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Graphs

• We consider finite, simple, undirected graphs G = (V (G),E(G)).

• Degree of a vertex := number of its neighbours.

• Degree of a graph G := max degree of its vertices.

• Class C of graphs has bounded degree, if there is a constant
d ∈ N such that all graphs in C have degree ≤ d .

• We use n to denote the number of vertices of G.

• All graph classes are closed under isomorphism, and a graph
class is sometimes called a property.

Remark
All techniques and results can be generalised to relational structures.
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Hard problems on graphs
Many classical algorithmic problems are NP-hard in general.
However, they need to be solved in practice. 1

Example

COL

Input: Graph G, k ∈ N
Question: Does G have a k -colouring?

[1] E. g. in register allocation in compilers: Project by former PhD student P. Krause, Compiler

Construction 2013, Discrete Applied Math. 2014
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Complexity of the problems

Theorem (Karp 1972)
COL is NP-complete.

Observation
On trees, COL and many other problems can be solved in linear time.

Goal
Find large classes of input graphs, on which many problems can be
solved efficiently!
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Treewidth

Intuition: Treewidth measures how close a graph G is to being a tree.

G has treewidth ≤ t , if G can be pieced together from subgraphs of
size ≤ t in a tree-like fashion:

[Larisch, Salfelder, Implementation https://www.algok.uni-bamberg.de/freetdi.html,

1. Prize, PACE 2017]
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Logics

FO := First-order logic

MSO := Monadic second-order logic =
first-order logic + quantification over subsets of the universe

CMSO = MSO + modulo counting ‘∃k mod mx φ(x)’

Example
Graph properties expressible in CMSO

• (non-)existence of: k -clique, k -vertex cover, k -independent set,
k -dominating set, a fixed subgraph H

• planarity, bounded genus, excluded minor
• connectivity, transitive closure,
• colorability, hamiltonicity,
• even number of vertices, perfect, even-hole-freeness

On relational databases: relational core of SQL
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MSO: example

φ := ∃X1∃X2∃X3∀y∀z
( ∨

1≤i≤3

(y ∈ Xi) ∧
∧

1≤i<j≤3

¬(y ∈ Xi ∧ y ∈ Xj)∧∧
1≤i≤3

(Eyz → ¬(y ∈ Xi ∧ z ∈ Xi)
)
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Algorithmic Meta-Theorems

C: Class of graphs
φ: Formula of some logic

φ-MODELCHECK(C)

Input: G ∈ C.
Question: Does G satisfy φ?

Applications:
• Model checking
• Graph algorithms
• Verification
• Database query evaluation
• Constraint satisfaction
• ...
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Algorithmic Meta-Theorems
C: Class of graphs
φ: Formula of some logic
φ-MODELCHECK(C)

Input: G ∈ C.
Question: Does G satisfy φ?

Theorem (Seese 1996)
C = bounded degree, φ ∈ FO: in time O(n).

Theorem (Courcelle 1990)
C = bounded tree-width, φ ∈ CMSO: in time O(n).

Theorem (Grohe, Kreutzer, Siebertz, 2014)
C = nowhere dense, φ ∈ FO: f. a. ε > 0 in time O(n1+ε).

Theorem (Bonnet, Kim, Thomassé, Watrigant, 2020)
C = bounded twin-width, φ ∈ FO:
in time O(n), provided a witness comes with input.
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C = bounded twin-width, φ ∈ FO:
in time O(n), provided a witness comes with input.
ISOLDE ADLER LOGIC AND PROPERTY TESTING 12/42



Algorithmic Meta-Theorems
C: Class of graphs
φ: Formula of some logic
φ-MODELCHECK(C)

Input: G ∈ C.
Question: Does G satisfy φ?

Theorem (Seese 1996)
C = bounded degree, φ ∈ FO: in time O(n).

Theorem (Courcelle 1990)
C = bounded tree-width, φ ∈ CMSO: in time O(n).

Theorem (Grohe, Kreutzer, Siebertz, 2014)
C = nowhere dense, φ ∈ FO: f. a. ε > 0 in time O(n1+ε).

Theorem (Bonnet, Kim, Thomassé, Watrigant, 2020)
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Can we be faster?

• Restrict the input class
• Restrict the logic
• Approximation
• Randomisation
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Property testing: motivation
‘Efficiency’ when the data set is huge:
Even reading the whole input just once can be too expensive.

