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Preface

For 27 years the Panhellenic Logic Symposium has been a pillar of the logic community in
southeast Europe. It is our great joy and honour to be the ones preparing the 14th edition
of this established meeting. This year’s meeting is also the first one to not be encumbered
by the coronavirus pandemic, which delayed the preceding one and forced us to meet on
even years in the future.

Unfortunately, this year’s meeting is also the first one since the untimely loss of Thanases
Pheidas (1958–2023). Thanases was internationally recognised for his work on analogues of
Hilbert’s Tenth Problem. He was also a vibrant member of the Hellenic logic community,
and had been actively involved with the Symposium since its inception in 1997. He was
always the voice of conscience that reminded us to try to waive registration fees for young
researchers and those in need, with a view to making logic as widely accessible as possible.
We have tried to mitigate this deafening absence by dedicating a Special Session in his
memory. The invited speakers include former and current colleagues and students, as well
as others whose work followed in his footsteps.

Moreover, we have made great efforts to further bolster the Symposium’s international
character by inviting distinguished speakers from the four corners of the world. We have also
tried to further extended the thematic breadth of the Symposium, by including categorical
logic as a separate topic of interest in the Call for Papers. Finally, we have explicitly
asked the speakers to keep their presentations accessible to a wider audience. We hope
that this will faciliate the fruitful interchange between all the subjects upon which logic
impinges—including Mathematics, Philosophy, and Computer Science. This is, after all, a
Symposium—in the Hellenic sense.

This volume contains short abstracts of the invited talks and tutorials that were delivered
during the first week of July 2024 in the Aristotle University Research Dissemination Center.
Furthermore, it contains 20 abstracts of contributed talks, which were meticulously reviewed
by the Symposium’s Scientific Committee. We wish to extend our gratitude, both to the
Committee and also the external reviewers that assisted them: Dimitra Chompitaki, Ioannis
Eleftheriadis, Iosif Petrakis, Xinxin Liu, Benjamin Rossman, and Wenhui Zhang.

We would also like to thank our sponsors: the Aristotle University of Thessaloniki, and
especially its Faculty of Sciences and the Research Committee; the Association for Symbolic
Logic; the European Mathematical Society; the Foundation Compositio Mathematica; and
the University of Bristol. This Symposium would not have been possible without their
generous financial contributions.

The Chairs of the Scientific Committee
Alex Kavvos and Vassilis Gregoriades
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Logic and Property Testing on Graphs of Bounded Degree

Isolde Adler

University of Bamberg, Germany
isolde.adler@uni-bamberg.de

Property testing (for a property P ) asks for a given graph, whether it has property P , or is
“structurally far” from having that property. A “testing algorithm” is a probabilistic algorithm
that answers this question with high probability correctly, by only looking at small parts of the
input. Testing algorithms are thought of as “extremely efficient”, making them relevant in the
context of large data sets.

In this talk I will introduce property testing and present recent positive and negative results
about testability of properties definable in first-order logic and monadic second-order logic on
classes of bounded-degree graphs.

This is joint work with Polly Fahey, Frederik Harwath, Noleen Köhler, and Pan Peng.
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Gaps in Hardy Fields

Matthias Aschenbrenner

University of Vienna
matthias.aschenbrenner@univie.ac.at

Hardy fields are an algebraic setting for a tame part of asymptotic analysis. In this talk,
after an introduction into this area, I will explain what we know and don’t know about gaps in
Hardy fields, with particular focus on analytic Hardy fields, which are those that mainly arise
in practice. (Joint work with L. van den Dries and J. van der Hoeven.)
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Forcing Axioms, (∗), and the Continuum Problem

David Aspero

University of East Anglia, United Kingdom
d.aspero@uea.ac.uk

In this talk I will survey old and new results concerning the role that forcing axioms, and
other principles in their region, play in the ongoing search for natural axioms supplementing
ZFC.
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Synthetic Computability Theory without Choice

Yannick Forster

Inria Paris, France
yannick.forster@inria.fr

Mathematical practice in most areas of mathematics is based on the assumption that proofs
could be made fully formal in a chosen foundation in principle. This assumption is backed by
decades of formalising various areas of mathematics in various proof assistants and various foun-
dations. An area that has been largely neglected for computer-assisted and machine-checked
proofs is computability theory. This is due to the fact that making computability theory (and
its sibling complexity theory) formal is several orders of magnitude more involved than formal-
ising other areas of mathematics, due to the – citing Emil Post – “forbidding, diverse and alien
formalisms in which this [. . . ] work of Gödel, Church, Turing, Kleene, Rosser [. . . ] is embod-
ied.”. For instance, there have been various approaches of formalising Turing machines, all to
the ultimate dissatisfaction of the respective authors, and none going further than constructing
a universal machine and proving the halting problem undecidable. Professional computability
theorist and teachers of computability theory thus rely on the informal Church Turing thesis
to carry out their work and only argue the computability of described algorithms informally.

A way out was proposed in the 1980s by Fred Richman and developed during the last decade
by Andrej Bauer: Synthetic computability theory, where one assumes axioms in a constructive
foundation which essentially identify all (constructively definable) functions with computable
functions. A drawback of the approach is that assuming such an axiom on top of the axiom of
countable choice - which is routinely assumed in this branch of constructive mathematics and
computable analysis - is that the law of excluded middle, i.e. classical logic, becomes invalid.
Computability theory is however dedicatedly classical: Almost all basic results are presented
by appeal to classical axioms and even the full axiom of choice.

We observe that a slight foundational shift rectifies the situation: By basing synthetic
computability theory in the Calculus of Inductive Constructions, the type theory underlying
amongst others the Coq proof assistant, where countable choice is independent and thus not
provable, axioms for synthetic computability are compatible with the law of excluded middle.

I will give an overview over a line of research investigating a synthetic approach to com-
putability theory in constructive type theory, discussing, if time allows, suitable axioms, a Coq
library of undecidability proofs, results in the theory of reducibility degrees, a synthetic defini-
tion of Kolmogorov complexity, constructive reverse analysis of theorems, and synthetic oracle
computability.

Parts of results are in collaboration with Dominik Kirst, Gert Smolka, Felix Jahn, Fabian
Kunze, Nils Lauermann, Niklas Mück, Haoyi Zeng, and the contributors of the Coq Library of
Undecidability Proofs.
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Broad Infinity and Generation Principles

Paul Blain Levy

University of Birmingham, United Kingdom
p.b.levy@bham.ac.uk

We introduce Broad Infinity, a new set-theoretic axiom scheme that may be considered
plausible. It states that three-dimensional trees whose growth is controlled by a specified class
function form a set. Such trees are called “broad numbers”.

Assuming the axiom of choice, or at least the weak version known as WISC, we see that
Broad Infinity is equivalent to Mahlo’s principle, which states that the class of all regular limits
is stationary. Broad Infinity also yields a convenient principle for generating a subset of a class
using a “rubric” (family of rules). This directly gives the existence of Grothendieck universes,
without requiring a detour via ordinals.

In the absence of choice, Broad Infinity implies that the derivations of elements from a
rubric form a set. This yields the existence of Tarski-style universes.

Additionally, we reveal a pattern of resemblance between “Wide” principles, that are prov-
able in ZFC, and “Broad” principles, that go beyond ZFC.
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Incompleteness Theorems for Observables in General

Relativity

Aristotelis Panagiotopoulos

Kurt Gödel Research Center for Mathematical Logic, University of Vienna, Austria
aristotelis.panagiotopoulos@univie.ac.at

One of the biggest open problems in mathematical physics has been the problem of formu-
lating a complete and consistent theory of quantum gravity. Some of the core technical and
epistemological difficulties come from the fact that General Relativity (GR) is, fundamentally,
a geometric theory and, as such, it ought to be ‘generally covariant,’ i.e., invariant under change
of coordinates by the arbitrary diffeomorphism of the ambient manifold. The Problem of Ob-
servables is a famous instance of the difficulties that general covariance brings into quantization:
no non-trivial diffeomorphism-invariant quantity has ever been reported on the collection of all
spacetimes. It turns out that there is a good reason for this. In this talk, I will present my
recent joint work with Marios Christodoulou and George Sparling, where we employ methods
from Descriptive Set Theory (DST) in order to show that, even in the space of all vacuum
solutions, no complete observables for full GR can be Borel definable. That is, the problem of
observables is to ‘analysis’ what the Delian problem is to ‘straightedge and compass.’
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Tutorial

Degrees of Unsolvability:

A Realizability-theoretic Perspective

Takayuki Kihara

Nagoya University, Japan
takayuki.kihara@nagoya-u.jp

The theories of degrees of unsolvability and realizability interpretation both have long histo-
ries, having both been born in the 1940s. S. C. Kleene was a key figure who led the development
of both theories. Despite having been developed by the same person, there seems to have been
little deep mixing of these theories until recently. In this tutorial, we will reconstruct the theory
of degrees of unsolvability from the perspective of realizability theory.
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Formalising Mathematics with Proof Assistants

Angeliki Koutsoukou-Argyraki

Royal Holloway University of London, United Kingdom
Angeliki.koutsoukouArgyraki@rhul.ac.uk

Part I: Formalising mathematics with proof assistants

The first part of this tutorial will involve a general introduction to the area of formalisation of
mathematics using proof assistants (interactive theorem provers). I will discuss the state of the
art and potential of the area.

Part II: Introduction to the proof assistant Isabelle/HOL & bonus
example: Aristotle’s Assertoric Syllogistic in Isabelle/HOL

During the second part, I will give some practical information for beginners on getting started
with the proof assistant Isabelle/HOL. As an example, I will present a formalisation of Aristo-
tle’s Assertoric Syllogistic in Isabelle/HOL.
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Special Session: Philosophy

Upper Logicism

Cian Dorr

New York University, United States of America
cian.dorr@nyu.edu

A very natural higher order logic, ‘Classicism’, can be axiomatized by adding the rule of
substitution of logical equivalents to a basic higher order logic (comprising standard classical
rules for connectives, quantifiers, and identity, together with lambda conversion rules). Perhaps
its most controversial theorem is ’Broad Necessitism’, according to which for every thing (in
a given type), the proposition that there is something identical to that thing is identical to a
tautology. For those who want to avoid this result, it is natural to retreat to ‘Free Classicism’,
the variant of Classicism in which the quantifier rules are weakened to those of free logic.
Within Free Classicism, we develop a general theory of what it is for a property of properties
of things of some given type to be a (universal, perhaps-restricted) quantifier, as well as a
notion of absolute unrestrictedness for quantifiers, which is uniquely instantiated (in a type) if
instantiated at all. Using these tools we introduce a central question facing Free Classicists:
are there any absolutely unrestricted quantifiers, and if not, is being an absolutely unrestricted
quantifier even possible (in the sense of not being identical to a contradictory property)? We
present an argument for the claim that there are absolutely unrestricted quantifiers, and a
further argument, based on metasemantic considerations, that if there are such quantifiers,
Classicism is true.

This talk will be based on a coauthored paper. The other authors are Andrew Bacon (USC),
Peter Fritz (UCL), and Ethan Russo (NYU).
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Special Session: Philosophy

Upper Logicism

Bruno Jacinto

University of Lisbon, Portugal
bmjacinto@fc.ul.pt

Russell strived to defend the view that arithmetic is nothing but logic by conceiving of the
natural numbers as the finite cardinalities. The received view is that Russell’s logicist project
has failed. His reduction of arithmetic to logic presupposed the axiom of infinity’s logicality.
But the axiom of infinity doesn’t appear to be a logical truth, as Russell himself acknowledged.

In this talk I present and partially defend Upper Logicism - a neoRussellian form of logicism
based on higher-order modal logic. As I’ll show, among its virtues is the fact that the Upper
logicist reduction of arithmetic to logic does not rely on the axiom of infinity’s truth or logical-
ity. I’ll conclude by comparing Upper Logicism with other, seemingly related, philosophies of
arithmetic, and sketching how to extend it to a logicist reduction of set theory.
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Special Session: Philosophy

Diagonalization and Paradox

Gabriel Uzquiano

University of Southern California, United States of America
uzquiano@usc.edu

We aim to clarify the role of diagonalization in the derivation of important limitative results
in higher-order logic. A familiar diagonal argument is generally involved in common derivations
of the inconsistency of Frege’s Axiom V and the Russell-Myhill theorem. These observations
are often given a cardinality gloss, which presuppose a measure of impredicativity. We will
look at further limitative results underwritten by the diagonal argument even in the presence
of predicative strictures. These observations will place additional constraints on consistent
implementations of structured views of propositions, even though they have nothing to do with
cardinality.
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Special Session

In Memoriam Thanases Pheidas

Decidability results of subtheories of polynomial rings and

formal power series

Dimitra Chompitaki

University of Crete, Greece
d.hobitaki@gmail.com

Hilbert’s tenth problem (the tenth of the famous list of problems Hilbert proposed in 1900)
was:

H10(Z): Find a procedure (in modern terminology: an algorithm) which determines
(in a finite number of steps) whether an arbitrary polynomial (for any degree and
any number of variables), with integer coefficients, has or does not have integer
zeroes.

