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Hilbert’s Tenth Problem (HTP)

- HTP asks for an algorithm to determine the solvability in
integers of Diophantine equations over Z, i.e, of polynomials
with integer coefficients (1900)

- Y. Matiyasevich, M. Davis, H. Putnam, J. Robinson provided a
negative answer to HTP (1970)

- The positive existential theory of the Lr = {=, 0, 1,+, ·}
structure for integers is undecidable.



3/34

Extensions of Hilbert’s Tenth Problem (HTP)

- A number of similar problems have been solved over other
domains of mathematical interest.

- Some others remain open. HTP for the field of rational
numbers is a (or the) major open problem of this area.
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A phrase of Thanases Pheidas

" We are studying problems of
decidability and undecidability,
roughly speaking, trying to find
where is the limit between what a
computer can or can not do."
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A story about Thanases Pheidas
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At a glance

We will present:
- Known decidability and undecidability results for theories of

the ring-structures for commonly used domains:
▶ Polynomial Rings
▶ Formal Power Series

- New results:
▶ Focus on the structure of addition and localized divisibility in

polynomial rings and the corresponding rings of formal power
series and inter relations.



7/34
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For F [z ], char(F) = 0
Lr ,T -∃+ theory

(Pheidas and Zahidi 1999)
Lr ,z -theory

(cons. Denef 1978)

Lr -theory
(R.Robinson 1951)

Lr ,z -∃+ theory
(Denef 1978)

L+,|,z -∃ theory1

(Pheidas 1985)

L+,□,z -∃+ theory
(Vojta 2000)

L+,□,T -∃+ theory
(Pheidas and Vidaux 2010)

- Lr = {=, 0, 1,+, ·}
- Lr ,z = Lr ∪ {z}
- Lr ,T = Lr ∪ {T (x)}, where T (x): “x is not a constant”
- L+,| = {=, 0, 1,+, |}, L+,|,z = L+,| ∪ {z}
- L+,□,z = L+,z ∪ {x is square}, L+,□,T = L+,T ∪ {x is square}

1 Iff the existential Lr -theory of F is decidable
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For F [z ], char(F) > 0

Lr ,T -∃+ theory
(Pheidas and Zahidi 1999)

Lr ,z -theory
(cons. Denef 1979)

LP -theory1

(Sirokofskich 2009)
Lr ,z -∃+ theory
(Denef 1979)

L+,|,z -∃ theory2

(Pheidas 1985)
L+,Frob,z -theory3

(Pheidas and Zahidi 2004)
L+,□,z -∃+ theory

(Pasten, Pheidas, and Vidaux 2014)

L+,□,T -∃+ theory
(Pheidas and Vidaux 2010)

- L+,Frob,z = {=, 0, 1, z ,+, x 7→ xp, x 7→ xz}
- LP = L+,z ∪ {P(ω)}, where P(ω): ω is a power of z

1 For finite fields
2 Iff the existential Lr -theory of F is decidable
3 For perfect fields
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For F [[z ]], char(F) = 0, F : a field with decidable
theory

Lr -theory1

(Kochen 1975,
Weispfenning 1984)

1 Kochen 1975 first proved the decidability result under the
continuum hypothesis, whereas Weispfenning 1984 provided an
algorithm.
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For F [[z ]], F : finite field

Lr ,z -theory
(open problem)

Lr ,z -∃ theory1

(Denef and Schoutens 2003)

Lr -theory
(open problem)

L+,Frob,z -theory
(Onay 2018)

Lr -∃ theory
(Anscombe and Fehm 2016)

Lr ,z -∃+ theory
(Becker, Denef, and Lipshitz 1980)

Lr ,P -∃ theory
(Pheidas 1987)

- Lr ,P = Lr ∪ {P}, where P(ω): ω is a power of z
1 Follows from resolution of singularities in positive characteristic
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Other useful resources (further reading)

Surveys:
- (Pheidas and Zahidi 2000): Undecidability of existential

theories of rings and fields: a survey
- (Shlapentokh 2006): Diophantine classes and extensions to

global fields
- (Pheidas and Zahidi 2008): Model theory with applications to

algebra and analysis
- (Poonen 2008): Undecidability in number theory
- (Koenigsmann 2018): Decidability in local and global fields
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Addition and divisibility in FPS

Consider the language L+,| = {=,+, |, x 7→ zx , 0, 1, z}.

a | b ⇔ ∃c : b = ca ⇔ ord(a) ≤ ord(b).

