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Cantor’s paradise

Set theory is the study of sets (of mathematical objects) under
the membership relation ∈. It provides a particularly simple
language to model (all?) mathematical notions.

It also provides a nontrivial theory of the infinite: For example,
in 1873, Georg Cantor famously proved that |N| < |R|.



A more general version of this is of course:

Theorem
(Cantor’s Theorem) For every set X , |X | < |P(X )|, where
P(X ) = {Y : Y ⊆ X}.

Proof.
Clearly |X | ≤ |P(X )| (take the function sending y ∈ X to
{y} ∈ P(X )).

To see that there is no bijection f : X −→ P(X ), suppose
f : X −→ P(X ) is a function. Let

A = {y ∈ X : y /∈ f (y)}

If A = f (y), then
y ∈ f (y) ⇐⇒ y /∈ f (y)

Which is absurd. Hence A /∈ range(f ) and f cannot be a
bijection.



The Continuum Problem: 2ℵ0 = ℵ1? 2ℵ0 = ℵ2? In general,
which is the exact cardinality of R? In other words: Exactly how
many reals are there?

ℵ0 < 2ℵ0 by Cantor’s Theorem, and Cantor conjectured that 2ℵ0

is the least possible value compatible with this inequality.

Cantor’s Continuum Hypothesis (CH) is the statement
2ℵ0 = ℵ1.



Deciding the truth value of the Continuum Hypothesis, and in
general solving the Continuum Problem, was ♯1 on Hilbert’s
famous list of open problems for the ICM meeting in 1900.

A more fundamental question:

Question
What counts as a solution of the Continuum Problem?
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The first order theory known as Zermelo-Fränkel set theory with
the axiom of Choice, a.k.a. ZFC, soon became the standard
axiomatization of set theory.

It was hoped that ZFC would prove that 2ℵ0 = ℵ1 or that it would
prove that 2ℵ0 > ℵ1. This would arguably constitute a solution
of the Continuum Problem.

However:

• In 1938, Kurt Gödel proved that if ZFC is consistent, then
ZFC+2ℵ0 = ℵ1 is also consistent.

• In 1963, Paul Cohen proved that if ZFC is consistent, then
ZFC+2ℵ0 = ℵ2 is also consistent.

To prove the consistency of ZFC+2ℵ0 = ℵ1 (assuming the
consistency of ZFC), Gödel showed that the constructible
universe, L, satisfies ZFC+2ℵ0 = ℵ1.
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To prove the consistency of ZFC+2ℵ0 = ℵ2, Cohen devised the
method of forcing.

This is a very general method which, given a model M of
(enough axioms of) ZFC, builds an outer universe M[G] ⊇ M of
M satisfying (enough axioms of) ZFC. M[G] is called a generic
extension of M.

If we choose the generic object G carefully, we may be able to
arrange that M[G] satisfies some interesting statement, like
2ℵ0 = ℵ2.

Using the method of forcing one can show, given the
consistency of ZFC, that each of the following are consistent:

• ZFC+2ℵ0 = ℵ2

• ZFC+2ℵ0 = ℵ3

• ZFC+2ℵ0 = ℵ273453453667889

• ZFC+2ℵ0 = ℵω+1

• ZFC+2ℵ0 = ℵω1

• . . .



Is this the end of the story? Do these consistency results show
that the Continuum Problem is in fact a pseudo-problem?

A formalist, who takes our official theory ZFC as the only source
of set-theoretic “truth”, would in fact answer Yes.

But this is not the only feasible position. In fact, the formalist
position faces very serious problems. Here is one way to see
this:
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Trouble with the formalist position

Taking a question like “How many real numbers are there?” to
have no answer commits the formalist to denying that there is
any such thing as “the set-theoretic universe

⋃
α∈Ord Vα”.

Presumably, for the formalist, all there is to say is things like

“T proves φ”

or
“If T is consistent, then it does not prove φ”,

for T = ZFC or T being some given extension of ZFC, and for
some sentence φ.

