝦 and 󰝕󰝖󰝔󰝕󰝒󰝟-󰝡󰝦󰝝󰝒
󰝎󰝟󰝖󰝡󰝕󰝚󰝒󰝡󰝖󰝐󰝎󰝙 󰝜󰝛󰝡󰝜󰝙󰝜󰝔󰝦, they will be – provided
that the formulas of pure modal type theory
which also express them are necessarily true.



I’ll later present a result that arguably
establishes 󰝛󰝒󰝐󰝒󰝠󰝠󰝖󰝡󰝦 󰝜󰝓 󰝎󰝟󰝖󰝡󰝕󰝚󰝒󰝡󰝖󰝐.



This second result requires a stronger
propositional modal logic, S5.

– A system whose theorems, it is reasonable to
think, are all true of metaphysical necessity.



It also requires some plausible principles of
modal plural logic.



The resulting system is itself neutral on
controversial theses such as the 󰝏󰝎󰝟󰝐󰝎󰝛
󰝓󰝜󰝟󰝚󰝢󰝙󰝎τ , 󰝐󰝜󰝛󰝣󰝒󰝟󰝠󰝒 󰝏󰝎󰝟󰝐󰝎󰝛 󰝓󰝜󰝟󰝚󰝢󰝙󰝎τ and
󰝛󰝒󰝐󰝒󰝠󰝠󰝖󰝡󰝖󰝠󰝚τ .



§4. Interpretability of arithmetic



§4.1. Logical languages MT and PMT



Two languages:

(1) A pure modal type-theoretic language
based on relational types;

(2) A plural extension extension PMT of MT.



Definition (Relational types)
The set of types is the smallest set such that:

(a) e is a type;

(the type of individuals)



Definition (Relational types)

(b) xτ 1, . . . , τny is a type, for every n P Z`, if τ 1,
. . ., τn are types;

(the type of n-ary relations between entities of,
respectively, type τ 1, . . ., type τn).



Singular variables:

For each type θ, there are denumerably many
singular variables v1θ , v2θ , v3θ , . . ..



Plural Variables:

For each type θ, there are denumerably many
plural variables vv1θ , vv2θ , vv3θ , . . ..



Definition (PMT singular terms and formulae)
The sets of formulae and type θ-singular terms
of PMT are the smallest sets such that:

(a) A singular variable subscripted with θ is a
type θ-singular term;



Definition (PMT singular terms and formulae)

(b) “θ is a type θ-singular term,

if θ “ xτ, τy;



Definition (PMT singular terms and formulae)

(c) βpα1, . . . ,αnq is a formula,

if αi is a type τ i-singular term, for each
i ď n P Z`, and β is a type
xτ 1, . . . , τny-singular term, for each n P Z`;



Definition (PMT singular terms and formulae)

(d) 󲷤ϕ, ϕ ^ ψ, 󵀓ϕ are formulae,

if ϕ and ψ are formulae;



Definition (PMT singular terms and formulae)

(e) @δϕ is a formula,

if ϕ is a formula and δ is a singular or plural
variable;



Definition (PMT singular terms and formulae)

(f) λv1 . . . vnϕ is a type θ-singular term,

if ϕ is a formula and v1, . . ., vn are distinct
singular variables of, respectively, types τ 1,
. . ., τn, and θ “ xτ 1, . . . , τny, for each n P Z`;



Definition (PMT singular terms and formulae)

(g) α ă β is a formula,

if α and β are plural type τ -variables;



Definition (PMT singular terms and formulae)

(g) α “ β is a formula,

if α and β are plural type τ -variables.



Definition (MT terms and formulae)

The terms of MT are the singular terms of PMT
in which no plural variables occur.

The formulae of MT are those formulae of PMT
in which no plural variables occur.