Data visualization of Facebook relationships

Author: Kencf0618, License: Creative Commons Attribution-Share Alike 3.0 Unported

Hence: Algorithms with local access to the input.
ISOLDE ADLER LOGIC AND PROPERTY TESTING 15/42



Algorithms with oracle access

From now on: All graphs have degree ≤ d .

• Input: the number n of vertices of G, and

• Oracle access to G
- Query: v , for v ∈ V (G)

- Answer: the 1-neighbourhood of vertex v

• The running time = running time w.r.t. n.

• The query complexity = number of oracle queries w.r.t. n.
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Decision Problems
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Decision Problems

Property P

x YES x NO

ISOLDE ADLER LOGIC AND PROPERTY TESTING 17/42



Property Testing = relaxation of decision problems

Property P

x Yes x No

x Yes/No

ε

On inputs that have the property: YES with probability at least 2/3.

On ε-far inputs: NO with probability at least 2/3.

Aim: extremely efficient.
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Property Testing
• First introduced in the context of programme checking

[R. Rubinfeld and M. Sudan. Robust characterizations of polynomials with
applications to program testing. SIAM J. Computing, 1996]

• Property testing of dense graphs
[O. Goldreich, O. Goldwasser and D. Ron. Property Testing and its Connection to
Learning and Approximation. Journal of the ACM, 1998]

[N. Alon, E. Fischer, I. Newman, A. Shapira. A combinatorial characterization of
the testable graph properties: It’s all about regularity. SIAM J. Computing, 2009]

• Property testing of regular languages
[N. Alon, M. Krivelevich, I. Newman, and M. Szegedy. Regular languages are
testable with a constant number of queries. SIAM J. Computing, 2000.]

• Property testing of sparse graphs
[O. Goldreich and D. Ron. Property Testing in Bounded Degree Graphs.
Algorithmica, 2002]

[Ito, Khoury, Newman. On the characterization of 1-sided error strongly testable
graph properties for bounded-degree graphs. J. Comput. Complex. 2020]

[O. Goldreich and L. Tauber. On Testing Isomorphism to a Fixed Graph in the
Bounded-Degree Graph Model. ECCC, 2023]
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Property Testing

• Constraint Satisfaction and Satisfiability
[H. Chen, M. Valeriote, Y. Yoshida. Testing Assignments to Constraint
Satisfaction Problems. FOCS 2016]
[Y. Yoshida. Optimal constant-time approximation algorithms and (unconditional)
inapproximability results for every bounded-degree CSP.]

• Machine Learning
[K. Hayashi, Y. Yoshida. Fitting Low-Rank Tensors in Constant Time. NIPS 2017]
[M. Grohe, M. Ritzert. Learning first-order definable concepts over structures of
small degree. LICS 2017]

• Databases
[H. Chen, Y. Yoshida. Testability of Homomorphism Inadmissibility: Property
Testing Meets Database Theory. PODS 2019]

• Textbooks
[Oded Goldreich. Introduction to Property Testing - Problems and Techniques.
Cambridge University Press 2017]
[Arnab Bhattacharyya, Yuichi Yoshida. Property Testing - Problems and
Techniques. Springer 2022]
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Distance (d-bounded degree model)

• Let ε ∈ [0,1].
Graphs G and H, both on n vertices, are ε-close, if we can make
them isomorphic by modifying up to εdn edges of G or H.
Edge modification = insertion/deletion

• If G,H are not ε-close, then they are ε-far.

• A graph G is ε-close to a class C if G is ε-close to some H ∈ C.
Otherwise, G is ε-far from C.
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Testability

Let P be a property.
An ε-tester for P is a probabilistic algorithm that, given oracle access
to G and given n := |V (G)| as input, does the following:

1. If G ∈ P, then the tester accepts with probability ≥ 2
3 ,

2. if G is ε-far from P, then the tester rejects with probability ≥ 2
3 .

P is uniformly testable, if for each ε there is an ε-tester for P with
constant query complexity.

P is (non-uniformly) testable, if for each ε and each n, there is a
tester for Pn := {G ∈ P : |V (G)| = n} with constant query complexity.

Remark
‘Uniformly testable’ is non-standard.
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Example: induced subgraph-freeness

Fix H.
P := all graphs that omit H as induced subgraph.

Theorem
P is testable with constant query complexity and running time.