These proof-theoretic statements are ultimately just
arithmetical statements. So the formalist seems to be at least
committed to the existence of Vω =

⋃
n∈ω Vn.



But arithmetic is in fact dependent on the higher Vα’s. For
example, whether or not the Paris-Harrington theorem holds
depends on whether or not there are infinite sets. And analytic
number theory has a lot to say about arithmetic.

So let’s throw in Vω+1 in our ontology after all.

But the properties of Vω+1 depend crucially on what happens at
Vα for higher α’s. For example, Borel Determinacy holding
depends on the existence of Vα for all α < ω1.

So the universe should in fact contain Vα for all α < ω1. But the
statement “There is no X ⊆ R with ℵ0 < |X | < |R|” (which is
equivalent to CH in ZFC) lives already in Vω+2, so it should then
have an answer!

Where should we stop and why?
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The realist position: natural axioms
If the set-theoretic universe V is real, then the Continuum
Problem has a definite solution. The fact that ZFC does not
solve the Continuum Problem means that we need to
supplement ZFC with natural axioms solving this problem.

The search for natural axioms supplementing ZFC is also
known as Gödel’s programme. Gödel indeed made the above
point. Although he had proved the consistency of CH, he
suspected CH to be false in the real world and was hoping that
natural axioms would eventually settle the issue.

Adopting 2ℵ0 = ℵ1, or 2ℵ0 = ℵ27, as a new axiom seems surely
dogmatic, therefore unnatural. How do we decide if an axiom is
natural?

We need general criteria to assess the naturalness of axioms.
They should address the question: What virtues do we want
our theory of sets to have?



The realist position: natural axioms
If the set-theoretic universe V is real, then the Continuum
Problem has a definite solution. The fact that ZFC does not
solve the Continuum Problem means that we need to
supplement ZFC with natural axioms solving this problem.

The search for natural axioms supplementing ZFC is also
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Strong axioms of infinity

Large cardinal (LC) axioms are an (open-ended) hierarchy of
axioms asserting the existence of very high cardinals with
strong properties. They realize the idea that “the universe is
large”.

They form a hierarchy of stronger and stronger theories: Given
an LC axiom A, ZFC+A proves the consistency of ZFC, and in
fact of ZFC+A′ for any weaker large cardinal axiom A′.

The stronger A is, the more daring ZFC+A is (i.e., more likely
to be inconsistent). We can prove the consistency of LC axioms
only by working in a strictly stronger LC theory.

Arguably, the weakest large cardinal axiom is “ω exists”. The
next natural large cardinal axiom is “There is an inaccessible
cardinal”.
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Some classical large cardinal axioms:

ω < inaccessible < weakly compact <
measurable < strong < Woodin < superstrong <
< supercompact < huge < 2-huge < . . .

An empirical fact: Every mathematical theory T ever
considered can be interpreted relative to ZFC+A for some LC
axiom A. In fact, in many cases we can show T to be
equiconsistent with ZFC+A for some LC axiom A.

A natural axiom should therefore be compatible with all
consistent large cardinal axioms.



Invariance w.r.t. forcing

Forcing is our prime method for proving the independence of
some given statement φ from some base set theory; in other
words, to prove that if T is consistent, then φ and its negation
¬φ are both consistent with T .

Therefore, if we want our set theory T to be strong, we better
have that T neutralizes the effects of forcing as much as
possible, in the sense of proving, for as many sentences φ as
possible, that the truth value of φ cannot be changed by forcing.

The axiom V = L has this effect for silly reasons: Nontrivial
generic extension do not satisfy V = L.

However, V = L is not compatible with LC axioms. In fact, if
V = L, then there are no measurable cardinals.



Invariance w.r.t. forcing

Forcing is our prime method for proving the independence of
some given statement φ from some base set theory; in other
words, to prove that if T is consistent, then φ and its negation
¬φ are both consistent with T .