§4.2. Deductive system



Definition (Deductive system KQLC: I)

Axioms (in the language of MT):

pPLq Propositional tautologies

pKq 󵀓pϕ Ñ ψq Ñ p󵀓ϕ Ñ 󵀓ψq



Definition (Deductive system KQLC: II)

p@1q @vpϕ Ñ ψq Ñ p@vϕ Ñ @vψq

p@2q ϕ Ñ @vϕ,

provided that v occurs free nowhere in ϕ.

p@Eq Erαs Ñ p@vϕ Ñ ϕv
αq,

where Erαs :“ Dupu “ αq.



Definition (Deductive system KQLC: III)

p@“q @vpv “ v ^ Ervsq

pIndq α “ γ Ñ pϕ Ñ ϕ1q,

where ϕ1 is a formula which results from ϕ
by having γ occur at some places where α
occurs, re-lettering bound variables to
ensure that no variables free in α “ γ are
bound in ϕ or in ϕ1.



Definition (Deductive system KQLC: IV)

pAb1q λuϕpδq Ñ ϕu
δ

pAb2q pϕu
δ

^
Ź

1ďiďnErδis ^ Erλuϕsq Ñ λuϕpαq



Definition (Deductive system KQLC: V)

pCompCq Eβ Ñ Erβs,

where, given a list µ1, . . ., µn of all atomic
terms (or plural variables, except x“xτ,τyy,
for all types τ ) free in β,
Eβ :“ Erµ1s ^ . . . ^ Erµns.



Definition (Deductive system KQLC: VI)

Inference rules of KQLC:

pMPq p$ ϕ & $ ϕ Ñ ψq ñ $ ψ

pNecq $ ϕ ñ $ 󵀓ϕ

pGenq $ ϕ ñ $ @vϕ



§4.3. Interpretability



Russellian translations:

The τ -Russellian translation pϕqRτ of each PA2

formula ϕ is that formula of MT which results
from ϕ by:



(a) replacing each primitive of PA2 with its
Russellian xxτyy-characterization, and



(b) indexing ϕ’s quantified variables with the
type xxτyy.



Observation:

Russellian translations reflect the fact that,
according to 󰝢󰝝󰝝󰝒󰝟, the mathematical primitives
are typically ambiguous.



This is unsurprising. Higher-orderists see the
logical notions recurring along the
type-hierarchy.



E.g.

– There is a property of having exactly one instance
which applies to properties of individuals.

– There is a property of having exactly one
instance which applies to properties of
properties of individuals.

– Etc.



Theorem 1 (BJ, Forthcoming)
$KQLC FP Ñ pϕqRτ ,

for every closed theorem ϕ of PA2 and every type τ .



Significance of Theorem 1:

The theorem establishes 󰝖󰝛󰝡󰝒󰝟󰝝󰝟󰝒󰝡󰝎󰝏󰝖󰝙󰝖󰝡󰝦 󰝜󰝓
󰝎󰝟󰝖󰝡󰝕󰝚󰝒󰝡󰝖󰝐, provided:



(a) the reasonable view that all theorems of
KQLC are necessarily true; and



(b) that 󰝓󰝖󰝛󰝖󰝡󰝎󰝟󰝦 󰝝󰝙󰝒󰝛󰝖󰝡󰝢󰝑󰝒 is necessarily true.



Moreover, 󰝖󰝛󰝡󰝒󰝟󰝝󰝟󰝒󰝡󰝎󰝏󰝖󰝙󰝖󰝡󰝦 󰝜󰝓 󰝎󰝟󰝖󰝡󰝕󰝚󰝒󰝡󰝖󰝐,
󰝕󰝖󰝔󰝕󰝒󰝟-󰝜󰝟󰝑󰝒󰝟 󰝎󰝟󰝖󰝡󰝕󰝚󰝒󰝡󰝖󰝐󰝎󰝙 󰝜󰝛󰝡󰝜󰝙󰝜󰝔󰝦 and
󰝙󰝜󰝔󰝖󰝐󰝎󰝙󰝖󰝡󰝦 jointly imply that the theorems of PA2
are all expressible by logical truths.