When Hilbert proposed this problem in 1900, the notion of an algorithm was not yet for-
malized. The theory of recursive functions was developed about 30 years later. Hilbert’s tenth
problem was answered negatively by Y. Matiyasevich in 1970, after work by M. Davis, H. Put-
nam and J. Robinson. In modern terminology, the positive existential theory of the ring Z of
the rational integers is undecidable.

Since then a number of similar problems have been solved over other domains of mathe-
matical interest. However, some others remain open. For example, although the theory of a
ring of power series F [[z]] in a variable z over a field F with a decidable theory is decidable
if the characteristic of F is zero, the similar problem for F of positive characteristic p is open
problem.

Thus, it is interesting at least to produce results which produce algorithms for deciding
certain sub-theories of the full ring theory of F [[z]], for F of positive characteristic. In this
talk, we will survey decidability and undecidability results of the structures and substructures
of polynomial rings and rings of formal power series.

Then we will focus on the structure of addition and localized divisibility in polynomial
rings and the corresponding rings of formal power series and inter relations. In particular,
we will show that a ring of polynomials over a prime field is an elementary substructure of
the corresponding ring of formal power series in the language of addition, localized divisibility,
equality and the constants 0 and 1.

Finally, the theories of these structures admit elimination of quantifiers. In addition, we
will present some theorems that relate the positive and the zero characteristic cases.

Proceedings of the 14th Panhellenic Logic Symposium

— 23 —



Proceedings of the 14th Panhellenic Logic Symposium

— 24 —



Special Session

In Memoriam Thanases Pheidas

The Mathematics of Thanasis Pheidas: Explained for an

audience that includes non-mathematicians

Lefteris Kirousis

University of Athens, Greece
lkirousis@math.uoa.gr

Anticipating that a sizable portion of the audience will be non-mathematicians, I will give
a presentation not of the novel technical results by Thanasis but of the wider area where these
results belong and their significance aiming on the one hand to be comprehensible to the non-
technically trained listeners and on the other to hold the interest of fellow logicians, especially
the younger ones and students, working in other areas.
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Special Session

In Memoriam Thanases Pheidas

Reflections on the work of T. Pheidas

Konstantinos Kartas

Sorbonne Université / IMJ-PRG
kartas@imj-prg.fr

Hilbert’s tenth problem is to devise an algorithm which decides whether a given polynomial
equation in many variables has a solution in the integers. The celebrated DPRM theorem (after
Davis, Putnam, J. Robinson and Matiyasevich) shows that in fact no such algorithm exists. It
is also natural to consider variants of Hilbert’s tenth problem, where one seeks for solutions in
domains other than the integers. We will survey some of the most important results in that
direction, which were obtained by Pheidas.
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Special Session

In Memoriam Thanases Pheidas

The journey of Thanases Pheidas in the realm of analytic

functions

Xavier Vidaux

Universidad de Conceptión, Chile
xvidaux@udec.cl

Though Thanases has worked in all the major open problems in the area of Hilbert’s Tenth
Problem, I believe that analytic functions had a special place in his heart. I will tell some things
that I know about his contributions there, and how his 1995 failure to solving the problem for
entire functions led him to a series of beautiful ideas.
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Satisfiability-checking of modal logic with recursion via

translations and tableaux∗

Luca Aceto1,2, Antonis Achilleos1, Elli Anastasiadi3, Adrian Francalanza4, and
Anna Ingólfsdóttir

1 ICE-TCS, Department of Computer Science, Reykjavik University, Iceland
2 Gran Sasso Science Institute L’Aquila, Italy

3 Department of Information Technology, Uppsala University, Sweden
4 Dept. of Computer Science, ICT, University of Malta, Msida, Malta
luca.aceto@gssi.it, antonios@ru.is, elli.anastasiadi@it.uu.se,

adrian.francalanza@um.edu.mt, annai@ru.is

Abstract

In this talk proposal, we discuss a method based on tableau derivations that may not
terminate, for achieving decidability and upper complexity bounds for a general family of
modal logics with recursion. We show how to use this method to prove the decidability of
certain modal logics that do not have a finite model property.

1 Introduction

In this talk we will be studying a family of multi-modal logics with fixed-point operators that
are interpreted over restricted classes of Kripke models. The abstract is aimed to be a short
summary of the methods and results that the authors recently gave in [2]. One can consider
these logics as extensions of the usual multi-agent logics of knowledge and belief [10] by adding
recursion to their syntax or of the µ-calculus [17] by interpreting formulas over different classes
of frames and thus giving an epistemic interpretation to the modalities. We are concerned with
the complexity of the satisfiability problem for these logics. Namely, given a formula φ, how
much time it takes to determine whether there exists a model M |= φ.

Modal logic comes in several variations [6]. Some of these, such as multi-modal logics of
knowledge and belief [10], are of particular interest to Epistemology and other application areas.
Semantically, the classical modal logics used in epistemic (but also other) contexts result from
imposing certain restrictions on their models. On the other hand, the modal µ-calculus [17] can
be seen as an extension of the smallest normal modal logic K with greatest and least fixed-point
operators, νX and µX respectively. We explore the situation where one allows recursion (i.e.
fixed-point) operators in a multi-modal language and imposes restrictions on the models.

Satisfiability for the µ-calculus is known to be EXP-complete [17]. For the modal logics
between K and S5 the problem is PSPACE-complete or NP-complete, depending on the presence
of Negative Introspection [14,18]. We discuss the two main methods that we developed in [2] for
proving complexity bounds for the satisfiability problem for different logics. Our first method is
a translation, and it follows the natural intuition where a formula in one logic is projected to a
formula in another logic, preserving its satisfiability. We demonstrate how this straightforward
method can prove the known upper complexity bounds for modal logics without recursion.

We then present tableaux for the discussed logics, based on the ones by Kozen for the µ-
calculus [17], and by Fitting and Massacci for modal logic [12,21]. For some of our logics with

∗The work reported in this paper is supported by the project ‘Mode(l)s of Verification and Monitorability’
(MoVeMent) (grant no 217987) of the Icelandic Research Fund.
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Tableaux and translations for Modal Logic with recursion L. Aceto et al.

Jtt, ρK = W Jff, ρK = ∅ Jp, ρK = {s | p ∈ V (s)} J¬p, ρK = W\Jp, ρK JX, ρK = ρ(X)

J[α]φ, ρK =
{
s
∣∣ ∀t. sRαt implies t ∈ Jφ, ρK

}
Jφ1∧φ2, ρK = Jφ1, ρK ∩ Jφ2, ρK

J⟨α⟩φ, ρK =
{
s
∣∣ ∃t. sRαt and t ∈ Jφ, ρK

}
Jφ1∨φ2, ρK = Jφ1, ρK ∪ Jφ2, ρK

JµX.φ, ρK =
⋂{

S
∣∣ S ⊇ Jφ, ρ[X 7→ S]K

}
JνX.φ, ρK =

⋃{
S
∣∣ S ⊆ Jφ, ρ[X 7→ S]K

}

Table 1: Semantics of formulas on model M = (W,R, V ), which we omit from the notation.

axiom 5 (⟨α⟩φ → [α]⟨α⟩φ), or B (φ → [α]⟨α⟩φ), the tableaux may not terminate, as these
logics have no finite-model property [8]. We give a general satisfiability-preserving translation
from each logic to the µ-calculus, using our tableaux, which describes a tableau branch with an
exponentially larger µ-calculus formula, establishing a 2EXP-upper bound for all our logics.

2 Modal logics with recursion

We consider formulas constructed from the following grammar:

φ,ψ :: = p | ¬p | tt | ff | X | φ ∧ ψ | φ ∨ ψ | ⟨α⟩φ | [α]φ | µX.φ | νX.φ,

where X comes from a countably infinite set of logical (or fixed-point) variables, LVar, α from
a finite set of agents, Ag, and p from a finite set of propositional variables, PVar.

We interpret formulas on the states of a Kripke model. A Kripke model, or simply model, is
a triple M = (W,R, V ) where W is a nonempty set of states, R ⊆W ×Ag×W is a transition
relation, and V : W → 2PVar determines the propositional variables that are true at each state.
(W,R) is called a frame. We usually write (u, v) ∈ Rα or uRαv instead of (u, α, v) ∈ R.

Formulas are evaluated in the context of an environment ρ : LVar → 2W , which gives values
to the logical variables. For an environment ρ, variable X, and set S ⊆W , we write ρ[X 7→ S]
for the environment that maps X to S and all Y ̸= X to ρ(Y ). The semantics for our formulas
is given through a function J−KM, defined in Table 1.

Without further restrictions, the resulting logic is the µ-calculus [17]. If |Ag| = k ∈ N+ and
we allow no recursive operators and variables, we have the basic modal logic Kk, and further
restrictions on the frames can result in a variety of modal logics (see, for instance, [5]). We give
names to the following frame conditions, or frame constraints, for an agent α ∈ Ag:

D: Rα is serial (∀s∃t, sRαt);

T : Rα is reflexive (∀s, sRαs);

B: Rα is symmetric;

4: Rα is transitive;

5: Rα is euclidean (if sRαt
and sRαr, then tRαr).

Each frame condition x for agent α is associated with an axiom axxα, such that whenever a
model has condition x, every substitution instance of axxα is satisfied in all its states (see [5,6,10]):

axDα = ⟨α⟩tt; axTα = [α]p→ p; axBα = ⟨α⟩[α]p→ p;

ax4α = [α]p→ [α][α]p; and ax5α = ⟨α⟩[α]p→ [α]p.

We consider logics interpreted over models that satisfy a combination of these constraints
for each agent. For each logic L and agent α, L(α) is the single-agent logic that includes exactly
the frame conditions that L has for α.
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3 Translations for Recursion-free formulas

Translations are functions that transform each formula to another. We require that translations
preserve satisfiability, allowing us to transfer decidability results among logics. We also require
that they only increment the size of the formula by a polynomial factor. This is because we
will use the translations to prove complexity bounds as well. Finally, we want translations to
be compositional. Compositionality ensures that we can apply a sequence of translation steps,
resulting in a composite translation that has the above good properties.

We fix an order to the frame conditions: D,T,B, 4, 5. We present a straightforward and
uniform translation for recursion-free logics. Let sub(φ) = {ψ,¬ψ | ψ is a subformula of φ}.

Translation 3.1 (One-step Translation). Let A ⊆ Ag and let x be one of the frame conditions.
For every formula φ, let d = md(φ) if x ̸= 4, 5, and d = md(φ)|φ|, if x = 4 or x = 5. We define:

FxA(φ) = φ ∧
∧

k≤d

∧

α1∈Ag

[α1] · · ·
∧

αk∈Ag

[αk]

( ∧

ψ∈sub(φ)
α∈A

axxα[ψ/p]

)
.

Theorem 1. Let A ⊆ Ag, x be one of the frame conditions, and let L1,L2 be logics without
recursion operators, such that L1(α) = L2(α) + x when α ∈ A, and L2(α) otherwise. Assume
that L2(α) only includes frame conditions that precede x in the fixed order of frame conditions.
Then, φ is L1-satisfiable if and only if FxA(φ) is L2-satisfiable.

In the above we see that indeed, a translation preserves satisfiability and is only changing
the size of the formula by a small factor. The compositionality gives us that for a logic L with
multiple frame restrictions, one would have to apply these translations in series to acquire a
formula that is satisfiable over general frames if and only if the original was L-satisfiable.

Corollary 1. If L has no recursion operators, then L-satisfiability is in PSPACE.

4 Tableaux and General Upper Bounds

Our tableaux are based on the ones given by Kozen in [17], and are extended similarly to the
tableaux of Fitting [12] and Massacci [21] for taking into account the different conditions of
modal logic. Intuitively, a tableau attempts to build a model that satisfies the given formula.
When it needs to consider two possible cases, it branches, and thus it may generate several
branches. Each successful branch represents a corresponding model.

Our tableaux use prefixed formulas, that is, formulas of the form σ φ, where σ ∈ (Ag×L)∗

and φ ∈ L; σ is the prefix of φ in that case, and we say that φ is prefixed by σ. We note
that we separate the elements of σ with a dot. Furthermore, in the tableau prefixes, we write
α⟨ψ⟩ to mean the pair (α,ψ) ∈ Ag × L. Therefore, for example, (α, ϕ)(β, χ)(α,ψ) is written
α⟨ϕ⟩.β⟨χ⟩.α⟨ψ⟩ as a tableau prefix. We say that prefix σ is α-flat when agent α has axiom 5
and σ = σ′.α⟨ψ⟩ for some ψ. Each prefix possibly represents a state in a model, and a prefixed
formula σ φ declares that φ is true in that state. The tableau rules appear in Table 2.