Therefore, if we want our set theory T to be strong, we better
have that T neutralizes the effects of forcing as much as
possible, in the sense of proving, for as many sentences φ as
possible, that the truth value of φ cannot be changed by forcing.

The axiom V = L has this effect for silly reasons: Nontrivial
generic extension do not satisfy V = L.

However, V = L is not compatible with LC axioms. In fact, if
V = L, then there are no measurable cardinals.



Large cardinals in the region of Woodin cardinals also have
exactly this effect (and are of course compatible with all LC
axioms):

Theorem
(Woodin, mid 1980’s) Suppose there are arbitrarily large
Woodin cardinals. Then the following are equivalent for every
sentence φ in the language of set theory.
(1) φ is true in L(R).
(2) It can be forced that φ is true in L(R).

L(R) is the ⊆-minimal subuniverse of ZF (= ZFC without the
Axiom of Choice) containing all the reals and all the ordinals.
L(R) is where all of classical analysis takes place.

Hence, if there are arbitrarily large Woodin cardinals, classical
analysis is immune to the forcing method.



Maximality w.r.t. forcing: Forcing
axioms

P = (P,≤P) is a partial order if P is a set and ≤P is a relation on
P which is transitive, anti-symmetric, and reflexive on P.

Given a partial order P = (P,≤P) (a.k.a. forcing notion), D ⊆ P
is a dense subset of P if for every p ∈ P there is some q ∈ D
such that q ≤P p.

G ⊆ P is a filter if
• for every q ∈ G and p ∈ P, if q ≤P p, then p ∈ G;
• for all q1, q2 ∈ G there is some q ∈ G such that q ≤P q1

and q ≤P q2.

If M is some model such that P ∈ M, we say that G is P-generic
over M if G ∩ D ̸= ∅ for every dense subset D of P such that
D ∈ M.



Theorem
(Cohen) Suppose M is a transitive model of (enough of) ZFC.
Let P = (P,≤P) ∈ M be a forcing notion and let G ⊆ P be
P-generic over M. Then:
(1) If P is non-atomic, meaning that for every p ∈ P there are

q0 ≤P p and q1 ≤P p such that q0 and q1 are
P-incompatible (i.e., there is no q ∈ P with q ≤P q0 and
q ≤P q1), then G /∈ M.

(2) There is a ⊆-minimal model M[G] of (enough of) ZFC such
that
(a) M ⊆ M[G] and
(b) G ∈ M[G].



An example:
Let P be the set of finite tuples (x0, x1, . . . , xn−1) of 0’s and 1’s.
Given tuples σ⃗1, σ⃗2, let us set σ⃗2 ≤P σ⃗1 iff σ⃗1 in an initial
segment of σ⃗2.

Let G be a filter of P. If G meets Dn = {σ⃗ ∈ P : length(σ⃗) > n}
for every n ∈ N, then c =

⋃
G is an infinite sequence

(xn : n ≥ 0) of natural numbers.

If G meets
{σ⃗ ∈ P : there are n,n + 2 < length(σ⃗), σ⃗(n) ̸= σ⃗(n + 2)}, then
it is not the case that all even entries of c are equal.

If G meets
{σ⃗ ∈ P : there are n+1,n+3 < length(σ⃗), σ⃗(n+1) ̸= σ⃗(n+1)},
then it is not the case that all odd entries of c are equal.

If G meets {σ⃗ ∈ P :
there is n with n + 10000 < length(σ⃗) such that σ⃗(n) =
σ⃗(n + 1) = . . . = σ⃗(n + 10000) = 0}, then c has somewhere
10001 consecutive entries all taking value 0.

. . .



If G is sufficiently generic, then c is a very chaotic sequence. In
fact, if G is generic over some model M, then c avoids every
regularity pattern expressible within M.

P is the simplest possible non-atomic forcing. It is called Cohen
forcing. And if G is P-generic over a model M, c is a Cohen real
over M.



By (1) in Cohen’s theorem, there are no P-generic filters over V
(whenever P is non-atomic).