Proof: Assume H is connected and |V (H)| > 1.
Let r := diameter of H.
Given ε and oracle access to input G on n vertices, do:

1. Uniformly and independently sample α := log1−ε 1/3 vertices.
2. Explore the r -neighbourhood of each sampled vertex.
3. If an r -neighbourhood contains H as induced subgraph, reject;

otherwise accept.
Running time: constant (r -neighbourhoods have constant size).
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Induced subgraph-freeness: correctness

1. If G ∈ P then the algorithm always accepts G.

2. If G is ε-far from P:
• Let X ⊆ V (G) be the set of all vertices that belong to an induced

copy of H in G.
• Claim: |X | > εn.

Otherwise, remove all edges incident to X . Then the resulting
graph G′ contains no induced copy of H, so G′ ∈ P. But we
removed ≤ εdn edges, so G is ε-close to P, a contradiction.

• Hence the probability that out of the α elements sampled, no
element of X appears, is less than (1 − ε)α = 1/3.

• Hence with probability at least 2/3 the tester samples a vertex in
X and thus finds an induced copy of H.

• The tester rejects with probability at least 2/3.

The case that H is not connected requires a bit more work.
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Examples

On bounded degree graphs:

Uniformly testable with constant query complexity and running time:
• k -(edge-)connectivity
• being Eulerian
• subgraph-freeness
• induced subgraph-freeness

Not testable with constant query complexity:
• Bipartiteness, colourability
• Expander graphs
• Hamiltonicity

[Goldreich and Ron 2002; Yoshida and Ito 2010 ]
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Previous result: PT on hyperfinite graphs, I

Theorem (Newman and Sohler, 2013 (Benjamini, Shramm, Shapira, Elek))
Let C be a hyperfinite class of graphs of bounded degree.

Every property P ⊆ C is non-uniformly testable on C with constant
query complexity.

Let 0 ≤ ε ≤ 1 and k ∈ N.
• G is (ε, k)-hyperfinite if one can remove εn edges from G and

obtain a graph whose connected components have size ≤ k .
• Fix a function ρ : R+ → N.

G is ρ-hyperfinite if G is (ε, ρ(ε))-hyperfinite for every ε > 0.
• A graph class C is hyperfinite if there is a function ρ such that

every G ∈ C is ρ-hyperfinite.
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Previous result: PT on hyperfinite graphs, II

Theorem (Newman and Sohler, 2013 (Benjamini, Shramm, Shapira, Elek))
Let C be a hyperfinite class of graphs of bounded degree.

Every property P ⊆ C is non-uniformly testable on C with constant
query complexity.

Hyperfinite graph classes include
• bounded tree-width graphs,
• planar graphs,
• generally, graphs excluding a fixed minor.

Remark
The theorem does not say anything about the running time.
∃ undecidable properties (of edgeless graphs) that are testable with
constant query complexity by the theorem.
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CMSO on bounded tw with sublinear running time

Theorem (A., Harwath, STACS 2018)
Let C t

d be the class of all t-bounded tree-width graphs of degree ≤ d.

Every CMSO-definable property P ⊆ Ct
d is uniformly testable with

constant query complexity and polylogarithmic running time.

• First algorithmic meta-theorem with sublinear running time.
• Open: can it be improved to constant running time?

ISOLDE ADLER LOGIC AND PROPERTY TESTING 29/42



CMSO on bounded tw with sublinear running time

Theorem (A., Harwath, STACS 2018)
Let C t

d be the class of all t-bounded tree-width graphs of degree ≤ d.

Every CMSO-definable property P ⊆ Ct
d is uniformly testable with

constant query complexity and polylogarithmic running time.

• First algorithmic meta-theorem with sublinear running time.
• Open: can it be improved to constant running time?

ISOLDE ADLER LOGIC AND PROPERTY TESTING 29/42



Algorithm and proof idea
Theorem (A., Harwath, STACS 2018)
C t

d := all t-bounded tree-width graphs of degree ≤ d.

Every CMSO-definable property P ⊆ C t
d is uniformly testable with constant

query complexity and polylogarithmic running time.

isomorphism type

fre
qu

en
cy

ND(G)

Algorithm: Fix ε. Given oracle access to G ∈ C t
d , and n = |V (G)|.

