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The boundary between convergence and divergence

Comparison with Bertrand’s series (a.k.a. Abel’s series)
Can the convergence/divergence of all series with positive terms be
settled by comparison with a real multiple of a series of the form

∑
n

1

n log n log logn · · · logm−1 n(logm n)p
(m ∈ N, p ∈ R)

where logm = log log · · · log (m times)?

This series

{
converges for p > 1,
diverges for p ⩽ 1.

(Analogously one can form “Bertrand’s integrals”.)

Paul du Bois-Reymond showed (1873) that the answer is “no”, in the
process inventing the “diagonal argument” a bit earlier than Cantor.
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The boundary between convergence and divergence

He introduced the following useful notations, for (eventually
non-vanishing) functions f, φ : (a,+∞) → R (a ∈ R):

f ≺ φ :⇐⇒ lim
t→+∞

f(t)

φ(t)
= 0,

f ≍ φ :⇐⇒ lim
t→+∞

f(t)

φ(t)
∈ R \ {0}.

So for example, with real constants c, p,

log x ≺ x ≺ ex ≺ ee
x
, x ≺ xp (p > 1), cxp ≍ xp (c ̸= 0),

but

f ̸≺ φ, f ̸≍ φ, φ ̸≺ f for f = x(2 + sinx), φ = x.
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The boundary between convergence and divergence

Theorem (du Bois-Reymond)
Let φi : [a,+∞) → R⩾ be continuous and strictly increasing and

1 ≺ · · · ≺ φi+1 ≺ φi ≺ · · · ≺ φ1 ≺ φ0.

There is a continuous f : [a,+∞) → R⩾ with 1 ≺ f ≺ φi for each i.

This implies that there is a series whose convergence cannot be
established by comparison with a Bertrand series: put

φi := x log x log log x · · · logi−1 x(logi x)
p

and take f as in the theorem. (Note: can use any p > 1 that we like.)

If the series
∑

n 1/f(n) was convergent, then this could not be
established by comparison with a Bertrand series:

If there were C > 0, i, and p > 1 such that 1/f(n) ⩽ C/φi(n)

eventually, then φi(n)/f(n) ⩽ C eventually .
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The boundary between convergence and divergence

To prove the theorem it is convenient to replace the φi by their
compositional inverses fi and show a “dual” version:

Let fi : [a,+∞) → R⩾ be continuous such that fi ≺ fi+1 for each i.
Then there is a continuous f : [a,+∞) → R⩾ with fi ≺ f for each i.
If each fi is strictly increasing, then we can also choose f to be so.

Set Mn
i := max

a⩽t⩽a+n
fi(t), so 0 ⩽ M0

i ⩽ M1
i ⩽ M2

i ⩽ · · · .

Take εi > 0 with
∑

i εiM
i
i < ∞. Then for every n:

∑
i

εiM
n
i =

n∑
i=0

εiM
n
i +

∑
i>n

εiM
n
i ⩽

n∑
i=0

εiM
n
i +

∑
i>n

εiM
i
i < ∞.

Thus
∑

i εifi converges uniformly on each set [a, a+ n], defining a
continuous function on [a,∞), with

∑
i εifi ⩾ εn+1fn+1 ≻ fn.
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The boundary between convergence and divergence

Some refinements

1 If all fi are of class C∞, then we can choose the εi so that in
addition f =

∑
i εifi is also C∞.

2 If we are also given gj : [a,+∞) → R> with fi ≺ gj+1 ≺ gj for
all i, j, then we can in addition choose the εi so that

f0 ≺ · · · ≺ fi ≺ · · · ≺ f ≺ · · · ≺ gj ≺ · · · ≺ g0.

(Hadamard, 1894)

One may wonder about further strengthenings, e.g.:
• If all functions fi ≻ 1 are C∞ as in 1 , is there a C∞-function f
satisfying f (n)

i ≺ f (n) for all i, n?
• There is a real-analytic f with fi ≺ f for all i. (Poincaré, 1892)
In 2 , is there an analytic f such that fi ≺ f ≺ gj for all i, j?
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Enter Hardy fields

In this talk we will see that a satisfactory answer can be given when
we assume that the fi, gj lie in a common Hardy field.