A tableau branch is propositionally closed when σ ff or both σ p and σ ¬p appear in the

branch for some prefix σ. We define the dependence relation
X−→ on prefixed formulas in a

tableau branch as χ1
X−→ χ2, if χ2 was introduced to the branch by a tableau rule with χ1 as

its premise, and χ1 is not of the form σ Y , where X < Y . If in a branch there is a
X−→-sequence

3

Proceedings of the 14th Panhellenic Logic Symposium

— 33 —



Tableaux and translations for Modal Logic with recursion L. Aceto et al.

σ πX.φ
(fix)σ φ

σ X (X)
σ fx(X)

σ [α]φ
(B)

σ.α⟨ψ⟩ φ
σ ⟨α⟩φ

(D)
σ.α⟨φ⟩ φ

σ [α]φ
(d)

σ.α⟨φ⟩ φ

σ [α]φ
(4)

σ.α⟨ψ⟩ [α]φ

σ.α⟨ψ⟩ [α]φ
(b)σ φ

σ [α]φ
(t)σ φ

σ.α⟨ψ⟩ [α]φ
(b4)

σ [α]φ

where, for rules (B) and (4), σ.α⟨ψ⟩ already appears in the branch; for (D), σ is not α-flat.

σ.α⟨ψ⟩ [α]φ
(B5)

σ [α]φ

σ.α⟨ψ⟩ ⟨α⟩φ
(D5)

σ.α⟨ψ⟩.α⟨φ⟩ φ
σ.α⟨ψ⟩ [α]φ

(B55)
σ.α⟨ψ′⟩ [α]φ

σ.α⟨ψ⟩.α⟨ψ′⟩ ⟨α⟩φ
(D55)

σ.α⟨ψ⟩.α⟨φ⟩ φ

where, for rule (B55), σ.α⟨ψ′⟩ already appears in the branch; for rule (D5), σ is not α-flat, and
σ ⟨α⟩φ does not appear in the branch; for rule (D55), σ ⟨α⟩φ does not appear in the branch.

Table 2: The tableau rules for L = Lµn. The propositional cases are omitted.

where X is a least fixed-point and appears infinitely often, then the branch is called fixed-point-
closed. A branch is closed when it is either fixed-point-closed or propositionally closed; if it is
not closed, then it is called open.

Theorem 2 (Soundness and Completeness of Lµk -Tableaux, [1]). For every formula φ and logic
L, φ has a maximal L-tableau with an open branch if and only if φ is L-satisfiable.

Although for many of our logics, we can give sound, complete, and terminating tableaux, in
general it is possible for a tableau to be non-terminating. Moreover, some of our logics do not
have a finite model property. To give a general upper bound for the satisfiability problem for
our family of modal logics with recursion, we devised the following strategy. From the above,
we have, possibly non-terminating, sound and complete tableaux for all our logics. Moreover,
we know that µ-calculus satisfiability can be decided in exponential time. Therefore, our idea
is to encode the tableaux themselves as µ-calculus formulas, interpreted over arbitrary frames.
These formulas assert that a satisfying model encodes an open branch. The total overhead of
this construction was that the initial tableaux constructed from a formula is exponential larger
from it, and the final satisfiability checking for the formula that represented this tableaux costs
exponential time. Therefore the resulting complexity upper bound is a double exponential.

We avoid presenting the full extensive construction of the formula that describes the tableau
branch. We present the idea in Figure 1. The reader can read [2] for more details. A summary
of our results from [2] can be seen in Table 3. The highlighted result is the ones that occurred
due to the final idea of translating tableaux into formulas.

Theorem 3. L-satisfiability is in 2EXP.

5 Conclusion and future work

We presented a simple translation method to prove the known PSPACE upper bound for the
complexity of satisfiability for all logics without recursion. For the ones with recursion, we
presented sound and complete tableaux, which in turn we encoded as µ-calculus formulas, thus
proving that satisfiability is in 2EXP for all our logics.
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ψ1 ψ2

◦ ◦ ◦ ◦ · · · ◦ ◦

ψ1

ψ2◦ ◦ ◦ ◦ · · · ◦ ◦

Figure 1: A finite
X−→-path from σ ψ1 to σ ψ2 may visit other tableau prefixes, and an infinite

X−→-path from σ ψ1 may include finite segments that visit other prefixes, before continuing
with an infinite path from a formula ψ2. Each square area represents a tableau prefix and the

part of an infinite
X−→-path that visits this prefix. We can describe this local behavior with

exponentially many propositional variables, and the infinite path with a µ-calculus formula.

# agents Restrictions on syntax/frames Upper Bound Lower Bound
frames with B or 5 2EXP EXP-hard

≥ 2 not B , 5 EXP EXP-hard
not 5, not µ. X EXP EXP-hard
with 5 (or B4) NP NP-hard

1 with 4 PSPACE PSPACE-hard
Any other restrictions EXP EXP-hard

Table 3: The updated summary of the complexity of satisfiability checking for various modal
logics with recursion. Our additional contributions from [2] are highlighted.

As Table 3 indicates, we currently do not have a tight complexity bound for the case of
the multi-agent µ-calculus over symmetric or euclidean frames. The complexity of the model
checking problem for the µ-calculus is an important open problem, known to have a quasi-
polynomial time solution, but not known whether it is in P [7,11,16,19,20]. The problem does
not depend on the frame restrictions of the particular logic, though one may wonder whether
additional frame restrictions would help solve the problem more efficiently. Currently we are
not aware of a way to use our translations to obtain such an improvement.

As, to the best of our knowledge, most of the logics described in this chapter have not
been explicitly defined before, with notable exceptions such as [3, 8, 9], they also lack any
axiomatizations and completeness theorems. We do expect the classical methods from [13,17,18]
and others to work in these cases as well. However, it would be interesting and desirable to
flesh out the details and see if there are any unexpected situations that arise.

Finally, given the importance of common knowledge for epistemic logic and the fact that it
has been known that common knowledge can be thought of as a greatest fixed point already
from [4,15], we consider the logics we presented to be natural extensions of modal logic. We are
interested in exploring what other natural concepts we can define with this enlarged language.
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1 Introduction
In concurrency theory, characteristic formulae serve as a bridge between model checking and
preorder or equivalence checking. At an intuitive level, a characteristic formula provides a
complete logical characterization of the behaviour of a process with respect to some notion
of behavioural equivalence or preorder. For example, consider the widely used bisimulation
equivalence relation [1]; Hennessy and Milner have shown in [2] that, under a mild finiteness
condition, two processes are bisimilar if and only if they satisfy the same Hennessy-Milner logic
(HML) formulae. Apart from its intrinsic theoretical interest, this seminal logical character-
ization of bisimilarity means that, when two processes are not bisimilar, there is always an
HML formula that distinguishes between them. However, using the Hennessy-Milner theorem
to show that two processes are bisimilar would involve verifying that they satisfy the same
HML formulae and there are infinitely many of those. This is where characteristic formulae
come into play. An HML formula φ is characteristic for process p, if every process q satisfies φ
iff p and q are bisimilar. As a consequence, one can decide bisimulation equivalence between p
and q by finding the characteristic formula χ(p) for p and checking whether q |= χ(p), that is a
model-checking problem. Thus characteristic formulae allow one to reduce bisimilarity checking
to model checking.

Conversely, Boudol and Larsen studied in [3] the problem of characterizing the collection
of modal formulae for which model checking can be reduced to equivalence checking. See [4,
5, 6] for other contributions in that line of research. The aforementioned articles showed that
characteristic formulae coincide with those that are consistent and prime. (A formula is prime if
whenever it entails a disjunction φ1∨φ2, then it must entail φ1 or φ2.) Moreover, characteristic
formulae with respect to the bisimulation relation coincide with the formulae that are consistent
and complete, where a modal formula φ is complete, when for every modal formula ψ on the
same propositional variables as φ, we can derive from φ either ψ or its negation. Note that
in the case of bisimulation, a formula is prime iff it is complete. When one wants to reduce
model checking to equivalence checking, the study of the complexity of identifying characteristic
formulae modulo bisimilarity within (extensions of) HML is of relevance and has been addressed
in [7, 8]. Typically, checking whether a formula is characteristic modulo bisimilarity has the
same complexity as validity.

We described characteristic formulae using the example of bisimilarity, as it is the relation
between processes that underlies the seminal Hennessy-Milner theorem and was used in much
of the above-mentioned work. However there are a plethora of other preorder and equivalence
relations that classify processes according to other possible behaviours; these and their logical
characterizations have been extensively studied in concurrency theory—see e.g. [9, 10]. In this

∗This work has been funded by the projects “Open Problems in the Equational Logic of Processes (OPEL)”
(grant no 196050), “Mode(l)s of Verification and Monitorability” (MoVeMent) (grant no 217987), and “Learning
and Applying Probabilistic Systems” (grant no. 206574-051) of the Icelandic Research Fund.of the Icelandic
Research Fund.
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work, we address the complexity of deciding and finding characteristic formulae with respect to
four different preorders in van Glabbeek’s branching-time spectrum, namely simulation (≲S),
complete simulation (≲CS), ready simulation (≲RS), and trace simulation (≲TS) [9].

Our goal in this work is to study the complexity of determining whether a formula φ ∈ LX
is characteristic for some process pφ modulo ≲X , where X ∈ {S,CS,RS, TS}, or equivalently
whether it is consistent and prime. For example, note that all consistent formulae in LS that
do not contain disjunctions are also prime. Thus, in this case deciding characteristic formulae
reduces to deciding consistent formulae. However, when disjunctions are added to the language,
the situation gets more complicated. For instance, formula ⟨a⟩tt ∨ ⟨b⟩tt is not prime, since
⟨a⟩tt∨ ⟨b⟩tt ̸|= ⟨a⟩tt and ⟨a⟩tt∨ ⟨b⟩tt ̸|= ⟨b⟩tt, whereas formula (⟨a⟩tt∨ ⟨b⟩tt)∧ ⟨b⟩tt is prime.

In the sequel, we first give the necessary definitions and then we mention known complexity
results on deciding preorders ≲S , ≲CS , and ≲RS respectively. We present our results on the
complexity of deciding ≲TS and then, we state propositions and theorems establishing the
complexity of identifying and finding characteristic formulae for the aforementioned preorders.

2 Definitions
Our semantic model is that of labelled transition systems (LTS) S = (P,A,−→), where P is a
set of states (or processes), A is a set of actions and −→⊆ P × A × P is a transition relation
on processes. We write p a−→ q instead of (p, a, q) ∈−→. We say that a state p is deadlocked iff
it has no outgoing transition. In this work, we consider finite LTSs.

For X ∈ {S,CS,RS, TS}, the preorder ≲X is the largest relation over the set of processes
satisfying the following conditions for every p, q.

1. Simulation (S): p ≲S q ⇔ for all p a−→ p′ there exists some q a−→ q′ such that p′ ≲S q′.

2. Complete simulation (CS): p ≲CS q ⇔

(a) for all p a−→ p′ there exists some q a−→ q′ such that p′ ≲CS q′, and

(b) p is deadlocked iff q is deadlocked.

3. Ready simulation (RS): p ≲RS q ⇔

(a) for all p a−→ p′ there exists some q a−→ q′ such that p′ ≲RS q′, and

(b) the initial sets of actions of p and q coincide. (The set of initial actions of a state is
the collection of actions that label its outgoing transitions.)

4. Trace simulation (TS): p ≲TS q ⇔

(a) for all p a−→ p′ there exists some q a−→ q′ such that p′ ≲TS q′, and

(b) the sets of traces of p and q coincide. (The set of traces of p is the set of all possible
sequences of actions that can be observed by executing p.)

It is well-known that ≲TS⊊≲RS⊊≲CS⊊≲S . We denote by LS , LCS , LRS , and LTS respectively,
the fragments of HML that characterize these four preorders [9, 6]. For X ∈ {S,CS,RS, TS},
LX is defined to be the set of formulae given by the corresponding grammar as follows:

1. LS : φS ::= tt | ff | φS ∧ φS | φS ∨ φS | ⟨a⟩φS .

2. LCS : φCS ::= tt | ff | φCS ∧φCS | φCS ∨φCS | ⟨a⟩φCS | 0, where 0 =
∧
a∈A[a]ff .
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3. LRS : φRS ::= tt | ff | φRS ∧ φRS | φRS ∨ φRS | ⟨a⟩φRS | [a]ff .

4. LTS :
φTS ::= tt | ff | φTS ∧ φTS | φTS ∨ φTS | ⟨a⟩φTS | ψTS ,
ψTS ::= ff | [a]ψTS

Truth in an LTS S = (P,A,−→) is defined through relation |= in the standard way. In
particular,

• p |= ⟨a⟩φ iff there is some p a−→ q such that q |= φ and

• p |= [a]φ iff for all p a−→ q it is the case that q |= φ.

We say that φ is true or satisfied in p if p |= φ. An HML formula is consistent or satisfiable if
it is satisfied in a process p.

LX characterizes ≲X , whereX ∈ {S,CS,RS, TS}, in the following sense: for all p, q, p ≲X q
iff for every φ ∈ LX , p |= φ =⇒ q |= φ.