On the other hand:

Fact
(ZFC) If |M| = ℵ0, then for every forcing notion P ∈ M there is a
P-generic filter G over M.

Proof.
Let (Dn : n ∈ N) enumerate all dense subsets of P in M. Let
q0 ∈ D0. Since D1 is dense, we may find q1 ∈ D1 such that
q1 ≤P q0. In general, since Dn+1 is dense, we may find
qn+1 ∈ Dn+1 such that qn+1 ≤P qn. Then

G = {p ∈ P : qn ≤P p for some n}

is a P-generic filter over M.

Is it possible to find strengthenings of this Fact applying to
larger collections of dense sets?



It turns out that it is consistent with ZFC to have the answer to
be Yes in some cases; for example if we restrict the class of
forcings in some suitable way and if, for example, “larger” is
interpreted as “ of size ℵ1”.

These assertions are known as forcing axioms. Their
consistency was traditionally shown by forcing “many times”
with forcing notions in the relevant class.

For forcing axioms for meeting ℵ1-many dense sets: Given a
class Γ of forcing notions, FA(Γ) is the following assertion:

Suppose P is a forcing notion in Γ. If D is a collection of
ℵ1-many dense subsets of P, then there is a filter G ⊆ P such
that G ∩ D ̸= ∅ for all D ∈ D.



The first forcing axiom (1970) was Martin’s Axiom at ω1, MAω1

(Solovay-Tennenbaum, Martin). MAω1 is

FA({P : P has the countable chain condition})

The strongest possible forcing axiom of this sort (i.e., applying
to the widest possible class of forcing notions), known as
Martin’s Maximum (MM), was isolated and proved consistent by
Foreman-Magidor-Shelah in 1984 assuming the consistency of
ZFC+ “There is a supercompact cardinal”. MM is

FA({P : forcing with P preserves all stationary subsets of ω1})



The existence of “partially generic” filters given by forcing
axioms ensures that many of the facts that would hold in the
corresponding generic extensions actually hold in V .

Thus, forcing axioms realize the following “maximality idea”:

Any statement (of the right syntactical form) that could possibly
hold (by forcing with a forcing notion in the relevant class) is
actually true.

Also, the wider the class Γ is, the more “democratic” FA(Γ) is (in
the sense of not discriminating between possible generic
extensions).



Given a set X , TC(X ) = X ∪
⋃

X ∪
⋃⋃

X ∪ . . . = X ∪ {a : a ∈
b ∈ X for some b} ∪ {a : a ∈ b ∈ c ∈ X for some b, c} ∪ . . ..
Let

H(ω2) = {X : |TC(X )| < ℵ2}

Thus, H(ω2) is the collection of all sets which are “small relative
to ℵ2”.

H(ω2) |= ZFC \{Power set Axiom}

Many natural statement, like CH and ¬CH, live in H(ω2).



Forcing axioms have many consequences at the level of H(ω2).
In particular, MM implies all of the following.
(1) If (L,≤) is a Dedekind complete dense linear order such

that |I| ≤ ℵ0 whenever I is a collection of pairwise disjoint
intervals of L, then (L,≤) is order-isomorphic to the real
line with the usual order.

(2) 2ℵ0 = 2ℵ1 = ℵ2.
(3) (Moore) There is a set of reals X and a Countryman line C

such that whenever (L,≤) is a linear order such that
ℵ0 < |L|, L contains some suborder order-isomorphic to
one of the following:

• X
• ω1
• ω∗

1 (the reverse of ω1)
• C
• C∗ (the reverse of C)



The consistency proof of MM shows in fact that the following
enhanced form of this axiom is consistent:

MM++: For every forcing notion P preserving stationary
subsets of ω1, every collection D of ℵ1-many dense subsets of
P and every collection {Ṡi : i < ω1} of P-names for stationary
subsets of ω1 there is a filter G ⊆ P such that

• G ∩ D ̸= ∅ for all D ∈ D and
• for each i , (Ṡi)G = {ν < ω1 : (∃p ∈ G)p ⊩P ν ∈ Ṡi} is

stationary.