Hardy fields are the natural domain of asymptotic analysis,
where all rules hold, without qualifying conditions.

(Maxwell Rosenlicht)

They may be viewed as one-dimensional relatives of o-minimal
structures and have found applications in various parts of
mathematics, such as dynamical systems and ergodic theory.

In the rest of this talk I will 1 introduce Hardy fields, 2 state our
main results, 3 explain some various unexpected consequences, and
4 pose a few questions.

All this is joint work with (one or both of) Lou van den Dries and Joris
van der Hoeven.
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Hardy fields

For r = 0, 1, 2, . . . let

Cr :=
{ ring of germs at +∞ of r-times continuously differen-
tiable functions (a,+∞) → R (a ∈ R),

and C<∞ :=
⋂
r

Cr, a differential ring
(with differential subrings C∞ and Cω).

Definition (Bourbaki)
A Hardy field is a differential subfield of C<∞.

Analogously one defines C∞-Hardy fields or Cω-Hardy fields:{
Cω-Hardy fields

}
⊆

{
C∞-Hardy fields

}
⊆

{
Hardy fields

}
All these inclusions are proper, but this is not obvious.
Most Hardy fields that occur “in nature” are analytic. Easy examples:

Q ⊆ R ⊆ R(x) ⊆ R(x, ex) ⊆ R(log x, x, ex)
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Hardy fields

LetH be a Hardy field and f ∈ H . Then

f ̸= 0 =⇒ 1

f
∈ H =⇒

{
f(t) > 0 eventually, or

f(t) < 0 eventually.

Consequently:
• H carries an ordering makingH an ordered field:

f > 0 :⇐⇒ f(t) > 0 eventually;

• f is eventually monotonic, and

lim
t→+∞

f(t) ∈ R ∪ {±∞} exists.
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Hardy fields

Let f, g ∈ H . Unlike for arbitrary germs, one of f ≺ g, f ≍ g, g ≺ f
always holds.

We define

f ≼ g :⇐⇒ f = O(g) ⇐⇒ |f | ⩽ c|g| for some c ∈ R>

⇐⇒ lim
t→+∞

f(t)

g(t)
∈ R ⇐⇒ f ≺ g or f ≍ g.

We have a valuation ringO := {f ∈ H : f ≼ 1} (= convex hull ofQ
inH), with maximal ideal O := {f ∈ H : f ≺ 1} of “infinitesimals”.

Example (for what Rosenlicht meant)
Suppose 0 ̸= f, g ̸≍ 1 are in a Hardy field. Then (l’Hôpital’s Rule):

f ≼ g ⇐⇒ f ′ ≼ g′



Hardy fields

Let f, g ∈ H . Unlike for arbitrary germs, one of f ≺ g, f ≍ g, g ≺ f
always holds. We define

f ≼ g :⇐⇒ f = O(g) ⇐⇒ |f | ⩽ c|g| for some c ∈ R>

⇐⇒ lim
t→+∞

f(t)

g(t)
∈ R ⇐⇒ f ≺ g or f ≍ g.

We have a valuation ringO := {f ∈ H : f ≼ 1} (= convex hull ofQ
inH), with maximal ideal O := {f ∈ H : f ≺ 1} of “infinitesimals”.

Example (for what Rosenlicht meant)
Suppose 0 ̸= f, g ̸≍ 1 are in a Hardy field. Then (l’Hôpital’s Rule):

f ≼ g ⇐⇒ f ′ ≼ g′



Hardy fields

Let f, g ∈ H . Unlike for arbitrary germs, one of f ≺ g, f ≍ g, g ≺ f
always holds. We define

f ≼ g :⇐⇒ f = O(g) ⇐⇒ |f | ⩽ c|g| for some c ∈ R>

⇐⇒ lim
t→+∞

f(t)

g(t)
∈ R ⇐⇒ f ≺ g or f ≍ g.

We have a valuation ringO := {f ∈ H : f ≼ 1} (= convex hull ofQ
inH), with maximal ideal O := {f ∈ H : f ≺ 1} of “infinitesimals”.