3 Deciding preorders
Let ≲∈ {≲S , ≲CS ,≲RS}. Given two finite processes p and q, deciding whether p ≲ q can be
done in polynomial time [9]. To the best of our knowledge, the complexity of deciding the trace
simulation preorder has not been examined yet. The following propositions state that deciding
trace simulation is hard.

Proposition 1. Deciding ≲TS on finite processes is PSPACE-complete under polynomial-time
Turing reductions.

Proposition 2. Deciding ≲TS on finite loop-free processes is coNP-complete under polynomial-
time Turing reductions.

Note that we use polynomial-time oracle reductions instead of the more standard Karp re-
ductions between decision problems. This means that deciding ≲TS on finite loop-free processes
is also NP-hard under polynomial-time Turing reductions. Moreover, Proposition 2 implies that
if p ≲TS q can be solved in polynomial time for some finite loop-free p, q, then P = NP.

In Propositions 1 and 2, hardness is established by showing that the trace equivalence of
two processes can be decided by making two oracle calls to the problem of deciding the trace
simulation preorder. Since deciding trace equivalence is PSPACE- and coNP-hard under Karp
reductions on finite and finite loop-free processes respectively [11, 12], we obtain our hardness
results. Membership in PSPACE can be easily proven for Proposition 1, whereas membership
in coNP for Proposition 2 is based on an NP algorithm for deciding ̸≲TS on finite loop-free
processes.

4 Deciding characteristic formulae modulo some preorder
Recall that a formula is characteristic iff it is consistent and prime. We determine the complexity
of deciding whether a formula is characteristic modulo one of the preorders ≲S , ≲CS , and ≲RS ,
by providing results about the satisfiability and primality problems for the respective logics.

Theorem 3. Let Λ be one of the modal logics LS and LCS. Given φ ∈ Λ, deciding whether φ
is satisfiable and prime is in P.
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Theorem 4.

(a) Let |Act| = k, where k is a constant. Given φ ∈ LRS, deciding whether φ is satisfiable and
prime is in P.

(b) Let |Act| be unbounded. Satisfiability in LRS is NP-complete, whereas primality in LRS is
coNP-complete.

Polynomial-time complexity of the satisfiability problem in Theorems 3 and 4(a) is proven
by a uniform algorithm that can be appropriately adjusted in each case. For primality in LS ,
there are rules that allow us to check whether a given formula φ is prime by checking the
relationship between polynomially many subformulae of φ. In conclusion, the problem can be
reduced to the reachability problem in an alternating graph, the nodes of which represent tuples
of φ’s subformulae. This algorithm can be extended to solve primality in LCS and LRS with a
bounded action set. We also obtain the following corollary.

Corollary 5. Let Λ be either LS, LCS, or LRS with a bounded action set.

(a) Given a characteristic formula φ ∈ Λ, there is a polynomial-time algorithm that outputs a
process p, for which φ is characteristic within Λ.

(b) Given φ ∈ Λ and process p, verifying whether φ is characteristic within Λ for p is in P.

5 Finding characteristic formulae modulo some preorder

Given a process p, the problem of constructing the characteristic formula for p has been studied
for a variety of preorders and equivalences [13, 4, 14, 15]. To resolve the complexity of the
problem we consider two different ways of representing formulae and measuring their size.
Given a formula φ, the first approach is to write φ explicitly and define its size to be equal
to the number of symbols that appear in φ as above; the second one involves representing φ
using recursive equations called declarations, and defining its declaration-size as the number of
required declarations. We denote the former by |φ| and the latter by decl(φ). For example,
formula φ2 = ⟨a⟩(⟨a⟩tt ∧ ⟨b⟩tt) ∧ ⟨b⟩(⟨a⟩tt ∧ ⟨b⟩tt) has size |φ2| = 13 and declaration-size
decl(φ2) = 3, as it can be represented by the equations φ2 = ⟨a⟩φ1 ∧ ⟨b⟩φ1, φ1 = ⟨a⟩φ0 ∧ ⟨b⟩φ0,
and φ0 = tt. The following propositions hold.

Proposition 6. Let Λ be one of the modal logics LS, LCS, LRS with a bounded action set.
Given a finite loop-free process p, finding the characteristic formula χ(p) for p within Λ is
NP-hard under polynomial-time Turing reductions, if χ(p) is explicitly written.

Proposition 7. Let Λ be one of the modal logics LS, LCS, LRS. Given a finite loop-free
process p, finding the characteristic formula χ(p) for p within Λ is in P, if χ(p) is given as a
set of declarations.

For example, consider process p2 of Figure 1. Formula φ2 = ⟨a⟩(⟨a⟩tt ∧ ⟨b⟩tt) ∧ ⟨b⟩(⟨a⟩tt ∧
⟨b⟩tt) is characteristic for p2 within LS . As we already mentioned, φ2 can be given much
more efficiently in declarative form than in explicit form. In general, the characteristic formula
(within LS) φn for process pn, where pn has the form of p2 and length n, is of exponential size
in |pn|, when φn is given in explicit form.
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p2

p1

p0

ba

ba

Figure 1: Process p2 for which φ2 is characteristic within LS .

Proposition 8. Assume that for every finite loop-free process p, there is a characteristic for-
mula within LTS for p, denoted by φp, such that decl(φp) is polynomial in |p| and every decla-
ration is of polynomial size in |p|. Given a finite loop-free process p, if φp can be computed in
polynomial time, then P = NP.

Proposition 9. Assume that the following two conditions are true:

1. For every finite loop-free process p, there is a characteristic formula within LTS for p,
denoted by φp, such that decl(φp) and every declaration are of polynomial size in |p|.

2. Given a finite loop-free process p and a formula φ in declarative form, deciding whether
φ is characteristic within LTS for p is in NP.

Then NP = coNP.

Thus, when χ(p) is given as a set of declarations, we isolate a sharp difference between the
complexity of finding χ(p) within any Λ ∈ {LS ,LCS ,LRS}, and finding χ(p) within LTS .

6 Conclusions
Finally, we mention some problems that still remain open and whose solutions we are currently
pursuing. First, we conjecture that for the trace simulation, deciding whether a formula is sat-
isfiable is NP-complete, deciding primality of formulae is coNP-complete, whereas if we assume
that |A| = 1, deciding both satisfiability and primality is in P. Yet another relevant problem is
the complexity of deciding whether an HML formula φ is logically equivalent to a formula φ′

in Λ, where Λ is one of LS , LCS , LRS , and LTS . Moreover, we want to address all the afore-
mentioned problems for other relations in van Glabbeek’s spectrum and over finite processes
with loops.
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Abstract

We compare the expressiveness between hyperlogics, i.e., logics interpreted over sets of
traces, defined as extensions of LTL, FO, and the µ-calculus.

1 Introduction

Hyperlogics are a family of logics that started emerging 15 years ago. They were first suggested
as a formalism rich enough to capture information flow security properties [5]. At their core,
hyperproperties are extensions of properties of traces to properties of sets of traces (denoted
T ). Having properties of sets of traces captures situations from computer science, where a
set of users (or executions) might exhibit some bad behavior, or might together assert some
guarantee. The most popular hyperlogic is HyperLTL [4], the extension of LTL, which uses
trace quantifiers and trace variables to refer to multiple traces. For example, the formula:

∀π∀π′G(aπ ≡ aπ′) (1)

expresses that all traces must either satisfy a, or all traces must satisfy ¬a, at each spot. This
property is trivially satisfied by any trace but can be violated when interpreted over sets.

An important question about logics of this type is whether they maintain (or somehow lift)
language-theoretic, complexity, or expressive equivalence results from their non-hyper coun-
terparts. For example, we know that every satisfiable LTL formula has a model that is an
ultimately periodic trace [12]. On an even more fundamental level, Kamp’s seminal theorem [9]
(in the formulation due to Gabbay et al. [8]) states that LTL is expressively equivalent to
first-order logic FO[<] over the natural numbers with order.

FO[<,E], i.e. FO[<], equipped with the “equal level” arrity 2 predicate E, was proposed
by [7] to capture the expressive power of HyperLTL. This logic is essentially interpreted over
multiple copies of the natural numbers with order, and thus the models of its sentences are sets
of traces, just like with hyperlogics. Variables in FO[<,E] are mapped to “places”, i.e., pairs of
a trace and an index in that trace, as opposed to a simple index in the case of FO[<]. E(x, y)
holds only when the two quantified variables x, y are mapped to the same position of possibly
different traces. For example, Property 1 is formulated as:

∀x.∀y.E(x, y) → (Pa(x) ≡ Pa(y)) (2)

where Pa(x) is a unary predicate that encodes the occurrence of symbol a at position x. It
turns out that this logic is strictly more expressive than HyperLTL [7]. Although the authors
of that work do propose a logic (called HyperFO) that is expressively equivalent to HyperLTL
by restricting FO[<,E], there is still no temporal counterpart to the full FO[<,E] logic.

∗The work reported in this paper is supported by the project ‘Mode(l)s of Verification and Monitorability’
(MoVeMent) (grant no 217987) of the Icelandic Research Fund.
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A property that is expressible in FO[<,E] but not HyperLTL, is: “there exists an n ∈ N,
such that t(n) = a, for all t ∈ T”. This property is a consensus property (and very relevant to
the context of hyperlogics), and it is also not expressible in HyperCTL∗ [3]. Thus, to produce a
temporal equivalent of FO[<,E], one would have to look at more expressive logics. Such a logic
could be the extension of µHML on hypertraces, which was recently studied by the authors and
collaborators [1]. In this work, we discuss the spectrum of expressiveness between these three
logics and prove that 1) the gap of expressivity between LTL and µHML is preserved in their
hyper extensions, and that 2) FO[<,E] does not cover the full Hyper-µHML in expressiveness.

2 Preliminaries

Let AP denote the set of all atomic propositions. An atomic proposition a, where a ∈ AP,
expresses some fact about states. Thus, all the propositional information for a state is described
by an action α ∈ Act = 2AP. TR stands for Actω, the set of all traces. A hypertrace T is a
subset of TR, and we denote with HTrc = 2TR the set of hypertraces. Let t ∈ TR be a trace.
We use t[i] to denote the element i of t, where i ∈ N. Hence, t[0] is the first element of t. We
write t[0, i] to denote the prefix of t up to and including element i, and t[i,∞] to denote the
infinite suffix of t beginning with element i. We can also lift the suffix notation to hypertraces
T ∈ HTrc: T [i,∞] == {t[i,∞] ∈ TR | t ∈ T}. In what follows, we consider formulas with trace
variables and trace quantifiers. We will call a formula closed if a trace quantifier binds every
occurrence of a trace variable.

HyperLTL We introduce here the logic HyperLTL as it was described originally in [4].

ψ ::= ∃π. ψ | ∀π. ψ | φ
φ ::= aπ | ¬φ | φ ∨ φ | Xφ | φUφ

True and false, written tt and ff, are respectively defined as aπ∨¬aπ and ¬tt. The satisfaction
judgment for HyperLTL formulas is written Π |=T ψ, where T is a set of traces, and Π : V → TR
is a trace assignment (i.e., a valuation), which is a partial function mapping trace variables to
traces in T . Let Π[π 7→ t] denote the same function as Π, except that π is mapped to t. One
can think of these semantics in two layers: one for ψ as it is, and one for φ that only depends
on Π. Satisfaction is defined as follows:

Π |=T ∃π. ψ iff there exists t ∈ T : Π[π 7→ t] |=T ψ
Π |=T ∀π. ψ iff for all t ∈ T : Π[π 7→ t] |=T ψ
Π |=T aπ iff a ∈ Π(π)[0]
Π |=T ¬φ iff Π ̸|=T φ
Π |=T φ1 ∨ φ2 iff Π |=T φ1 or Π |=T φ2

Π |=T Xφ iff Π[1,∞] |=T φ
Π |=T φ1Uφ2 iff there exists i ≥ 0 : Π[i,∞] |=T φ2

and for all 0 ≤ j < i we have Π[j,∞] |=T φ1

If Π∅ |=T φ holds for the empty assignment Π∅, then T satisfies φ.