MM++ in fact seemed to decide all questions about H(ω2)
modulo forcing.



The Axiom of Determinacy

Let A be a set of sequences (xi : i ≥ 0) of natural numbers.

Consider the following game GA between two players, I and II,
who alternate picking natural numbers xi :

I x0
II
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The Axiom of Determinacy

Let A be a set of sequences (xi : i ≥ 0) of natural numbers.

Consider the following game GA between two players, I and II,
who alternate picking natural numbers xi :

I x0 x2 . . .
II x1 x3 . . .

• player I wins this run of the game if (xi : i ≥ 0) ∈ A.
• player II wins if (xi : i ≥ 0) /∈ A.

We say that A is determined if either player I or player II has a
winning strategy in GA (i.e., ensuring a win for that player no
matter how the other player makes their moves).

The Axiom of Determinacy (AD) is the statement: “Every set A
of sequences of natural numbers is determined.”



AD contradicts the Axiom of Choice.

On the other hand, ZF+AD gives a remarkably rich theory. In
particular, it provides a very fine analysis of L(R). Also, ZF+AD
arguably gives the correct structure theory for the definable
sets of reals.

Theorem
(Martin-Steel, Woodin, mid 1980’s) Suppose there are infinitely
many Woodin cardinals with a measurable cardinal above them
all. Then AD holds in L(R).
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A simple application of AD (due to Martin):

A sequence (bn)n≥0 computes another sequence (an)n≥0
(written (an)n≥0 ≤Tu (bn)n≥0) iff there is a computer program
which outputs (an)n≥0 upon input of (bn)n≥0.

(an)n≥0 and (bn)n≥0 are Turing equivalent (written
(an)n≥0 ≡Tu (bn)n≥0) if

• (an)n≥0 ≤Tu (bn)n≥0 and
• (bn)n≥0 ≤Tu (an)n≥0.

C is a Turing cone if there is some (an)n≥0 such that

C = {(bn)n : (an)n ≤Tu (bn)n}

(an)n≥0 is the base of C.



Now, let A be a Turing invariant set of sequences (i.e., if
(an)n≥0 ∈ A and (bn)n≥0 ≡Tu (an)n≥0, then also (bn)n≥0 ∈ A).

• If player I has a winning strategy σ in GA and a⃗ = (an)n≥0
codes σ, then C ⊆ A, where C is the Turing cone with base
a⃗. (a⃗ ≤Tu b⃗ =⇒ b⃗ ≡Tu σ ∗ b⃗ ∈ A =⇒ b⃗ ∈ A.)

• If player II has a winning strategy τ in GA and a⃗ = (an)n≥0
codes τ , then C ∩ A = ∅, where C is the Turing cone with
base a⃗. (Argue as above.)

σ ∗ b⃗ is the play of GA resulting from player I moving according
to the strategy σ and player II playing the members of b⃗ in
increasing order. (And we would define b⃗ ∗ τ similarly if τ is a
strategy for player II.)

Hence, if AD holds, then every Turing invariant A is either large
(i.e., it contains a Turing cone) or small (i.e., it is disjoint from a
Turing cone).



Note: If C1 is the Turing cone with base (an)n≥0 and C2 is the
Turing cone with base (bn)n≥0, then C ⊆ C1 ∩ C2, where C is
the Turing cone with base (a0,b0,a1,b1,a2,b2, . . .).

This means that for any Turing invariant properties P1, . . . ,Pn of
sequences there are choices Qi ∈ {Pi ,¬Pi}, for i ≤ n, such that
the set of sequences satisfying Qi for all i is large (in particular
nonempty).

In fact this is true for any countable collection Pi (for i ∈ N) of
properties.



(∗)

In the 1990’s, Woodin defined and studied the following axiom
(∗).