Example (for what Rosenlicht meant)
Suppose 0 ̸= f, g ̸≍ 1 are in a Hardy field. Then (l’Hôpital’s Rule):

f ≼ g ⇐⇒ f ′ ≼ g′



Hardy fields

Let f, g ∈ H . Unlike for arbitrary germs, one of f ≺ g, f ≍ g, g ≺ f
always holds. We define

f ≼ g :⇐⇒ f = O(g) ⇐⇒ |f | ⩽ c|g| for some c ∈ R>

⇐⇒ lim
t→+∞

f(t)

g(t)
∈ R ⇐⇒ f ≺ g or f ≍ g.

We have a valuation ringO := {f ∈ H : f ≼ 1} (= convex hull ofQ
inH), with maximal ideal O := {f ∈ H : f ≺ 1} of “infinitesimals”.

Example (for what Rosenlicht meant)
Suppose 0 ̸= f, g ̸≍ 1 are in a Hardy field. Then (l’Hôpital’s Rule):

f ≼ g ⇐⇒ f ′ ≼ g′



Examples of functions in Hardy fields

erf(x) =
2√
π

∫ x

0
e−t2 dt

Ai, Bi are R-linearly indepen-
dent solutions to y′′ − xy = 0

Γ(x) =

∫ ∞

0
tx−1 e−t dt



Examples of functions in Hardy fields

More examples (of Hardy fields)

• Hardy’s field of logarithmic-exponential functions: constructed
from constants and x by+,×,÷, exponentiation, logarithm,
and composition; e.g.

x
√
2, ee

x +x2
, sinhx = 1

2(e
x− e−x), log

(
x+ 1

x− 1

)
• every o-minimal expansion of the ordered field of reals gives rise
to a Hardy field; e.g. for the ordered field R itself one obtains

H =
{
y ∈ C : P (y) = 0 for some nonzero P ∈ R(x)[Y ]

}
.
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New Hardy fields from old ones

Let P ∈ H{Y } = H[Y, Y ′, Y ′′, . . . ], P /∈ H .

When is there some y in a Hardy field extension ofH solving
the equation P (y) = 0?

Answers in basic cases were given over the decades by Hausdorff,
Hardy, Bourbaki, Rosenlicht, Boshernitzan . . . For example:

Every solution y (in C1) of an equation

y′ + fy = g (f, g ∈ H)

is contained in some Hardy field extension ofH .

HenceH(R) andH(x) are Hardy fields, and for h ∈ H , so are

H(
∫
h), H(eh), H(log h) when h > 0.

(=⇒ Hardy’s field of LE-functions is indeed a Hardy field!)
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New Hardy fields from old ones

We now actually have a fairly comprehensive understanding of
general algebraic differential equations P (y) = 0 over Hardy fields.

Weak differential closedness

1 There are y, z in a Hardy field⊇ H with P (y + zi) = 0.
2 If P has odd degree, then there is some y in a Hardy field

extension ofH with P (y) = 0.

Thus for example, there is some y satisfying

(y′′)5 +
√
2 ex (y′′)4y′′′ − x log x y2y′′ + yy′ − Γ = 0

in a Hardy field containing R, ex, log x, Γ.
(Here, 2 is actually a special case of a more general Intermediate
Value Property for differential polynomials over Hardy fields.)
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New Hardy fields from old ones

By Zorn every Hardy field is contained in one which is maximal (with
respect to inclusion).

Each maximal Hardy field contains R, is real
closed, and closed under integration, exponentiation, and logarithm.
Key to understanding algebraic DEs over Hardy fields:

to show that eachmaximal Hardy field is elementarily equiv-
alent to the ordered valued differential fieldT of transseries.

These are formal series (often divergent), involving exponential and
logarithmic terms, which can be used to model the asymptotic
behavior of germs in Hardy fields:

erf ∼ 1− e−x2

√
π

(
x−1 − 1

2
x−3 +

3

4
x−5 ∓ · · ·

)

Ai ∼ e−ξ

2
√
πx1/4

(
1− 5

72
ξ−1 +

385

10368
ξ−2 ∓ . . .