Hyper-µHML We present Hyper-µHML as a logic to specify hyperproperties. Hyper-µHML
extends the linear-time interpretation of µHML [10, 11, 13] by allowing quantification over
traces. We assume two disjoint and countably infinite sets Π and V of trace variables and
recursion variables, ranged over by π and x, respectively.
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Definition 1. Formulae of Hyper-µHML are constructed as follows:

φ ::= tt | ff | φ ∧ φ | φ ∨ φ | maxx.φ | minx.φ | x
| ∃π.φ | ∀π.φ | π = π | π ̸= π | [aπ]φ | ⟨aπ⟩φ

To help us simplify the definition of the semantics, we consider hypertraces of a fixed size
k, and we identify hypertraces with k-tuples T = (T (0), T (1), . . . , T (k − 1)) ∈ HTrck = TRk.
The semantics of a Hyper-µHML formula φ is defined for each such k by exploiting two partial
functions: ρ : V ⇀ 2HTrck , that assigns a set of hypertraces of size k to all free recursion variables
of φ, and σ : Π ⇀ {0, 1, . . . , k − 1}, that assigns a position in each tuple T to each free trace
variable of φ. The semantics is given by:

JttKρσ = HTrck JffKρσ = ∅ JxKρσ = ρ(x)

Jφ ∧ φ′Kρσ = JφKρσ ∩ Jφ′Kρσ Jφ ∨ φ′Kρσ = JφKρσ ∪ Jφ′Kρσ
Jmax x.ψKρσ =

⋃
{S | S ⊆ JψKρ[x 7→S]

σ } Jmin x.ψKρσ =
⋂

{S | S ⊇ JψKρ[x 7→S]
σ }

J∃π.φKρσ =

k−1⋃

i=0

JφKρσ[π 7→i] J∀π.φKρσ =

k−1⋂

i=0

JφKρσ[π 7→i]

Jπ = π′Kρσ = {T ∈ HTrck | T (σ(π) = T (σ(π′))} Jπ ̸= π′Kρσ = HTrck \ Jπ = π′Kρσ
J[aπ]φKρσ = {T | σ(π)[0] = a implies T [1,∞] ∈ JφKρσ}
J⟨aπ⟩φKρσ = {T | σ(π)[0] = a ∧ T [1,∞] ∈ JφKρσ)}

Whenever φ is closed, the semantics is given by JφK∅∅, where ∅ denotes the partial function

with empty domain, and we simply write JφK instead of JφK∅∅. We use the standard notation
T |= φ to denote that the set of traces T satisfies φ (and similarly for T ̸|= φ). As an example,
consider the alphabet {a, b}. The property

∀π.max x.(⟨bπ⟩x ∨ (∃π′.(π′ ̸= π) ∧ ⟨aπ′⟩x)) (3)

means that, for every trace, whenever there is an a, there is another trace that also has a.

The logic FO[<,E]

Definition 2 (From [7]). FO[<,E] is defined over the signature {E, <} ∪ {Pa | a ∈ AP},
i.e., with atomic formulas x = y, x < y, E(x, y), and Pa(x) for a ∈ AP, and disjunction,
conjunction, negation, and existential and universal quantification over elements.

The semantics of this logic is the standard semantics of FO and comes in accordance with
the semantics of FO[<]. We interpret FO[<,E] formulas over a set of traces T ⊆ Actω and an
interpretation I : V → T ×N, which assigns a tuple (t, n) to each variable x, with t ∈ T , n ∈ N.
Given a set of traces T, the operations <,E, and Pa, a ∈ AP are interpreted as:

• <T := {((t, n), (t, n′)) | t ∈ T and n < n′ ∈ N},

• ET := {((t, n), (t′, n)) | t, t′ ∈ T and n ∈ N}, and

• PT
a := {(t, n) | t ∈ T and n ∈ N and a ∈ t(n)}.

3
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3 Expressiveness comparisons

We start the comparison of expressiveness from the single-trace setting. Hyper-µHML is an
extension of the linear-time interpretation of µHML. The logic µHML is expressive enough to
strictly include LTL, and even CTL∗ in its usual, branching-time interpretation [2]. Quantifica-
tion over traces and trace comparisons are allowed in any part of the formula, which means our
syntax subsumes the syntax of HyperLTL, using straightforward translations. We show that
the strictness of the inclusion of LTL in µHML is preserved for their hyper-trace extensions.

Theorem 1. Hyper-µHML is strictly more expressive than HyperLTL.

Proof. The simple inclusion follows from the embedding of LTL in µHML and the more liberal
ability to quantify over traces. To demonstrate the strictness of this inclusion, we bring forward
two arguments. First, we reference the work of Wolper in [14], which describes formulas of
µHML that require an event a to occur at least in all even positions of a trace. The following
µHML formula describes exactly this (over the set of actions a, b):

φe := maxx.([a]⟨a⟩x ∧ [b]⟨a⟩x) (4)

Let φhe be the formula that occurs if one adds an existential trace quantifier ∃π at the beginning
of φe, and replaces all modalities with π-indexed ones:

φhe := ∃π.maxx.([aπ]⟨aπ⟩x ∧ [bπ]⟨aπ⟩x), (5)

whose evaluation over singleton hypertraces coincides with the evaluation of φe. Assume
now that a formula φh−LTL is expressively equivalent to φhe

over hypertraces. We would like
to use this to extract an LTL formula that is expressively equivalent to φe. We cannot trivially
claim that φh−LTL only contains a single quantifier ∃π. Instead, though, we know that over
singleton hypertraces, say for T = {t0}, T |= φh−LTL iff T |= φhe

. Since T contains only a single
trace, we know that all the trace variables in φh−LTL must be mapped to t0. Consequently,
all propositional variables that occur in φh−LTL must be mapped to t0. Therefore, for this
variable mapping, we get an LTL formula that expresses exactly that a trace (t0) satisfies
Wolper’s property. We then replace all propositional variables with non-trace quantified ones
and, remove all quantifiers, which brings us to plain LTL, and arrive at a contradiction.

Remark 1. In the proof above, we demonstrate that the property “there exists a trace for
which a holds on at least all even positions” is not expressible in HyperLTL but is expressible
in Hyper-µHML. The same argument can be repeated for any period k.

Furthermore, we demonstrate that Hyper-µHML is more expressive than FO[<,E]. In-
tuitively, one factor that gives Hyper-µHML significant expressive power is its ability to use
quantifiers at any part of the syntax. This is also allowed in other temporal logics, such as,
for example, HyperCTL∗. A key difference is that Hyper-µHML can nest quantifiers within
a fixed-point operator. For example, we see that the property from Example 3 will poten-
tially spawn an unbounded number of quantifiers due to the recursion unfolding caused by
encountering a events. We argue that due to the ability to nest quantifiers at any point of our
syntax, Hyper-µHML is more expressive than HyperLTL, and it can express properties that
HyperCTL∗ and FO[<,E] cannot.

Theorem 2. Hyper-µHML contains properties not expressible in HyperCTL∗ and FO[<,E].

4
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Proof. For the first part, we refer the reader to the work of Bozzelli, Maubert, and Pinchinat [3],
who show that the property “there is an n ≥ 0 such that a ̸= t(n) for every t ∈ T” is
not expressible in HyperCTL∗. In Hyper-µHML, this property is expressible (over the set of
actions {a, b}) with the formula:

minx.((∀π⟨bπ⟩tt) ∨ (∀π′([aπ′ ]x ∧ [bπ′ ]x))) . (6)

In this formula, either all traces have b, or all traces take a step. Since this happens within the
scope of a minimal fix-point, we get that to satisfy the formula, this process needs to terminate,
and thus, we get exactly the property we wanted.

For the second part, we use Wolper’s property φhe
(Property 5). Due to the expressive

equivalence of LTL and FO[<] (from [8]), we can use a similar proof as for Theorem 1. The
key is after projecting an FO[<,E] formula over uniset hypertraces to replace all occurrences
of E(x, y) with x = y, as the two predicates coincide over such models. This leads us again
to a property in FO[<] which expresses φE (Property 4, and we get a contradiction from the
expressive equivalence of FO[<] and LTL (from [8]).

4 Conclusion and future work

We have shown that the expressive power of Hyper-µHML is above HyperLTL, and possibly
above (or at least incomparable with) FO[<,E]. We would like to extend Theorem 1 to fully
characterize whether FO[<,E] is contained in Hyper-µHML. In case they are incomparable,
it would suffice to produce a property in FO[<,E] that is not expressible in Hyper-µHML.
Any properties we tried to that end, however, were not able to distinguish the two logics.
Thus, we are left with the conjecture that Hyper-µHML subsumes FO[<,E]. At this point, we
have partially produced an embedding of FO[<,E] into Hyper-µHML, and we believe one does
exist. Finishing such an embedding would also imply that to produce a temporal equivalent
of FO[<,E], one would need to find a middle ground between the syntax of Hyper-µHML
and HyperLTL. On the other hand, a non-temporal equivalent of Hyper-µHML in the style of
FO[<,E] could be MSO over hypertraces (and possibly with the equality predicate E).

In the future, we aim to answer the following questions. The first is to fully produce such
an encoding and prove its correctness. The second is to find a temporal equivalent of FO[<,E].
We believe this is not a trivial question at all. For instance, increasing the quantification power
of HyperLTL to allow non-normalized formulae would not be enough since HyperCTL∗, which
allows this, cannot express the consensus property. Moreover, we are interested in finding a
classical logic characterization of Hyper-µHML. As we discussed, HyperLTL is expressively
equivalent to a fragment of FO[<,E], as proven in [7], and as we have shown Hyper-µHML
is not the temporal counterpart of FO[<,E]. We would like to fill this expressiveness gap. A
good candidate for this could be some version of MSO over sets of traces. Indeed, there is
work already done in this direction (see [6]), although so far, there seems to be no logic that
can capture the properties 5, or 6. Finally, just like it is known that µHML corresponds to ω-
regular languages, it would be interesting to find language-theoretic counterparts of HyperLTL,
Hyper-µHML, and FO[<,E].
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Abstract

Low treedepth decompositions are central to the structural characterizations of bounded
expansion classes and nowhere dense classes, and the core of main algorithmic properties of
these classes, including fixed-parameter (quasi) linear-time algorithms checking whether a
fixed graph F is an induced subgraph of the input graph G. These decompositions have
been extended to structurally bounded expansion classes and structurally nowhere dense
classes, where low treedepth decompositions are replaced by low shrubdepth decompositions.
In the emerging framework of a structural graph theory for hereditary classes of structures
based on tools from model theory, it is natural to ask how these decompositions behave
with the fundamental model theoretical notions of dependence (alias NIP) and stability.

Our first main result proves that the model theoretical notions of NIP and stable classes
are transported by decompositions. Precisely: Let C be a hereditary class of graphs.
Assume that for every p there is a hereditary NIP class Dp with the property that the
vertex set of every graph G ∈ C can be partitioned into Np = Np(G) parts in such a way
that the union of any p parts induce a subgraph in Dp and logNp(G) ∈ o(log ∣G∣). We prove
that then C is (monadically) NIP. Similarly, if every Dp is stable, then C is (monadically)
stable. Results of this type lead to the definition of decomposition horizons as closure
operators. We establish some of their basic properties and provide several further examples
of decomposition horizons.

Our second main result establishes that every stable hereditary graph class can be
decomposed in such a manner into the much simpler classes of bounded shrubdepth,
generalizing the initial result concerning low treedepth decompositions of nowhere dense
classes.

1 Introduction and Previous Work

In the late 90’s, Baker [2] introduced the shifting strategy, allowing a linear time approximation
scheme for independent sets on planar graphs. The idea is to start a breadth-first search at a
vertex v of a planar graph, which partitions the vertex set of the graph into layers L1, . . . , Lh
and to fix an integer D. Then, for given s ∈ [D], by deleting all the layers Li with i ≡ s mod D,
one gets a graph with treewidth bounded by 3D, on which a maximum independent set can be
found in linear time. Considering all the possible values of s, we obtain a (1+ 1/D)-approximate
solution of the problem. Note that grouping the layers Li with i in a same class modulo D
yields a partition of the vertex set into D parts V0, . . . , VD−1 such that the union of any p <D
of them induces a subgraph with treewidth at most 3p + 4.
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This approach was further developed by DeVos et al. [7], who proved in particular that for
every proper minor closed class of graphs C and every integer p, there exists an integer Np
such that the vertex set of every graph G ∈ C can be partitioned into Np parts, each p of them
inducing a subgraph with treewidth at most p − 1.

This result has been further extended by two of the authors of the present paper in a
characterization of both bounded expansion classes and nowhere dense classes. Before stating
these results, recall that the treedepth of a graph G is the minimum depth of a rooted forest F ,
such that G is a subgraph of the closure of F (the graph obtained from F by adding edges
between each vertex and its ancestors). With this definition, the characterization theorems read
as follows.

Theorem 1.1 ([15]). A class C has bounded expansion if and only if, for every parameter p,
there is an integer Np such that the vertex set of each graph G ∈ C can be partitioned into at
most Np parts, each p of them inducing a subgraph with treedepth at most p.

Theorem 1.2 (see [16,17]). A class C is nowhere dense if and only if, for every parameter p
and for every graph G ∈ C there is an integer Np(G) ∈ ∣G∣o(1), such that the vertex set of G can
be partitioned into at most Np(G) parts, each p of them inducing a subgraph with treedepth at
most p.

The notions of classes with bounded expansion and of nowhere dense classes are central to
the study of classes of sparse graphs [16]. Note that the treewidth of a graph is bounded from
above by its treedepth and hence by the result of DeVos et al. [7] and Theorem 1.1 every proper
minor closed class has bounded expansion. Surprisingly, it appeared that for monotone classes
of graphs, the notion of nowhere dense class of graphs coincides with fundamental dividing lines
introduced in modern model theory [21]:

Theorem 1.3 ([1]). For a monotone class of graphs C , the following are equivalent:

(1) C is nowhere dense;
(2) C is stable;
(3) C is monadically stable;

(4) C is NIP;
(5) C is monadically NIP.