Definition
(∗) is the conjunction of (1) and (2).
(1) AD holds in L(R). [This follows from large cardinals by

earlier theorem.]
(2) There is a Pmax-generic filter G over L(R) such that

L(P(ω1)) = L(R)[G].

Here, Pmax is a certain homogeneous forcing notion in L(R)
(i.e., with the property that L(R)[G1] and L(R)[G2] satisfy the
same sentences whenever G1 and G2 are Pmax-generic filters
over L(R)).



Assuming the theory of L(R) is frozen under forcing (which
follows from large cardinals), it follows that the L(P(ω1))’s of
any two models of (∗) obtained by forcing satisfy exactly the
same sentences.

Also, (∗) implies the following very strong maximality principle
(relative to all generic extensions):

Theorem
(Π2 maximality) (Woodin) Suppose (∗) holds and there are
arbitrarily large Woodin cardinals. For every Π2 sentence φ
(= (∀x)(∃y)ψ(x , y), where all quantifiers in ψ(x , y) are
restricted), the following are then equivalent.
(1) H(ω2) |= φ

(2) In some forcing extension it holds that H(ω2) |= φ.



It turns out that Π2 maximality in the above sense, when
conditioned to CH, is false:

Theorem
(Asperó–Larson–Moore) There are Π2 sentences σ1 and σ2
such that:
(1) There is a proper poset forcing H(ω2) |= σ1 ∧ CH.
(2) If there is an inaccessible limit of measurable cardinals,

then there is a proper poset forcing H(ω2) |= σ2 ∧ CH.
(3) H(ω2) |= σ1 ∧ σ2 implies 2ℵ0 = 2ℵ1 .



In addition, (∗) implies that L(P(ω1)) is obtained from L(R) by
adding to it any subset of ω1 not in L(R). Given that AD makes
L(R) into a ‘canonical’ subuniverse, this means that (∗) makes
L(P(ω1)) into a larger ‘canonical’ subuniverse.



The above facts rendered (∗) a very appealing axiom.

However, in order for (∗) to be truly natural, it would have to be
compatible with all consistent LC axioms.

The main question was therefore:

Question: Is (∗) compatible with all consistent LC axioms? Is
(∗) even forcible over V (assuming enough large cardinals)?



MM++ =⇒ (∗)

In 2018, Ralf Schindler and I answered this question.

Theorem
(Asperó-Schindler) MM++ implies (∗).

In particular, if there is a supercompact cardinal κ, then there is
a forcing notion of cardinality κ forcing MM++, and therefore
forcing (∗). All large cardinals there might be above κ are
preserved in the generic extension.

This theorem renders (∗) a truly natural axiom. And it makes
the observed completeness of MM++ for the theory of L(P(ω1))
under forcing into a mathematical fact, thus rendering MM++

even more natural.

And both (∗) and MM++ were known to imply 2ℵ0 = ℵ2.



There are many ways to see this. For example:

1. Already MAω1 implies 2ℵ0 = 2ℵ1 : Given a sequence
(aξ : ξ < ω1) of pairwise almost disjoint subsets of ω and
A ⊆ ω1 there is x ⊆ ω such that for each ξ < ω1, ξ ∈ A iff x ∩ aξ

is infinite.

2. Both MM and (∗) imply ψAC : For every stationary S ⊆ ω1 and
every stationary and co-stationary T ⊆ ω1 there is some α < ω2
and some ⊆-continuous ⊆-increasing chain (Xν : ν < ω1) of
countable subsets of α such that

• ⋃
ν<ω1

Xν = α and
• for each ν, Xν ∩ ω1 ∈ S iff ot(Xν) ∈ T .

3. ψAC implies 2ℵ0 = 2ℵ1 : Let (Sξ : ξ < ω1) be a partition of ω1
into stationary sets and T a stationary and co-stationary subset
of ω1. Given A ⊆ ω1, and application of ψAC to S :=

⋃
ξ∈A Sξ

and T yields αA < ω2 coding A. But then the map sending
A ⊆ ω1 to αA is injective.