)
where ξ =

2

3
x3/2

log Γ(x) ∼
(
x− 1

2

)
log x− x+

1

2
log(2π) +

1

12
x−1 − 1

360
x−3 ± · · ·
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Main theorems

Theorem (A., van den Dries, van der Hoeven)
LetH be a Hardy field and A < B be countable subsets ofH . Then
there is some f in a Hardy field extension ofH such that

A < f < B.

In other words, maximal Hardy fields have Hausdorff’s η1 property.

Only recently we’ve been able to tackle the analytic/smooth cases:

Theorem (A., van den Dries)
The theorem above also holds with “C∞-Hardy field” or “Cω-Hardy
field” in place of “Hardy field”.
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Main theorems

Some special cases
LetM be a maximal analytic Hardy field.

Then
• M contains a transexponential germ f , that is,

x < ex < ee
x
< ee

ex

< · · · < f.

(Shown by Boshernitzan in 1986 using a theorem of H. Kneser,
1940s. With “smooth” instead of “analytic” due to Sjödin, 1970.)

• M also contains a translogarithmic germ g, that is,
R < g < · · · < log log log x < log log x < log x < x.

(Answering a question of Boshernitzan.)
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Some applications

Using also our earlier results on differentially algebraic Hardy field
extensions, we obtain consequences of a model-theoretic nature.

Corollary A
LetM ,N be maximal Hardy fields. Then, as ordered differential
fields: M ≡bf N , henceM ≡∞ω N , and assuming CH,M ∼= N .

(Similarly ifN is a maximal smooth Hardy field or a maximal analytic
Hardy field.)

Corollary B
LetM be a maximal analytic Hardy field andN be a maximal Hardy
field withM ⊆ N . ThenM ≼∞ω N . (Likewise ifM is a maximal
smooth Hardy field.)
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Some applications

As mentioned earlier, analytic Hardy fields are of particular
importance in practice.

They are a surprisingly rich class: they
contain many ordered differential fields of a “countable” nature.

Corollary C
LetM be a maximal analytic Hardy field.

1 Every Hardy field which is of countable transcendence degree
over its constant field embeds intoM .

2 There is an embedding T → M .

Here 2 is a Hardy field version of Besicovitch’s analytic strengthening
of Borel’s theorem on C∞-functions with prescribed Taylor series.

The countability property relevant for 2 : the ordered set T is short,
i.e., every well-ordered or reverse well-ordered subset is countable.
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Gaps in maximal Hardy fields

A gap in a (partially) ordered set S is a pairA < B of linearly ordered
subsets of S such thatA < f < B for no f ∈ S, and the character of
such a gap in S is the pair

(
cf(A), ci(B)

)
.

LetM be a maximal (or maximal smooth or maximal analytic) Hardy
field. Then by our main results,

κ := ci(M>R), λ := cf(M) > ω.

Corollary D
The characters of gaps inM are

(ω, κ), (κ, ω), (κ, κ), (0, λ), (λ, 0), (1, λ), (λ, 1),

and ifM is not complete, then also (λ, λ).
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Gaps in maximal Hardy fields

Hence under CH, the characters of gaps inM are

(ω, ω1), (ω1, ω), (ω1, ω1), (0, ω1), (ω1, 0), (1, ω1), (ω1, 1).

Hausdorff showed (not assuming CH) that there is an (ω1, ω1)-gap
in (C, <e), where

f <e g :⇔ f(t) < g(t), eventually.

Can check: also in (C∞, <e) and in (Cω, <e).



Gaps in maximal Hardy fields

Hence under CH, the characters of gaps inM are

(ω, ω1), (ω1, ω), (ω1, ω1), (0, ω1), (ω1, 0), (1, ω1), (ω1, 1).

Hausdorff showed (not assuming CH) that there is an (ω1, ω1)-gap
in (C, <e), where

f <e g :⇔ f(t) < g(t), eventually.

Can check: also in (C∞, <e) and in (Cω, <e).



Gaps in maximal Hardy fields

Hence under CH, the characters of gaps inM are

(ω, ω1), (ω1, ω), (ω1, ω1), (0, ω1), (ω1, 0), (1, ω1), (ω1, 1).

Hausdorff showed (not assuming CH) that there is an (ω1, ω1)-gap
in (C, <e), where

f <e g :⇔ f(t) < g(t), eventually.