§5. N󰝒󰝐󰝒󰝠󰝠󰝖󰝡󰝦 󰝜󰝓 󰝎󰝟󰝖󰝡󰝕󰝚󰝒󰝡󰝖󰝐



§5.1. Deductive system



Definition (Deductive system S5PQLC: I)

Axioms: Those of KQLC (now stated in PMT)
together with:

pTq 󵀓ϕ Ñ ϕ

p5q 󲨙ϕ Ñ 󵀓󲨙ϕ.



Definition (Deductive system S5PQLC: II)

pă Iq u ă uu Ñ 󵀓pEruus Ñ pu ă uu ^ Erusqq

p“IPq pEruus ^ @upu ă uu Ø u ă ttqq Ñ uu “ tt.



Definition (Deductive system S5PQLC: III)

pPluCompq Duϕ Ñ Duu@upu ă uu Ø ϕq

p󵀓EPq pEruus^@upu ă uu Ñ 󵀓Erusqq Ñ 󵀓Eruus.



Definition (Deductive system S5PQLC: IV)

Inference rules: The same as those of KQLC (now
formulated in PMT).



§5.2. Necessity



Arithmetical translations:

The τ -arithmetical translation pϕqAτ of a formula
ϕ of PA2 is defined exactly as its τ -Russellian
translation, except that the quantifiers are
restricted to the finite cardinalities.



After all, we are interested in the truths about
the natural numbers – not about any entities
whatsoever.



Theorem 2 (BJ, Forthcoming)
$S5PQLC pϕqAτ Ñ 󵀓pϕqAτ ,
for every closed formula ϕ of PA2.



Significance of Theorem 2:

The theorem establishes 󰝛󰝒󰝐󰝒󰝠󰝠󰝖󰝡󰝦 󰝜󰝓
󰝎󰝟󰝖󰝡󰝕󰝚󰝒󰝡󰝖󰝐, provided:



(a) that the theorems of S5PQLC are all true, as
it is reasonable to think.



(b) that 󰝕󰝖󰝔󰝕󰝒󰝟-󰝜󰝟󰝑󰝒󰝟 󰝎󰝟󰝖󰝡󰝕󰝚󰝒󰝡󰝖󰝐󰝎󰝙 󰝜󰝛󰝡󰝜󰝙󰝜󰝔󰝦
is true.



Moreover, 󰝛󰝒󰝐󰝒󰝠󰝠󰝖󰝡󰝦 󰝜󰝓 󰝎󰝟󰝖󰝡󰝕󰝚󰝒󰝡󰝖󰝐 and
󰝙󰝜󰝔󰝖󰝐󰝎󰝙󰝖󰝡󰝦 establish that the the truths of
arithmetic are all logically true.



§6. F󰝖󰝛󰝖󰝡󰝎󰝟󰝦 P󰝙󰝒󰝛󰝖󰝡󰝢󰝑󰝒



§6.1. Necessary, if true



Lemma 3 (BJ, Forthcoming)
$S5PQLC FPτ Ñ 󵀓FPτ .



Significance of Lemma 3:

In order to establish the necessary truth of FP it
suffices to establish its plain truth.



Given 󰝙󰝜󰝔󰝖󰝐󰝎󰝙󰝖󰝡󰝦, this means that FP is, if true,
logically true.



§6.2. An easy argument



Easy argument for FP
(adapted from (Williamson 2013)):

Premise: There could have been n donkeys, for
every finite cardinality n.



(The contradictory hypothesis – that the
metaphysical laws imply the existence of an
upper bound on the finite cardinality that
possibly numbers being a donkey – is presumably
absurd.)



6 Every finite cardinality n could have been
instantiated.



§6.3. R󰝒󰝐󰝜󰝚󰝏󰝖󰝛󰝎󰝡󰝖󰝜󰝛 and 󰝔󰝒󰝛󰝒󰝟󰝎󰝡󰝖󰝜󰝛



R󰝒󰝐󰝜󰝚󰝏󰝖󰝛󰝎󰝡󰝖󰝜󰝛 (Lewis 1986): For any objects in
any worlds, there is a world that contains any
number of duplicates of all those objects, “size
and shape permitting”.