Σ2 chaos

Σ2 chaos: Suppose σ (= (∃α ∈ Ord)Vα |= ψ) is a Σ2 sentence
and for every β ∈ Ord there is a forcing notion leaving Vβ

unchanged and forcing σ. Then σ is true.

So, Σ2 chaos implies there is a cardinal κ such that 2κ = κ+

and one such that 2κ = κ+127 and one such that there are
κ-Suslin trees and one such that there are no κ-Suslin trees,
etc.

Σ2 is thus a natural forcing maximality principle.

Woodin asked if it is consistent: Forcing any finite number of
instances of the principle is trivial by definition. But it is not
obvious if one can run the obvious forcing iteration in infinite
length without, for example, adding new sets of integers.



Theorem
(Goldberg-Kaplan) If there is a Σ2-correct strongly compact
cardinal, then Σ2 chaos can be forced. If there is a proper class
of Σ2-correct strongly compact cardinals, then boldface Σ2
chaos can be forced.

A straightforward elaboration of their construction yields:

Theorem
Suppose there is a supercompact cardinal and a proper class
of Σ2-correct strongly compact cardinals. Then the following
can be forced simultaneously.
(1) MM++

(2) Σ2 chaos.



High forcing axioms
Given the success of classical forcings (for meeting ℵ1-many
dense sets) culminating in MM++, it is natural to enquire
whether a comparable theory can be developed for higher
forcing axioms (i.e., for meeting more than ℵ1-many dense
sets).

The answer is No. For example:
• Π2 maximality for H(ω3) fails: CH and ¬CH are both

expressible over H(ω3) by Π2 sentences, and both can be
forced.

• There are serious problems with building models of strong
high forcing axioms. In fact, many forcing axiom
candidates for meeting families of ℵ2-many dense, even for
fairly modest classes Γ of forcing notions, are just false.

The conclusion is that the success of MM++ cannot be
replicated, at the level of high forcing axioms, to yield a natural
axiom implying for example 2ℵ0 = ℵ3.
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This completes the argument for 2ℵ0 = ℵ2.



Still, there are interesting open questions in the higher forcing
axioms camp.

Question: Do reasonable LC axioms imply that there is no
partition P ∈ L(R) of R into ℵ3-many pieces?

Question: Do reasonable LC axioms imply that one can force
some Σ2 statement A which is complete for the theory of H(ω3)
modulo forcing preserving A?

Question: Is there any Π2 sentence σ such that the following
holds?
(1) ZFC proves that if H(ω3) |= σ, then 2ℵ0 = ℵ3.
(2) For some reasonable LC axiom A, ZFC+ A proves that it is

forcible that H(ω3) |= σ.



A competing view

Woodin has championed an alternative view. This is the
content of the Ultimate-L programme.

One of its main goals is to construct an L-like subuniverse,
called Ultimate-L, accommodating all possible LC axioms.

The axiom V = Ultimate-L would provide a complete picture
modulo forcing for the entire universe. And it implies 2ℵ0 = ℵ1.

On the down side, V = Ultimate-L is a difficult axiom to work
with. And it is at present not at all clear to what extent the
programme can be implemented.

At any rate, the implications and ramifications of the
programme are extremely deep.



Back to MM++: A challenge

By our theorem, MM++ implies that L(P(ω1)) is a
homogeneous extension of the AD-model L(R) and hence a
canonical model. And by forcing with homogeneous forcing
notions over stronger AD-models it is possible to obtain models
of MM++(2ℵ0) and even stronger fragments of MM++.

A major challenge nowadays is therefore:

Challenge:
(1) Obtain a model of full MM++, or of stronger fragments of

MM++, by (homogeneous) forcing over strong models of
the Axiom of Determinacy.

(2) Obtain a model of MM++ in which (∗)++ holds. (∗)++ says
that there is Γ ⊆ P(R) and a Pmax-generic filter G over
L(R, Γ) such that P(R) ⊆ L(R, Γ)[G].
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