Can check: also in (C∞, <e) and in (Cω, <e).



A question

Question
Can a maximal analytic Hardy field ever be a maximal Hardy field?

We don’t know the answer, even under CH.

Proposition
Every maximal analytic Hardy field is dense in each of its Hardy field
extensions.

Remark: ifM is a maximal analytic Hardy field andN ̸= M is a
maximal Hardy field extension ofM , then (N,M) ≡ (T,Tc),
where Tc = completion of T.

(Using part 2 of Corollary C one can obtain a pair (N1,M1) of
analytic Hardy fields such that (N1,M1) ∼= (T,Tc).)
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The proof of the main results

Our departure point is the following criterion. LetM be a maximal
Hardy field (soM ⊇ R), considered as a valued field with respect to
the valuation with the valuation ringO = convex hull ofQ inM .

Lemma (Alling)

M is η1 ⇐⇒


I every pc-sequence (fn) inM

pseudoconverges inM ; and
II the value group ofM is η1.

Here I can be handled using the results from our earlier work and
various partition of unity arguments.

Part II includes Hardy field versions of du Bois-Reymond-Hadamard’s
theorem from earlier:

given f0 ≺ f1 ≺ · · · inM> there is an f ∈ M with fi ≺ f for all i.
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The proof of the main results

To tackle II we separate three cases.

Let A < B be a countable gap inM , where A,B ⊆ M>R.
1 The caseB = ∅: obtain an f ∈ M with A < f .
2 A < B is wide: A,B ̸= ∅ and A, expA are cofinal.
3 A,B ̸= ∅, and A < B is not wide.

The C∞-case of 1 was done by Sjödin; this adapts to general Hardy
fields, and can also be extended to 2 .
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The proof of the main results

Filling gaps as in 3 essentially corresponds to constructing Hardy
field extensionsH⟨y⟩ of a given Hardy fieldH ⊇ R (assumed to real
closed and closed under exponentiation and integration) where the
corresponding value group extension has infinite rational rank.

Various results about the asymptotic couple ofH⟨y⟩— that is, its
value group equipped with the map vf 7→ v(f ′/f) (0 ̸= f ̸≍ 1) —
entail that such y has to have a specific form:

y = f0y0 = f0 e

∫
f1y1

= f0 e

∫
f1 e

∫
f2y2

= · · · = f0 e

∫
f1 e

∫
f2 e

∫ . .
.

where fi ∈ H> and yi ≻ 1/fi (among other requirements).

To construct such y analytically is a bit delicate (and also involves a
diagonalization argument).
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The proof of the main results

So far we have focussed on “regular” Hardy fields. For the smooth
and analytic case we use a powerful tool:

Theorem (Whitney)
Let f : [a,+∞) → R be C∞ and ε : [a,+∞) → R be continuous
with ε > 0. Then there exists an analytic g : [a,+∞) → R such that

|(f − g)(n)(t)| < ε(t) for all t ⩾ a and n ⩽ 1/ε(t).

This entails a useful version for germs:

Corollary
For any germs f ∈ C<∞ and ε ∈ C with ε >e 0, there exists a g ∈ Cω

such that |(f − g)(n)| <e ε for all n.

This is the key approximation result that allows us to replace a germ
in a Hardy field extension filling a given countable gap by an analytic
germ with the same property.
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Further work

At the moment we are developing a theory of analytic Hardy fields
which includes information about the domain of convergence of the
holomorphic extension. (Some early steps already done; related
work by Tobias Kaiser, Patrick Speissegger, and Alex Wilkie, on the
Hardy field of the o-minimal structure Ran,exp.)



Further work

We finish with some open questions of a set-theoretic flavor.

Below “possible” = “relatively consistent with ZFC”.

1. Is it possible that there are non-isomorphic maximal Hardy fields?

2. Is it possible that there is a maximal Hardy field M which is com-
plete, as an ordered field? (In this caseM ̸∼= No(ω1).)

3. Is it possible that cf(M) ̸= cf(N) for some maximal Hardy
fieldsM ,N? Similarly for ci(M>R) and ci(N>R).
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Thank you!


