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Background: classical higher-order
logic



Type system

We’ll use simple relational types to track the syntactic categories of our language.
Simple relational types
T (the set of terminal types) is the smallest set such that t ∈ T and (σ → τ) ∈ T
whenever σ ∈ (T ∪ {e}) and τ ∈ T.

R (the set of relational types) is T ∪ {e}.

▶ t (aka. o, Prop, P) is ‘the type of propositions’; terms of this type are called
sentences.

▶ e (aka. ι) is “the type of individuals”; terms of this type are called singular terms.
We won’t have terms with types like e → e (since their treatment in the logic
raises some distracting choice points).
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Language

We use variables with built-in R-types (indicated with a superscript when necessary).
The language L
L is the smallest R-typed collection : such that:

vσ : σ

(AB) : τ whenever A : σ → τ and B : σ

(λvσ.A) : σ → τ whenever A : τ and τ ̸= e
→ : t → t → t
∀σ : (σ → t) → t
= : σ → σ → t

▶ We can also add a signature Σ of nonlogical constants to define a language LΣ.
▶ An LΣ-sentence is a term P with P :LΣ

t. An LΣ-theory is a set of LΣ-sentences.
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Some shorthands

▶ ∀vσ.P for ∀σ(λvσ.P).
▶ ⊥ for ∀pt.p, ¬ for λp.p → ⊥, and ⊤ for ¬⊥.
▶ ∧ for λpq.∀tr.(p → q → r) → r
▶ ∨ for λpq.∀tr.(p → r) → (q → r) → r
▶ ∃σ for λXσ→t.∀pt.(∀yσ.Xy → p) → p and ∃vσ.P for ∃σ(λvσ.P).
▶ □ for λp.p =t ⊤.
▶ ≤σ1→...→σn→t for λXY.X =σ1→...→σn→t (λzσ1

1 . . . zσnn .Xz1 . . . zn ∧ Yz1 . . . zn)
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Classical higher-order logic

The logic H
H is the smallest L-theory ⊢ containing all instances of the following schemas:

Luk ⊢ (P → Q → R) → (R → P) → S → P (where P,Q,R, S : t)
βη ⊢ P → Q whenever P and Q are βη-equivalent.
UI ⊢ ∀σF → FA (where F : σ → t and A : σ)

UD ⊢ (∀vσ.pt ∨ Q) ↔ (pt ∨ ∀vσ.Q)

REF ⊢ A =σ A
LL ⊢ A =σ B → (FA → FB)

and closed under the following two rules:

MP If ⊢ P → Q and ⊢ P then ⊢ Q.
Gen If ⊢ P then ⊢ ∀v.P. 5



Classicism



Classicism

H is pretty weak. For example it fails to settle a host of identity questions such as
whether ∀p.p = ¬¬p.

A natural idea for strengthening it to answer questions like that is to close under the
rule of substitution of logical equivalents:

Substitution If ⊢ P ↔ Q, then ⊢ R[P/x] → R[Q/x]

We call the resulting theory C (‘Classicism’).

▶ Here, R[P/x] is the result of replacing all occurrences of x in R with P, including
bound occurrences. So given ⊢ p ↔ ¬¬p, we even get
(λp.p) = (λp.p) → (λp.¬¬p) = (λp.p).
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An alternative axiomatization

(λpq.p ∧ q) =t→t→t (λpq.q ∧ p)Commutativity
(λpq.(p ∧ q) ∨ p) =t→t→t (λpq.p)Absorption
(λpqr.p ∨ (q ∧ r)) =t→t→t→t (λpqr.(p ∨ q) ∧ (p ∨ r))Distribution

(λpq.p ∧ ¬p) =t→t→t (λpq.q ∧ ¬q)Complementation
(λp.¬¬p) =t→t (λp.p)Involution

(λXy.Xy ∨ ∀σX) =(σ→t)→σ→t (λXy.Xy)∀-Absorption
(λXp.p ∨ ∀σX) =(σ→t)→t→t (λXp.∀yσ.p ∨ Xy)∀-Distribution

(λx.x =σ x) =σ→t (λx.⊤)Self-identity
(λZxy.x =σ y ∧ Zx) =(σ→t)→σ→σ→t (λZxy.x =σ y ∧ Zy)Leibniz
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Two non-theorems and two theorems

The best-known systems of classical higher-order logic (often used for formalizing
mathematics) also include the following two principles, neither of which is in C:

Fregean Axiom (p ↔ q) → (p =t q) (‘Propositional Extensionality’).
Functionality (∀σx.Fx =τ Gx) → F =σ→τ G (‘Functional Extensionality’).