R󰝒󰝐󰝜󰝚󰝏󰝖󰝛󰝎󰝡󰝖󰝜󰝛 has been argued to lead to
paradox.



Regardless, 󰝔󰝒󰝛󰝒󰝟󰝎󰝡󰝖󰝜󰝛 is at least in the spirit of
󰝟󰝒󰝐󰝜󰝚󰝏󰝖󰝛󰝎󰝡󰝖󰝜󰝛.



G󰝒󰝛󰝒󰝟󰝎󰝡󰝖󰝜󰝛: There is an attribute of
individuals numbered by some finite
cardinality which, necessarily, no matter what
finite cardinality numbers it, its successor
could have numbered it.



G󰝒󰝛󰝒󰝟󰝎󰝡󰝖󰝜󰝛 is a consequence of the claim that,
no matter how finitely-many duplicates of a
chosen individual there are, there could have
been one more.



Also, 󰝠󰝒󰝟󰝖󰝜󰝢󰝠 󰝎󰝐󰝡󰝢󰝎󰝙󰝖󰝠󰝚 seems a truism:

(For robust defenses, see (Stephanou 2007) and
(Jacinto 2019))



For each type τ :

S󰝒󰝟󰝖󰝜󰝢󰝠 󰝎󰝐󰝡󰝢󰝎󰝙󰝖󰝠󰝚τ : “necessarily, standing in a
relation implies being something.”



But then:

Lemma 4 (BJ, Forthcoming)
$S5PQLC p󰝔󰝒󰝛󰝒󰝟󰝎󰝡󰝖󰝜󰝛^󰝠󰝒󰝟󰝖󰝜󰝢󰝠 󰝎󰝐󰝡󰝢󰝎󰝙󰝖󰝠󰝚τq Ñ FPτ .



That is, 󰝓󰝖󰝛󰝖󰝡󰝎󰝟󰝦 󰝝󰝙󰝒󰝛󰝖󰝡󰝢󰝑󰝒 is true provided that
󰝔󰝒󰝛󰝒󰝟󰝎󰝡󰝖󰝜󰝛 is, given 󰝠󰝒󰝟󰝖󰝜󰝢󰝠 󰝎󰝐󰝡󰝢󰝎󰝙󰝖󰝠󰝚.



Hence, 󰝓󰝖󰝛󰝖󰝡󰝎󰝟󰝦 󰝝󰝙󰝒󰝛󰝖󰝡󰝢󰝑󰝒 gets support from
both:

(a) common sense considerations; and

(b) influential theoretical views on what is
possible.



§7. C󰝜󰝛󰝐󰝙󰝢󰝠󰝖󰝜󰝛



§7.1. Contributions



(1) A characterization of 󰝢󰝝󰝝󰝒󰝟, a
neoRussellian form of logicism;



(2) Two technical results (Theorems 1 and 2)
establishing an intimate relationship between
arithmetic and modal type-theory;



(3) A partial defense of 󰝢󰝝󰝝󰝒󰝟 supported,
among other things, by Theorems 1 and 2.



§7.2. Future work



– Philosophically perspicuous higher-order
characterizations of other mathematical entities
satisfying Frege’s constraint;

(e.g.: sets and real numbers)



– Technical results supporting 󰝢󰝝󰝝󰝒󰝟 󰝙󰝜󰝔󰝖󰝐󰝖󰝠󰝚
about other areas of mathematics;

(e.g., set theory and real analysis)



– Defenses of the remaining component
theses of 󰝢󰝝󰝝󰝒󰝟 󰝙󰝜󰝔󰝖󰝐󰝖󰝠󰝚;

(e.g.: 󰝕󰝖󰝔󰝕󰝒󰝟-󰝡󰝦󰝝󰝒 󰝎󰝟󰝖󰝡󰝕󰝚󰝒󰝡󰝖󰝐󰝎󰝙 󰝜󰝛󰝡󰝜󰝙󰝜󰝔󰝦; the
logicality of metaphysical necessity)



– Historical investigation of the reasons
underlying Frege’s and Russell’s skepticism
about modality;



– Etc.
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