Produce a quantifier elimination that works as far as possible for
power series (F [[z ]]), over any field of any characteristic.
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Addition and divisibility in FPS: language

- L+,| = {=,+, |, x 7→ zx , 0, 1, z}.
- Atomic formulas in L+,|:

▶ f (x̄) = 0, where f is a linear polynomial, x̄ a vector of
variables.

▶ g(x̄) | h(x̄), where g , h are linear polynomials, x̄ a vector of
variables.

- α0 +
m∑
j=1

αjxj is a linear polynomial, where xj are independent

variables over F [z ] and aj ∈ F [z ].
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Addition and divisibility in FPS: a method of
quantifier elimination

- The general case:

∃x̄ : ϕ(x̄)

where
ϕ(x̄) =

∧
ϕi (x̄)

where each ϕi (x̄) is an atomic formula, or the negation of an
atomic formula, and x̄ is a vector of variables.

- The most interesting case deals with formulas of the form:

∃x :
∧

(aix + bi ) | (cix + di )

where x a single variable, ai , ci ∈ F [z ], bi , di ∈ F [[z ]].
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Systems of divisibilities

- Generic system of divisibilities:

Σ| =
n∧

i=1

(aix + bi ) | (cix + di )

- Simplified system of divisibilities:

Σ∗
| =

m∧
i=1

((x + ei ) | fi )
n∧

i=m+1

(fi | (x + ei ))



17/34

Theorem 1

For any generic system of divisibilities Σ|, there exists a simplified
system of divisibilities Σ∗

| such that:

1. There is a primitive recursive function J0 such that for any x
that is a solution of Σ|, J0(x) is a solution for Σ∗

|

2. There is a primitive recursive function J∗0 such that for any x
that is a solution of Σ∗

| , J
∗
0 (x) is a solution for Σ|
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Proposition

Given a simplified system of divisibilities Σ∗
| , the quantifier ∃ can be

eliminated from the following statement:
∃x ∈ F [[z ]] : Σ∗

| .
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Addition and divisibility in FPS: notation

- trunc(a, n): a function that keeps the first n coefficients of a:

▶ a =
∞∑
j=0

αjz
j

▶ trunc(a, n) =
n∑

j=0

αjz
j



20/34

Basic idea for quantifier elimination (1/3)

- Consider the divisibility: (x + e) | f
x

x0 x1 x2 x3 x4 . . .
e

e0 e1 e2 e3 e4 . . .
x + e

x0 + e0 x1 + e1 x2 + e2 x3 + e3 x4 + e4 . . .
f

0 0 0 0 ̸= 0 . . .

- ord(f ) = 4
- In order for ord(x + e) ≤ 4, it should be the case that:
xi ̸= −ei for some i ≤ 4, i.e:

trunc(x , ord(f )) ̸= −trunc(e, ord(f ))
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Basic idea for quantifier elimination (2/3)

- Consider the divisibility: f | (x + e)
x

x0 x1 x2 x3 x4 . . .
e

e0 e1 e2 e3 e4 . . .
x + e

x0 + e0 x1 + e1 x2 + e2 x3 + e3 x4 + e4 . . .
f

0 0 0 0 ̸= 0 . . .

- ord(f ) = 4
- In order for 4 ≤ ord(x + e), it should be the case that:
xi = −ei for all i < 4, i.e:

trunc(x , ord(f )− 1) = −trunc(e, ord(f )− 1)
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Basic idea for quantifier elimination (3/3)

- In summary, for the system

Σ∗
| =

m∧
i=1

((x + ei ) | fi )
n∧

i=m+1

(fi | (x + ei ))

to have a solution, we require that there exists x such that:
▶ trunc(x , ord(fi )) ̸= −trunc(ei , ord(fi )), for 1 ≤ i ≤ m
▶ trunc(x , ord(fi )− 1) = −trunc(ei , ord(fi )− 1), for m < i ≤ n

- From there it is easy to define conditions under which such a x
exists (quantifier elimination).
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Theorem 1

There exists a recursive function J1, such that for any system of
divisibilities Σ|, we have:

∃x ∈ F [[z ]] : Σ|

if and only if

∃x ∈ F [z ] : Σ| with deg(x) ≤ J1(Σ|).
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Theorem 2

For each formula ϕ of the language of L+,| there is a quantifier-free
formula ϕ′ such that ϕ, ϕ′ are equivalent over almost all rings
Fp[[z ]].
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Moments of Thanases Pheidas with his students in
UOC
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Moments of Thanases Pheidas with his students in
UOC
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Moments of Thanases Pheidas with his students in
UOC
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