Adding these to H gives a system ‘Extensionalism’ E, even stronger than C.

C does however contain the following (recall that □ := (λp.p = ⊤)):

Modalized Fregean Axiom □(p ↔ q) → (p =t q)
Modalized Functionality □(∀σx.Fx =τ Gx) → F =σ→τ G.

▶ NB: C—indeed, even the quantifier-free fragment of C—implies that □ has an S4
modal logic.
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Broad Necessitism

Here’s a very controversial theorem of C:

∀xσ.□∃yσ.x =σ yBroad Necessitism

This implies

∀Xt→t.(X⊤ → ∀yσ.X(∃zσ.z =σ y))

Since metaphysical necessity uncontroversially satisfies X⊤, Classicism implies
Necessitism (Williamson, 2013).
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m.(∀x.x ̸= y) =t (∀x.x ̸= y) ∧ (y ̸= y)
n-1.(y̸= y) =t ⊥Self-identity
n-1.((∀x.x ̸= y) ∧ y ̸= y) =t ⊥
n. (∀x.x ̸= y) =t ⊥
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Some regard Necessitism as obviously false. (E.g. on the grounds that Saul Kripke
wouldn’t have been identical to anything if Meyer and Dorothy Kripke had never met.)

Others (Fine, 2017) regard it as obviously true.

Like Williamson, we think it’s a hard theoretical question, in the intersection of logic
and metaphysics.
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Free Classicism and Free Quantifiers



Free higher-order logic

Let FH (free higher order logic) be the result of weakening H by replacing UI with the
following schema:

(∀xσ.Fx → Gx) → (∀σF → ∀σG)KQ

And let Free Classicism (FC) be the result of closing Free H under Substitution.

This is a very natural (though not the only) weakening of C for contingentists (those
who reject Necessitism) to explore.
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Existence Closure

Free Classicism is very weak—it doesn’t even imply ∃xσ.⊤ for any type σ! We can
remedy this somewhat by adding

Existence Closure □∀x1 . . . xn.∃σy.y =σ A(x1, . . . , xn), where A has no free
variables besides x1, . . . , xn (and no non-logical contants).

Call the resulting theory FC+.

FC+ includes all closed theorems of H and is closed
under necessitation.

If you want, you can also add all open theorems of H; but if you closed that under
necessitation you’d be back to C.
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General theory of (universal)
quantifiers



Definitions

For Q,Q′ : (σ → t) → t and F : σ → t:

▶ Comm Q (‘Q commutes with ∧’) := (λXp.p ∨ QX) = (λXp.Q(λy.p ∨ Xy)).
▶ Dist Q (‘Q is distributive’) := (λXp.p ∨ QX) = (λXp.Q(λy.p ∨ Xy)).
▶ Abs Q (‘Q is absorptive’) := (λXy.Xy ∨ QX) = (λXy.Xy).

▶ Quant Q (‘Q is a quantifier’) := Comm Q ∧ Dist Q.
▶ UQuant Q (‘Q is an absolutely unrestricted quantifier’) := Abs Q ∧ Dist Q.
▶ Q ↾ F (‘the restriction of Q to F’) := λX.Q(λy.Fy → Xy).
▶ E Q (‘Q-existence’) := λy.¬Q(λx.x ̸=σ y).
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Theorems

These definitions are justified by theorem-schemas of FC:

▶ UQuant Q → Quant Q.
▶ UQuant Q → Quant(Q ↾ F).
▶ (Quant Q ∧ UQuant Q′) → Q = Q′ ↾ E Q.
▶ (UQuant Q ∧ UQuant Q′) → Q = Q′.

Classicism thus characterizes ∀σ in a way that uniquely singles it out.

By contrast, Free Classicism by contrast says nothing about ∀σ that distinguishes it
from arbitrary restricted quantifiers.
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Key choices for Free Classicists



A central question we can ask in Free Classicism: are there any absolute quantifiers (in
type (σ → t) → t)? I.e., whether to accept the following schema:

Absolute Quantifier Existence ∃X(σ→t)→t.UQuant X

In FC, Absolute Quantifier Existence entails a witnessing sentence:

UQuant ∀+σ
∀+σ := λX.∀Q(σ→t)→t.Quant(Q) → QXwhere
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Absolute Quantifier Existence in the literature

Many contingentists (e.g. Prior and Fine, 1977) have wanted to define a so-called
“outer” or “possibilist” quantifier Π, so as to charitably reinterpret certain ordinary
claims which would conflict with contingentism if taken at face value.