• x̄ = estimation of neighbourhood distribution ND(G), via sampling
• Accept, if ∥x − ND(H)∥1 ≤ λ = λ(ε) is small, for some H ∈ P on n

vertices, otherwise reject.
Correctness: Characterisation of testability; theorem from [Newman, Sohler, 2013].
Runtime: Show: histogram vectors of CMSO properties are semilinear, via [Fischer,
Makowsky, 2003]; use [Lenstra, IP with a fixed number of variables, 1983].
ISOLDE ADLER LOGIC AND PROPERTY TESTING 30/42



Algorithm and proof idea
Theorem (A., Harwath, STACS 2018)
C t

d := all t-bounded tree-width graphs of degree ≤ d.

Every CMSO-definable property P ⊆ C t
d is uniformly testable with constant

query complexity and polylogarithmic running time.

isomorphism type

fre
qu

en
cy

ND(G)

Algorithm: Fix ε. Given oracle access to G ∈ C t
d , and n = |V (G)|.

• x̄ = estimation of neighbourhood distribution ND(G), via sampling
• Accept, if ∥x − ND(H)∥1 ≤ λ = λ(ε) is small, for some H ∈ P on n

vertices, otherwise reject.
Correctness: Characterisation of testability; theorem from [Newman, Sohler, 2013].
Runtime: Show: histogram vectors of CMSO properties are semilinear, via [Fischer,
Makowsky, 2003]; use [Lenstra, IP with a fixed number of variables, 1983].
ISOLDE ADLER LOGIC AND PROPERTY TESTING 30/42



Algorithm and proof idea
Theorem (A., Harwath, STACS 2018)
C t

d := all t-bounded tree-width graphs of degree ≤ d.

Every CMSO-definable property P ⊆ C t
d is uniformly testable with constant

query complexity and polylogarithmic running time.

isomorphism type

fre
qu

en
cy

ND(G)

Algorithm: Fix ε. Given oracle access to G ∈ C t
d , and n = |V (G)|.

• x̄ = estimation of neighbourhood distribution ND(G), via sampling
• Accept, if ∥x − ND(H)∥1 ≤ λ = λ(ε) is small, for some H ∈ P on n

vertices, otherwise reject.
Correctness: Characterisation of testability; theorem from [Newman, Sohler, 2013].
Runtime: Show: histogram vectors of CMSO properties are semilinear, via [Fischer,
Makowsky, 2003]; use [Lenstra, IP with a fixed number of variables, 1983].
ISOLDE ADLER LOGIC AND PROPERTY TESTING 30/42



Algorithm and proof idea
Theorem (A., Harwath, STACS 2018)
C t

d := all t-bounded tree-width graphs of degree ≤ d.

Every CMSO-definable property P ⊆ C t
d is uniformly testable with constant

query complexity and polylogarithmic running time.

isomorphism type

fre
qu

en
cy

ND(G)

Algorithm: Fix ε. Given oracle access to G ∈ C t
d , and n = |V (G)|.

• x̄ = estimation of neighbourhood distribution ND(G), via sampling
• Accept, if ∥x − ND(H)∥1 ≤ λ = λ(ε) is small, for some H ∈ P on n

vertices, otherwise reject.
Correctness: Characterisation of testability; theorem from [Newman, Sohler, 2013].
Runtime: Show: histogram vectors of CMSO properties are semilinear, via [Fischer,
Makowsky, 2003]; use [Lenstra, IP with a fixed number of variables, 1983].
ISOLDE ADLER LOGIC AND PROPERTY TESTING 30/42



Logic & PT on bounded degree

[Courcelle, 1990]
C := graph class of bounded treewidth

Input: G ∈ C, φ ∈ CMSO
Question: Does G satisfy φ?

Decidable in FPT: time f (|φ|) · O(n)

[Alon, Fischer, Krivelevich, Szegedy, 2000]
Dense graphs:
• ∃∗∀∗-fragment of FO is testable
• non-testable ∀∗∃∗-property

Bounded degree:
FO testable?
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Testability of FO?

Theorem (A., Köhler, Peng, SODA 2021, SIAM J. Computing 2024)
In the bounded degree model:

• Every property that can be expressed by an FO-formula with
quantifier prefix type ∃∗∀∗ is testable with constant query
complexity.

• There is an FO-property of quantifier prefix type ∀∗∃∗ that is not
testable.
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Every ∃∗∀∗-property is testable (proof idea)

• On bounded-degree graphs, every ∃∗∀∗-property is
‘indistinguishable’ from a ∀∗-property.

• ∀∗-properties are testable with constant query complexity:

- ∀xφ(x) ≡ ¬∃xψ(x), for ψ(x) := ¬φ(x).