For general hereditary classes of graphs, we do not have the collapse of the notions of stability,
monadic stability, NIP, and monadic NIP stated in Theorem 1.3 for monotone classes. However,
we still have the following collapses:

Theorem 1.4 ([5]). A hereditary class of graphs is monadically NIP if and only if it is NIP. A
hereditary class of graphs is monadically stable if and only if it is stable.

The study of monadic stability and monadic NIP and their relations with first-order trans-
ductions [3] opened the way to the study of structurally sparse classes of graphs, that is of
classes of graphs that are first-order transductions of classes of sparse graphs [6, 9, 10, 18–20].
Intuitively, a (first-order) transduction is a way to construct a set of target graphs from the
vertex-colorings of a source graph by fixed first-order formulas, and, by extension, a new class of
graphs from a given class of graphs.

Extending Theorem 1.1, first-order transductions of bounded expansion classes have been
characterized in terms of low shrubdepth colorings. Recall the following high level characteriza-
tion of classes with bounded shrubdepth [11, 12]: A class D has bounded shrubdepth if it is a
transduction of a class of bounded depth rooted forests.
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Theorem 1.5 ([10]). A class C is a first-order transduction of a class with bounded expansion if
and only if, for every parameter p, there is an integer Np and a class Dp with bounded shrubdepth,
such that the vertex set of each graph G ∈ C can be partitioned into at most Np parts, each p of
them inducing a subgraph in Dp.

Theorem 1.5 can be seen as a generalization of Theorem 1.1 as shrubdepth is a dense analogue
of treedepth. On the other hand, only one direction of Theorem 1.2 has been extended to
transductions of nowhere dense classes.

Theorem 1.6 ([8]). Let C be a first-order transduction of a nowhere dense class. Then, for
every parameter p there is a class Dp with bounded shrubdepth, such that for every graph G ∈ C
there is an integer Np(G) ∈ ∣G∣o(1), with the property that the vertex set of G can be partitioned
into at most Np(G) parts, each p of them inducing a subgraph in Dp.

Similar decompositions, where p parts induce a subgraph with bounded rankwidth were
introduced in [13], while classes having such decompositions where p parts induce a subgraph
with bounded linear rankwidth were discussed in [20]. However, it was not known whether such
classes are monadically NIP. This question, which appears for instance in [20, Figure 3] and
again in [19], will get a positive answer as a direct consequence of Theorem 2.1, which is our
first main result.

The theoretical significance of first-order transductions of nowhere dense classes is witnessed
by the following conjecture.

Conjecture 1.7 ([9]). A class of graphs is monadically stable if and only if it is a first-order
transduction of a nowhere dense class of graphs.

Conjecture 1.7 can be refined as follows.

Conjecture 1.8. For a hereditary class of graphs C , the following properties are equivalent:

(1) C is a first-order transduction of a nowhere dense class;
(2) C admits low shrubdepth decompositions with no(1) parts;
(3) C is monadically stable;
(4) C is stable.

By Theorem 1.6, property (1) implies property (2). That property (2) implies property
(3) will follow from our main result (Theorem 2.1). By Theorem 1.4, properties (3) and (4)
are equivalent. Closing the chain of implications corresponds to Conjecture 1.7, which we now
can decompose into two weaker statements: that property (3) implies property (2), and that
property (2) implies property (1). Our second main result (Theorem 2.2) is that (3) implies (2).

2 Statement of the results

Our first main result show that NIP and stability are fixed under taking decompositions as in
Theorems 1.1, 1.2, 1.5 and 1.6.

Theorem 2.1. Let C be a hereditary graph class. Suppose that for every parameter p there is an
NIP (resp. stable) class Dp such that for every graph G ∈ C there is an integer Np(G) ∈ ∣G∣o(1),
with the property that the vertex set of G can be partitioned into at most Np(G) parts, each p of
them inducing a subgraph in Dp. Then C is NIP(resp. stable).
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In particular, this proves that property (2) implies property (4) in Conjecture 1.8, and so it
follows that Conjectures 1.7 and 1.8 are equivalent. As mentioned after Theorem 1.6, this also
proves that classes admitting low (linear) rankwidth decompositions are monadically NIP.

To place this theorem in a broader context, we introduce the notion of decomposition horizons.
These seem to be of significant independent interest, and we prove some general properties.
Theorem 2.1 can then be stated as “NIP and stability are decomposition horizons”.

We define a hereditary class property to be a downset Π of hereditary graph classes, that is, a
set of hereditary classes such that if C ∈ Π and D is a hereditary class with D ⊆ C , then D ∈ Π.

Definition 1. Let Π be a hereditary class property, let f ∶ N→ N be a non-decreasing function
and let p be a positive integer. We say that a class C has an f -bounded Π-decomposition with
parameter p if there exists Dp ∈ Π such that, for every graph G ∈ C , there exists an integer
N ≤ f(∣G∣) and a partition V1, . . . , VN of the vertex set of G with G[Vi1 ∪ ⋅ ⋅ ⋅ ∪ Vip] ∈ Dp for all
i1, . . . , ip ∈ [N].

When f is a constant function, we say that C has a bounded-size Π-decomposition with
parameter p; when f is a function with f(n) = no(1), we say that C has a quasi-bounded-size
Π-decomposition with parameter p. If a class C has a bounded-size (resp. a quasi-bounded-size)
Π-decomposition with parameter p for each positive integer p, we say that C has bounded-size
Π-decompositions (resp. quasi-bounded-size Π-decompositions).

For instance, by Theorem 1.1 and Theorem 1.2, considering the hereditary class property
“bounded treedepth”, we have that a class C has bounded-size bounded treedepth decompositions
if and only if it has bounded expansion, and it has quasi-bounded-size bounded treedepth
decompositions if and only if it is nowhere dense. With these definition in hand, it is natural to
consider the following constructions of graph class properties:

Definition 2. For a hereditary class property Π we define the properties Π+ (resp. Π∗) as
follows:

• C ∈ Π+ if C has bounded-size Π-decompositions;
• C ∈ Π∗ if C has quasi-bounded-size Π-decompositions.

For every hereditary class property Π, we show that (Π+)+ = Π+ and (Π∗)+ = Π∗ (but we
are not aware of any hereditary ( NIP) class property Π, such that Π∗ ≠ (Π∗)∗). Also, for
every two hereditary class properties Π1 and Π2, we show that (Π1 ∩ Π2)+ = Π+1 ∩ Π+2 and(Π1 ∩Π2)∗ = Π∗1 ∩Π∗2, which suggests that, for every hereditary class property Π, there might
exist an inclusion-minimum class Λ with Λ+ = Π+. On the other hand, if (Πi)i∈I is a family of
hereditary class properties indexed by a set I, then (⋃i∈I Πi)+ = ⋃i∈I Π+i and (⋃i∈I Πi)∗ = ⋃i∈I Π∗i .
In particular, the inclusion order of decomposition horizons is a distributive lattice.

Definition 3. We say that a hereditary class property Π is a decomposition horizon if Π∗ = Π.
If Λ is a hereditary class property, the decomposition horizon of Λ is the smallest decomposition
horizon including Λ.

For example, the hereditary class property of all hereditary classes excluding a fixed graph H
is a decomposition horizon. We show that several hereditary class properties are decomposition
horizons, including

• the class properties “bounded maximum degree after deletion of at most k vertices”,
• the class property “transduction of a class with bounded maximum degree” (this property

is equivalent to the model-theoretic property “mutually algebraic” [6], hence to the
model-theoretic property “monadic NFCP” [14]),
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• the class property “weakly sparse” (i.e. “biclique-free”) of classes excluding a fixed biclique
as a subgraph,

• the class property “nowhere dense”.

Our examples include an infinite countable chain of decomposition horizons (the class
properties“bounded maximum degree after deletion of at most k vertices”), witnessing some
richness of the inclusion order on decomposition horizons.

Our second main result confirms (3) implies (2) from Conjecture 1.8.

Theorem 2.2. Monadic stability is the decomposition horizon of the class property “bounded
shrubdepth”.

From this, we obtain some combinatorial consequences for monadically stable graph classes.
For example, we get the following very strong version of the Erdös-Hajnal property.

Corollary 1. Every graph G in a hereditary stable class C has a clique or an independent set
of size ΩC ,ϵ(∣G∣1/2−ϵ) for every ϵ > 0. Furthermore, this cannot be improved to ΩC (∣G∣1/2).

While Theorem 2.2 provides an analogue of Theorem 1.2 for monadically stable classes,
monadically NIP hereditary classes seem to be more elusive. It was proved in [4] that for
hereditary classes of ordered graphs, being NIP is equivalent to having bounded twin-width.
On the other hand, classes with quasi-bounded-size bounded twin-width decompositions are
NIP (as classes with bounded twin-width are NIP) and include transductions of nowhere dense
classes (thus, conjecturally, all stable hereditary classes). Hence, it is a natural question whether
every NIP hereditary class has quasi-bounded-size bounded twin-width decompositions.
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Abstract

For n ∈ N and ε > 0, given a sufficiently long sequence of events in a probability
space all of measure at least ε, some n of them will have a common intersection. A
more subtle pattern: for any 0 < p < q < 1, we cannot find events Ai and Bi so that
µ (Ai ∩Bj) ≤ p and µ (Aj ∩Bi) ≥ q for all 1 < i < j < n, assuming n is sufficiently large.
This is closely connected to model-theoretic stability of probability algebras. We survey
some results from our recent work in [7] on more complicated patterns that arise when
our events are indexed by multiple indices. In particular, how such results are connected
to higher arity generalizations of de Finetti’s theorem in probability, structural Ramsey
theory, hypergraph regularity in combinatorics, and model theory.

1 Intersections in a sequence of sets of positive measure

The following is a basic fact on intersections of sets of positive measure in probability spaces
(there exist more precise infinitary/density versions, e.g. Bergelson’s lemma in dynamics [5]):

Fact 1. For every ε ∈ R>0 and n ∈ N there exists N ∈ N satisfying the following. If (X,B, µ)
is a probability space (i.e. B is a σ-algebra of subsets of X and µ is a countably additive
probability measure on B) and Ai ∈ B are measurable sets with µ(Ai) ≥ ε for 1 ≤ i ≤ N , then
µ
(⋂

i∈I Ai
)
> 0 for some I ⊆ [N ] = {1, . . . , N} with |I| = n.

We sketch an overcomplicated proof of this fact in the remainder of Section 1, as a warm up for
what comes later. If the random variables 1Ai

: X → {0, 1} in Fact 1 were independent, then

of course µ
(⋂

i∈[n]Ai

)
=
∏
i∈[n] µ(Ai) ≥ εn > 0. We will reduce to this case. Assume from

now on that for some fixed ε > 0 and n, no N ∈ N satisfies the claim.

1.1 Homogenizing the sequence

Using Ramsey’s theorem, we can homogenize our sequence arbitrarily well. E.g., we could
assume that for any fixed δ > 0 and k, µ(Ai1 ∩ . . . ∩ Aik) ≈δ µ(Aj1 ∩ . . . ∩ Ajk) for any
i1 < . . . < ik, j1 < . . . < jk, and similarly for arbitrary Boolean combinations of the Ai’s.

Using a compactness argument (e.g. taking Loeb measure on an ultraproduct of counterex-
amples), we can thus find some large probability space (X,B, µ) and sets Ai ∈ B, µ(Ai) ≥ ε
for i ∈ N, still intersection of any n of them has measure 0, so that the sequence of random
variables (1Ai : i ∈ N) is spreadable.

∗Chernikov was partially supported by the NSF CAREER grant DMS-1651321 and by the NSF Research
Grant DMS-2246598.
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1.2 de Finetti’s theorem

Definition 1. A sequence of [0, 1]-valued random variables (ξi : i ∈ N) is spreadable if for
every n ∈ N and i1 < . . . < in, j1 < . . . < jn we have (ξi1 , . . . , ξin) =dist (ξj1 , . . . , ξjn).

For example, every i.i.d. (independent, identically distributed) sequence of random variables
is spreadable. The converse holds “up to mixing”:

Fact 2 (de Finetti’s theorem). If an infinite sequence of random variables (ξi : i ∈ N) on
(X,B, µ) is spreadable then there exists a probability space (X ′,B′, µ′), a Borel function f :
[0, 1]2 → [0, 1] and a collection of Uniform[0, 1] i.i.d. random variables {ζi : i ∈ N}∪{ζ∅} on X ′

so that (ξi : i ∈ N) =dist (f (ζi, ζ∅) : i ∈ N).

This gives us an i.i.d. counterexample to Fact 1, and we can conclude.