One of their desiderata is that Necessitism should become true when ∀ is replaced by
Π. This would make it natural for them to accept that Π is an absolute quantifier.

If they also accept Existence Closure, they will thereby be committed to Absolute
Quantifier Existence.
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The metasemantic argument

Given how the symbols ∀σ were introduced—in particular, the stipulation that they are
to be understood as unrestricted quantifiers—why doesn’t ‘∀σ’ end up expressing Πσ?

In interpreting this stipulation, it is natural to take ‘quantifier’ to mean what we earlier
called ‘free quantifier’, and to take ‘Q1 is a restriction of Q2’ to mean that Q2 entails
Q1. It follows from this that if there is an absolute quantifier, all other quantifiers are
restrictions of it. So in what sense could any of the other quantifiers count as
‘unrestricted’?
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Denying Absolute Quantifier Existence

Can Free Classicists avoid the metasemantic challenge by denying the existence of an
absolute quantifier?

It’s not so straightforward. For given contingentism, there are reasons to accept that a
word might be meaningful—in the sense of being capable of contributing in a
discriminating fashion to the truth values of sentences—without there being anything
(of the relevant type) that it means.
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For example, consider Salmon’s name ‘Noman’:
Let S be a particular male sperm cell of my father’s and let E be a particular
ovum of my mother’s such that neither gamete ever unites with any other to
develop into a human zygote. Let us name the (possible) individual who would
have developed from the union of S and E, if S had fertilized E in the normal
manner, ‘Noman’. (Salmon, 1987, inspired by Kaplan 1973)

Bacon (2013) argues that contingentists should think that ‘Noman’ refers to Noman,
despite not referring to anything. This helps explain why, e.g., ‘Noman is either wise or
not wise’ is true.
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Similarly, even Free Classicists who deny Absolute Quantifier Existence might take
themselves to understand a certain symbol Πσ for which they accept UQuant(Πσ).
They will also face the metasemantic challenge.

Two ways in which Free Classicists might end up in this position:

1. They could accept ‘UQuantΠσ’ for some Πσ defined in terms of the logical
constants (or other uncontroversially meaningful vocabulary?), while rejectin
∃X(σ→t)→t.X =(σ→t)→t Πσ (and thus also Existence Closure).

2. They could allow constants Πσ to be introduced without explicit definition, just
by reasoning with them in ways that assume UQuant(Πσ). So long as this gives a
conservative extension of their old theory, it is hard to see (Belnap, 1962) why
they would have any in-principle objection to doing this.
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Hardline contingentism

Of course, UQuantΠσ won’t be a conservative extension if the old theory included

Absolute Quantifier Impossibility UQuant =((σ→t)→t)→t λX.⊥

This is arguably the most interesting/principled option for the contingentist.

▶ Result (E. Russo): Absolute Quantifier Impossibility is consistent with FC.
▶ Open question: is Absolute Quantifier Impossibility consistent with FC+?
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A candidate “outer quantifier”



Super-universality

We can define a “super-universality” operator Πσ: property X is super-universal iff it is
entailed by being such that p, for some truth p:

Πσ := λXσ→t.∃p(p ∧ (λx.p) ≤σ→t X)

Classicism implies Πσ =(σ→t)→t ∀σ.

FC implies that super-universality obeys Absorption-∀, but does not imply that it obeys
Πσ obeys Distribution-∀
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The Truth Principle

However we can prove this—and hence that Πσ is an absolute quantifier—if we add to
Free Classicism the principle that truth entails being entailed by some truth:

Truth Principle (λp.p) ≤t→t (λp.∃q.q ∧ (q ≤t p))

Thus any Free Classicist who accepts the Truth Principle but not Classicism will face
the metasemantic challenge.

It seems to us that the Truth Principle is quite compelling even from a contingentist
starting point. (Evidence: Fine (1981) argues for a “World Actualism” principle that
entails the Truth Principle.)

25



Illustration

For example, suppose that a certain electron e could have not been, and if it had not
been, the propositions Pe (e orbits a proton) and ¬Pe (e doesn’t orbit any proton)
would also have not been, although the former would have been false and the latter
true.

Still, it is plausible that if there hadn’t been e, there would have been a truth that
entailed that e doesn’t orbit any proton.
▶ Proponents of the necessity of distinctness can point to a natural candidate for

such a truth: the disjunction (least upper bound) of all true predications of the
form x orbits some proton.

And this isn’t something special about orbiting a proton. Plausibly every property F is
such that if there hadn’t been e, then there would have been a truth which either
entailed Fe or entailed ¬Fe.
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Thanks.

These slides available at https://tinyurl.com/PLSDorr
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