- ‘ψ(x)-freeness’ is testable with constant query complexity and
running time similar to induced subgraph freeness.
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Non-testable ∀∗∃∗-property (proof idea)

Find ∀∗∃∗-formula φ whose models are expander graphs.

G1

Gi

Gn

(Gi)i∈N: zig-zag construction [Rheingold, Vadhan, Wigdersen, Ann. of Math., 2002]
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Avi Wigdersen: Turing Award recipient 2023

∗1965: Israeli computer scientist and mathematician, school of
mathematics, Princeton, USA

Avi Wigdersen

“For reshaping our understanding of the role of randomness in
computation, and for decades of intellectual leadership in theoretical
computer science.”
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Example: Zig-zag product of a 3-regular grid with a
triangle

z =

ISOLDE ADLER LOGIC AND PROPERTY TESTING 36/42



Non-testable ∀∗∃∗-property (proof idea), cont’d

Theorem (Alon 2011)
On graphs of bounded degree:
For any graph G, radius r and ε, there exists a graph H whose size is
independent of G such that ||NDr (G)− NDr (H)||1 ≤ ε.

• Corollary: Tester cannot distinguish expander G from H ∪̇ . . . ∪̇H.

• G |= φ and H ∪̇ . . . ∪̇H is far from satisfying φ.
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Logic & PT on bounded degree

[Courcelle, 1990]
C := graph class of bounded treewidth

Input: G ∈ C, φ ∈ CMSO
Question: Does G satisfy φ?

Decidable in FPT: time f (|φ|) · O(n)

[A., Harwath, STACS 2018]
C := bounded treewidth+degree

Input: G ∈ C, φ ∈ CMSO
Question: Does G satisfy φ?

Testable in time f (|φ|) · o(n)

[Alon, Fischer, Krivelevich, Szegedy, 2000]
Dense graphs:
• ∃∗∀∗-fragment of FO is testable
• non-testable ∀∗∃∗-property

[A., Köhler, Peng, SODA 2021]
Bounded degree:
• ∃∗∀∗-fragment is testable
• non-testable ∀∗∃∗-property

[A., Köhler, Peng, CCC 2021]: Answers to open questions on
• Characterisation of POTs in [Goldreich and Ron, STOC 2009; SICOMP 2011].
• Charact. of 1-sided testability in [Ito, Khoury, Newman, J. Comput. Complex. 2020].

Journal version to appear in [A., Köhler, Peng, SIAM J. on Computing, 2024].
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Outlook

Open problem: can constant running time be achieved on bounded
degree+tree-width in the classical bounded degree model (without
vertex modifications)?

Open problem: characterisation of testability in the bounded degree
model

Open problem: characterisation of uniform testability in the bounded
degree model

Extension to sparse graphs of unbounded degree, and beyond

Testability of other logics, including temporal logics

Testability in graph databases
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[A., Harwath. Property Testing for Bounded Degree Databases, STACS 2018]
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LIPIcs-STACS-2018-6.pdf
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CCC, 2021.]
https://drops.dagstuhl.de/opus/volltexte/2021/14308/

[A., Köhler. On graphs of bounded degree that are far from being
Hamiltonian, DMTCS 2022.]
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[A., Köhler, Peng. On testability of first-order properties in bounded-degree
graphs and connections to proximity-oblivious testing, SIAM J. on Computing,
accepted for publication 2024.]
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Thank you!
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CMSO on bounded tw with constant running time?

Theorem (A., Fahey, FSTTCS 2020)
Let C t

d be the class of all t-bounded tree-width graphs of degree ≤ d.

If we allow vertex deletions/additions in addition to edge
modifications:
Every CMSO-definable property P ⊆ Ct

d is uniformly testable with
constant running time.

The proof uses a constructive version (for bounded tree-width) of:

Theorem (Alon 2011)
On graphs of bounded degree:
For any graph G, radius r and ε, there exists a graph H whose size is
independent of G such that ||NDr (G)− NDr (H)||1 ≤ ε.
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Implementation

• Test connectivity, 2- and 3-edge-connectivity in constant running
time
http://zshg.sourceforge.net

• A graph format and library that allow loading a graph from a file
in constant time (where the file is loaded into memory space and
the OS loads data when accessed).
http://slgraph.sourceforge.net

With Dr. Philipp Krause, University of Freiburg.
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