1.3 Exchangeable versus spreadable sequences

More precisely, de Finetti obtained this conclusion under a stronger assumption that the se-
quence (ξi : i ∈ N) is exchangeable, that is: for any n ∈ N, any permutation σ ∈ Sym(n) and
i1 < . . . < in we have (ξi1 , . . . , ξin) =dist (ξiσ(1)

, . . . , ξjσ(n)
). And then Ryll-Nardzewski [20]

proved that exchangeability is equivalent to spreadability. Curiously, Ryll-Nardzewski has a
well-known theorem in model theory, but here he worked as a probabilist. It turns out that
this result is closely connected to stability — a central notion in modern model theory.

2 Model theoretic stability of probability algebras

Modern model theory begins with Morley’s Categoricity Theorem: for a countable theory T , if
it has only one model of some uncountable cardinality (up to isomorphism), then it has only
one model of every uncountable cardinality. Morley conjectured [18] a generalization: for a
countable theory T , the number of its models of size κ is non-decreasing on uncountable κ.

In his solution of Morley’s conjecture [21], Shelah isolated the importance of stable theories
and developed a lot of machinery to analyze models of stable theories. Stability was rediscovered
many times in various contexts, e.g. by Grothendieck in his work on Banach spaces, in dynamics
as WAP systems (Weakly Almost Periodic), in machine learning as Littlestone dimension, etc.

In particular, probability algebras are stable, viewed as structures in continuous logic. This
is implicit in Ryll-Nardzewski’s theorem (“every indiscernible sequence is totally indiscernible”),
later in Krivine and Maurey [17], explicit in Ben Yaacov [24]. A more general version was given
by Hrushovski (proved using array de Finetti, discussed in Section 3.3), and Tao gave a short
elementary proof [23]:

Fact 3. For any 0 ≤ p < q ≤ 1 there is N satisfying: if (X,B, µ) is a probability space, and
A1, . . . , An, B1, . . . , Bn ∈ B satisfy µ(Ai ∩ Bj) ≥ q and µ(Aj ∩ Bi) ≤ p for all 1 ≤ i < j ≤ n,
then n ≤ N .

This result has many applications: Hrushovski’s work on approximate subgroups [10], Tao’s
algebraic regularity lemma [22], work in topological dynamics by Tsankov, Ibarlucia [11], etc.

3 Intersecting multi-parametric families of events

We obtain a higher arity generalization of Fact 1:

2
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Theorem 1 (Chernikov, Towsner [7]). For every finite bipartite graph H = (V0,W0, E0) and
ε ∈ (0, 1] there exists a finite bipartite graph G = (V,W,E) and δ > 0 (depending only on
H and ε) satisfying the following. Assume that (X,B, µ) is a probability space, and for every
(v, w) ∈ V × W a measurable set Av,w ∈ B so that: for any (v, w) ∈ E, (v′, w′) /∈ E we
have µ(Av,w) − µ(Av′,w′) ≥ ε. Then there exists an induced subgraph H ′ = (V ′,W ′, E′) of G
(i.e. V ′ ⊆ V,W ′ ⊆W and E′ = E ∩ (V ′ ×W ′)) isomorphic to H so that:

µ




 ⋂

(v,w)∈E′

Av,w


 ∩


 ⋂

(v,w)∈(V ′×W ′)\E′

X \Av,w




 ≥ δ.

More precisely, Theorem 1 follows from [7, Lemma 10.13] and compactness. With high
probability, a sufficiently large G taken at random will work. More generally, we prove it
there for partite hypergraphs of any arity instead of just graphs. The question is motivated
by Keisler randomizations of first-order structures [16] and whether they preserve NIP (Ben
Yaacov, related to work of Talagrand on VC-dimension for functions [4]) and its higher arity
generalization n-dependence (where Ben Yaacov’s analytic proof for n = 1 does not seem to
generalize).

In what follows we outline a proof of Theorem 1. The overall strategy is similar to the proof
above for sequences of events, but each of the steps becomes harder.

3.1 Structural Ramsey theory, and infinite limits of Ramsey classes

Let K be a class of finite L0-structures, where L0 is a relational language (for example, finite
graphs). For A,B ∈ K, let

(
B
A

)
be the set of all A′ ⊆ B s.t. A′ ∼= A (we work with substructures

instead of embeddings for simplicity).

Definition 2. K is Ramsey if for any A,B ∈ K and k ∈ ω there is some C ∈ K s.t. for any

coloring f :
(
C
A

)
→ k, there is some B′ ∈

(
C
B

)
s.t. f ↾

(
B′

A

)
is constant.

The usual Ramsey theorem means: the class of finite linear orders is Ramsey. The subject
of structural Ramsey theory started with the following fundamental result of Nesétril, Rödl [19]
and Abramson, Harrington [1]:

Fact 4. For any k ∈ N≥1, the class of all finite ordered k-hypergraphs is Ramsey.

Fact 5. Given a Ramsey class K of finite structures, there exists a unique (up to isomorphism)

countable structure K̃ (called the Fräıssé limit of K) so that the class of its finite substructures

is precisely K and K̃ is homogeneous, i.e. if K0 and K1 are finite substructures of K̃ and
f : K0 → K1 is an isomorphism, then f extends to an automorphism of the whole structure K̃.

E.g., if K is the class of all graphs, its limit K̃ is the countable Rado’s random graph; and
if K is the class of finite linear orders, then its limit is (Q, <).

Understanding which structures are Ramsey is an active subject, with connections to model
theory and topological dynamics (Ramsey property of K is equivalent to the extreme amenabil-

ity of the group Aut(K̃) — via Kechris-Pestov-Todorcevic correspondence [15]).

3.2 Finding an “exchangeable” counterexample

For any k ∈ N≥1, using that the class of all finite ordered partite k-hypergraphs is Ramsey
(viewed as structures in the language E,P1, . . . , Pk, < with Pi a partition of vertices, E ⊆

3
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P1 × . . .×Pk and Pi < Pj for i < j, e.g. [6, Appendix A]), we let OHk denote its Fräıssé limit.
And we let Hk be its reduct forgetting the ordering.

Assuming that Theorem 1 fails, by Ramsey property and compactness (model theoretic jar-
gon: extracting a generalized indiscernible) we can find some large probability space (X,B, µ),
0 < r < s < 1 and sets Av,w ∈ B for all v, w vertices of OH2 = (E;V,W ) so that:

• (v, w) ∈ E =⇒ µ(Av,w) ≥ s and (v, w) /∈ E =⇒ µ(Av,w) ≤ r;

• for any two isomorphic (as ordered bipartite graphs) substructures H1, H2 of OH2,

(1Av,w
: v, w ∈ H1) =dist (1Av,w

: v, w ∈ H2).

3.3 (Relatively) Exchangeable random structures

This indiscernibility guarantees certain “exchangeability” in the probabilistic sense. Exchange-
able sequences (de Finetti, Section 1.2) and arrays (Aldous-Hoover-Kallenberg, see [14]) of
random variables can be presented “up to mixing” using i.i.d. random variables, and we need
a certain generalization to relational structures which were studied recently by a number of
authors [8, 2, 12].

Definition 3. (1) Let L′ = {R′
1, . . . , R

′
k′}, R′

i a relation symbol of arity r′i. By a random

L′-structure we mean a (countable) collection of random variables
(
ξin̄ : i ∈ [k′], n̄ ∈ Nr′i

)
on

some probability space (Ω,F , µ) with ξin̄ : Ω → {0, 1}.
(2) Let now L = {R1, . . . , Rk} be another relational language, with Ri a relation symbol

of arity ri, and let M = (N, . . .) be a countable L-structure with domain N. We say that

a random L′-structure
(
ξin̄ : i ∈ [k′], n̄ ∈ Nr′i

)
is M-exchangeable if for any two finite subsets

A = {a1, . . . , aℓ}, A′ = {a′1, . . . , a′ℓ} ⊆ N

qftpL (a1, . . . , aℓ) = qftpL (a′1, . . . , a
′
ℓ) =⇒

(
ξin̄ : i ∈ [k′], n̄ ∈ Ar

′
i

)
=dist

(
ξin̄ : i ∈ [k′], n̄ ∈ (A′)r

′
i

)
.

3.4 A higher amalgamation condition on the indexing structure

Let K be a collection of finite structures in a relational language L closed under isomorphism.

Definition 4. For n ∈ N≥1, we say that K satisfies the n-disjoint amalgamation property
(n-DAP) if for every collection of L-structures (Mi = (Mi, . . .) : i ∈ [n]) with Mi ∈ K, Mi =
[n] \ {i} and Mi|[n]\{i,j} = Mj |[n]\{i,j} for all i ̸= j ∈ [n], there exists an L-structure M =
(M, . . .) ∈ K such that M = [n] and M|[n]\{i} = Mi for every 1 ≤ i ≤ n.

We say that an L-structure M satisfies n-DAP if the collection of its finite substructures
does. E.g., the generic k-hypergraph Hk satisfies n-DAP for all n [7, Proposition 9.6], but
(Q, <) fails 3-DAP.

3.5 Presentation for random relational structures

Fact 6 (Crane, Towsner [8]; generalizing Aldous-Hoover-Kallenberg [3, 9, 13]). Let L′ = {R′
i :

i ∈ [k′]},L = {Ri : i ∈ [k]} be finite relational languages with all R′
i of arity at most r′, and

M = (N, . . .) a countable homogeneous L-structure that has n-DAP for all n ≥ 1. Suppose that

4
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(
ξin̄ : i ∈ [k′], n̄ ∈ Nr′i

)
is a random L′-structure that is M-exchangeable, such that the relations

R′
i are symmetric with probability 1.
Then there exists a probability space (Ω′,F ′, µ′), {0, 1}-valued Borel functions f1, . . . , fr′

and a collection of Uniform[0, 1] i.i.d. random variables (ζs : s ⊆ N, |s| ≤ r′) on Ω′ so that
(
ξin̄ : i ∈ [k′], n̄ ∈ Nr

′
i

)
=dist

(
fi

(
M|rng n̄, (ζs)s⊆rng n̄

)
: i ∈ [k′], n̄ ∈ Nr

′
i

)
,

where rng n̄ is the set of its distinct elements, and ⊆ denotes “subsequence”.

3.6 Getting rid of the ordering

Our counterexample from Section 3.2 is only guaranteed to be OHn-exchangeable (and the or-
dering is unavoidable in the Ramsey theorem for hypergraphs) — but the presentation theorem
in Fact 6 requires n-DAP (and linear orders fail 3-DAP). However, using Fact 3 inductively, we
can show that OHn-exchangeability already implies Hn-exchangeability (i.e., with respect to
the reduct forgetting the ordering), using that the theory of probability algebras is stable! (See
[7, Lemma 10.15] for the details.)

Applying the exchangeable presentation to the counterexample, we finally reduce (modulo
some mixing) to working with independent random variables in the proof of Theorem 1, and
can conclude the proof.

4 Open questions and future directions

Question 1. Our proof of Theorem 1 is non-constructive and relies on a compactness argument.
It would be interesting to obtain explicit bounds on |G| and δ in terms of H and ε. Do there
exist infinitary/density versions of this result (similarly to Fact 1)?
Question 2. Apart from k-partite k-hypergraphs, which other classes of structures satisfy an
analog of Theorem 1? E.g., there is a growing list of Ramsey classes of finite structures, for
which also an appropriate analog of Fact 6 holds. The following example illustrates that these
two properties alone are not sufficient:
Example (Tim Austin) Theorem 1 does not hold for graphs (as opposed to bipartite graphs).
Indeed, let H be the triangle K3, and ε = 1/2. Consider any graph G = (V,E). On some
probability space (Ω,Σ, µ), let (πv : v ∈ V ) be a process of independent uniform {0, 1}-valued
random variables, and consider the events Av,w defined by: Av,w := (πv ̸= πw) if (v, w) ∈ E,
and Av,w := ∅ if (v, w) ̸∈ E. Then µ(Av,w) is equal to 1/2 if (v, w) ∈ E, but equal to 0
if (v, w) ̸∈ E. However, for any induced triangle in G, say with vertices u, v, w, we have
µ(Au,v ∩Av,w ∩Aw,u) = µ(πu ̸= πv ̸= πw ̸= πu) = µ(∅) = 0.

As mentioned above, Theorem 1 is the main ingredient in our proof that Keisler random-
ization of first-order theories preserves n-dependence, for all n ∈ N≥1 ([7, Corollary 11.3]).
Question 3. Apart from n-dependence, what are the other higher arity tameness notions from
model theory preserved under Keisler randomization? E.g., is FOPn preserved?
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[19] Jaroslav Nešetřil and Vojtěch Rödl. Partitions of finite relational and set systems. Journal of
Combinatorial Theory, Series A, 22(3):289–312, 1977.

[20] Czes law Ryll-Nardzewski. On stationary sequences of random variables and the de Finetti’s equiv-
alence. In Colloquium Mathematicum, volume 4, pages 149–156. Polska Akademia Nauk. Instytut
Matematyczny PAN, 1957.

[21] Saharon Shelah. Classification theory: and the number of non-isomorphic models. Elsevier, 1990.

[22] Terence Tao. Expanding polynomials over finite fields of large characteristic, and a regularity
lemma for definable sets. Contributions to Discrete Mathematics, 10(1), 2015.

[23] Terrence Tao. “A spectral theory proof of the algebraic regular-
ity lemma”, blogpost. https://terrytao.wordpress.com/2013/10/29/

a-spectral-theory-proof-of-the-algebraic-regularity-lemma/, 2013.
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1 Introduction

If N = {0, 1, 2, . . .} denotes the set of natural numbers, then a well-known algebraic fact says

that, for any field F 1, the (finitely generated polynomial) ring F [X⃗N ] = F [X1, X2, . . . , Xn] is
Noetherian (i.e. satisfies the ascending chain condition on its ideals) for any natural number
n. Classically, this result is known as the Hilbert Basis Theorem (HBT), and was established
by Hilbert [8] via nonconstructive methods. Later on, Buchberger’s Algorithm [6, Theorem

15.9] for computing Gröbner Bases in F [X⃗N ] yielded a constructive (computable) proof of the
Hilbert Basis Theorem for polynomial rings. After Buchberger’s results, Simpson [12] showed

that, in the context of Reverse Mathematics, HBT for F [X⃗N ] is logically equivalent to the
First-Order statement asserting the well-ordering of the ordinal number NN that corresponds
(i.e. is isomorphic) to finite N−sequences with the length-lexicographic ordering. This article is
a precursor to a follow-up article that seeks to examine and classify the computability-theoretic
properties of HBT for polynomial rings and its consequences such as the Artin-Rees Lemma,
Krull Intersection Theorem, and related results concerning rings of formal power series.

In particular, we aim to exhibit the central role that the standard proof of HBT for the
ring R[X⃗N ] of polynomials plays in establishing similar results in the context of rings of formal
power series. More specifically, Theorem 3.1 below formalizes [10, Theorem 3.3] in the context
of RCA0, and in so doing essentially establishes an effective reduction between the Hilbert Basis
Theorem in the contexts of rings of polynomials and formal power series, and is the basis of
all of our main results. Afterwards, Section 4 applies the basic module of Theorem 3.1 to
show that, in the context of Reverse Mathematics, all known implications concerning HBT for
polynonmial rings also hold for HBT in the context of formal power series.

2 Preliminaries

Let N = {0, 1, 2, . . .} denote a possibly nonstandard set of natural numbers, and for any N ∈ N,
define

NN = N× N× · · · × N︸ ︷︷ ︸
N

.

For any N ∈ N,
X⃗N = {X0, X1, . . . , XN}

is a set of indeterminate variables, and we can speak of X⃗N−monomials that are finite X⃗N−products
of the form

N∏

i=0

Xαi
i , αi ∈ N,

1Recall that a field is essentially any “number system” with commutative addition and multiplication oper-
ations such that any nonzero element has a multiplicative inverse.
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so that each X⃗N−monomial m is uniquely determined by its exponents m ∼ ⟨αi : 0 ≤ i ≤ N⟩ ∈
NN+1. Now, if we define the degree of m to be

∑N
i=0 αi ∈ N, then for each n ∈ N, there are only

finitely many monomials of degree n, and it follows that if we denote the set of X⃗N−monomials
by M, then there is an M−enumeration of nondecreasing degree. Moreover, we say that a
monomial m0 divides a monomial m1 whenever the m1−exponent of the indeterminate factor
Xi is at least as large as that of m0, for each i = 0, 1, . . . , N . Also recall that, while polynomials
consisting of finitely many summand terms always have a leading term of maximal degree, for
formal power series consisting of infinite sums containing unbounded exponents the leading term
is taken to be the M−least one having minimal degree.

We assume a familiarity with basic Commutative Ring Theory, as found in [4, 1, 6, 10]. For
us, R will always refer to a countable commutative ring with identity element 1 = 1R ∈ R.
Recall that an ideal of R (R−ideal) is a subset of R closed under addition, subtraction, and
multiplication by all R−elements. For any finite sequence a0, a1, . . . , an ∈ R, n ∈ N, define

⟨a0, a1, a2, . . . , an⟩R =

{
n∑

i=0

ri · ai : ri ∈ R

}
; 2

this is the smallest R−ideal containing a0, a1, . . . , aN . Recall that R is Noetherian if it satisfies
the ascending chain condition (ACC) on its ideals. This is equivalent to saying that for any
given infinite sequence {ai}i∈N ⊆ R there exists N0 ∈ N such that the first N0−many elements
of A, A0 = {a0, a1, . . . , aN0

} ⊆ A, generates A, i.e. each ai, i ∈ N, can be written as an R−linear
combination of the elements of A0. If R is a ring, then its generalized division algorithm is the
relation

x ∈ ⟨a0, a1, . . . , aN ⟩R, N ∈ N, x, a0, a1, . . . , aN ∈ R.

Finally, recall that the Hilbert Basis Theorem (HBT) says that, for each ring R and n ∈ N, the
polynomial ring

R[X⃗N ] = R[X0, X1, . . . , Xn]

is Noetherian whenever R is Noetherian.
We will be examining HBT in the context of Reverse Mathematics for rings of formal power

series over various coefficient ringsR and sets of indeterminate variables X⃗N = {X0, X1, . . . , XN},
N ∈ N. Formal power series are infinitary objects, and so we will formally represent them in the
context of Reverse Mathematics and RCA0 numerically via their Turing (Gödel) codes. More
specifically, a formal power series ring is a set X ⊆ N such that every x ∈ X is the code of a
formal power series, and X is closed under addition, subtraction, and multiplication of power
series (codes). Other algebraic definitions, such as ideals and generating sets, are also defined
via codes. The reader should keep in mind that, for us, specifying a formal power series amounts
to giving an algorithm for computing its infinitely many coefficients, one coefficient for each
monomial summand.

2.0.1 Reverse Mathematics, RCA0, and induction

We assume familiarity with the arithmetical hierarchy consisting of the Σn and Πn arithmetic
formulas; more information on this topic can be found in either [14, Chapter 4] or [5, Section
5.2]. Throughout this article we work in the context of Reverse Mathematics and Subsystems
of Second-Order Arithmetic3 that always assumes a hypothesis denoted RCA0 which, generally

2Note the subscript R on the lefthand side; for us, it distinguishes ideals from sequences.
3The program of Reverse Mathematics was first introduced by H. Friedman in the 1970s. More information

on this modern branch of Mathematical Logic, including an introduction and historical remarks, can be found
in [13, 5].
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speaking, validates computable mathematical constructions via a ∆0
1−comprehension axiom,

along with a restricted induction scheme called IΣ1 that grants induction for arithmetic formulas
of complexity Σ1 consisting of a ∆0

1−predicate preceded by a single existential quantifier. For
more information on the formalism of Reverse Mathematics and RCA0, we refer the reader to
either [13, Chapter II] or [5, Chapter 5]. Induction schemes are arithmetical axioms that only
pertain to the first-order theory of any subsystem of Second-Order Arithmetic. Throughout
this article we will only work with arithmetical subsystems of Second-Order Arithmetic over
RCA0 that follow from Σ2−induction (IΣ2); the next subsection describes these specific axioms
in more detail.

2.1 Preliminary Combinatorics: the Infinite Pigeonhole Principle,
the Well-Ordering of NN, and the existence of monomial division
chains

2.1.1 The Infinite Pigeonhole Principle

Recall the Infinite Pigeonhole Principle says that if f : A→ B is a function with infinite domain
A and finite range B, then for some b ∈ B the fiber

f−1(b) = {a ∈ A : f(a) = b}

is infinite. In the context of Reverse Mathematics (i.e. over RCA0) a theorem of Hirst [9] says
that the Infinite Pigeonhole Principle is equivalent to a bounding principle for Σ2−formulas
that produces uniform bounds for finite sets of existential witnesses to Σ2−formulas, and so
over RCA0 we denote the Infinite Pigeonhole Principle by BΣ2.

2.1.2 The well-ordering of NN

There is an arithmetical principle that follows from IΣ2 and says that the ordinal number NN

is well-ordered. This is equivalent to saying that the length-lexicographic ordering on finite
sequences of natural numbers is a well-order. We denote this principle by WO(NN). Simpson
[12] has shown that WO(NN) is equivalent to saying that the finitely generated polynomial ring

F [X⃗N ] = F [X0, X1, . . . , XN ], N ∈ N, with coefficients in a field F is Noetherian. Along the
way Simpson also shows the equivalence between WO(NN) and the Noetherian criterion for

monomials that says if M = {mi}i∈N ⊆ F [X⃗N ] is an infinite sequence of X⃗N−monomials (i.e.

finite products of indeterminates in X⃗N ) then there exists n0 ∈ N such that for all n ∈ N we
have that mn is divisible by some element of M0 = {mi}n0

i=0, i.e. M0 generates M .

2.1.3 The existence of monomial division chains

Recently in [3] the author has studied a combinatorial principle that plays a key role in the proof
of the Hilbert Basis Theorem, called MDC, that says if M = {mi}∞i=0 is an infinite sequence

of X⃗N = {X0, X1, . . . , XN}−monomials, N ∈ N, then there exists an infinite subsequence
{ik}∞k=0 ⊆ N such that for each k ∈ N we have that mik divides mik+1

. Moreover, building
on results of Simpson [12] and Chong, Slaman and Yang [2], the author has shown MDC to be
equivalent to BΣ2 + WO(NN) over RCA0, while Simpson [11] has shown that BΣ2 + WO(NN) is
strictly stronger than either BΣ2 or WO(NN), and that BΣ2 + WO(NN) is strictly weaker than
IΣ2.
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3 Transfering the Division Algorithm from R[X⃗N ] to R[[X⃗N ]]

The following theorem is the essential key to all of our results. Its proof is essentially a formal-
ization of [10, Theorem 3.3] in RCA0.

Theorem 3.1 (The Division Algorithm for power series rings with Noetherian coefficients,
RCA0). Suppose that R is a ring, n ∈ N, and let

• X⃗N = {X0, X1, . . . , Xn} be a set of n−many indeterminates corresponding to rings R[X⃗N ]

and R[[X⃗N ]], and such that

– M = {mi}∞i=0 is an enumeration of the X⃗N−monomials in nondecreasing order of
N−degree,

• F = {fk}k∈N ⊆ R[[X]] be an enumeration of an R[[X⃗N ]]−ideal with

fk =

∞∑

i=0

ak,imi, ak,i ∈ R,

and such that ℓk ∈ N is (N−)least such that ak,ℓk ̸=R 0. In this case we have that
sk = ak,ℓkmℓk denotes the leading summand of fk.

Now, suppose that there exists some N0 ∈ N that witnesses the Noetherian property that
says:

⟨sk : k ∈ N⟩R[X⃗N ] = ⟨s0, s1, . . . , sN0
⟩R[X⃗N ], (1)

then we also have that

F = ⟨fk : k ∈ N⟩R[[X⃗N ]] = ⟨fk : 0 ≤ k ≤ N0⟩R[[X⃗N ]].

Proof. Let
S0 = {s0, s1, . . . , sN0}, F0 = {f0, f1, . . . , fN0},

and k = k0 ∈ N. By hypothesis we have that

fk0 = ak0,ℓk0
mℓk0

+
∑

ℓ>ℓk0

ak0,ℓmℓ = sk0 +
∑

ℓ>ℓk0

ak0,ℓmℓ,

and moreover we can write the leading summand sk0 = ak0,ℓk0
mℓk0

∈ R[X⃗] of fk0 as an

R[X⃗N ]−linear combination of {s0, s1, . . . , sN0
}. Therefore, if we have that

sk0 =

N0∑

i=0

ck0,isi, ck0,i ∈ R[X⃗N ],

then it follows that

fk −
N0∑

i=0

ck,ifi = fk1 ∈ F

is such that ℓk1 > ℓk0 . Furthermore, we can repeat the argument, in infinitely many stages
indexed by i ∈ N, to obtain an infinite sequence of numbers {ki}i∈N corresponding to power
series {fki}i∈N ⊆ F such that for every i ∈ N we have that

ℓki+1 > ℓki ;

4
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in other words, the M−index of the leading summand of fki+1 is strictly greater than that of
fki . Now, the degrees of the monomials in any enumeration of M always grow uniformly, and
thus we have that limi deg(mi) = ∞. Also, because our sets S0 and F0 are fixed thorughout
the construction, at each stage i ∈ N, in order to obtain the cancellation required for ℓi+1 > ℓi,
we must have that

lim
j

deg(ckj ,i) = ∞,

uniformly in i = 0, 1, . . . , N0. Finally, by our construction it follows that if we set

ci =

∞∑

j=0

ckj ,i, i = 0, 1, . . . , N0,

then ci ∈ R[[X⃗N ]] and

fk =

N0∑

i=0

cifi.

Remark 3.2. The key assumption in the previous theorem is the existence of N0 ∈ N, which
essentially assumes a division algorithm for R[X⃗N ], N ∈ N. It would benefit the reader to keep
in mind that the hypotheses in the theorems that follow, all of which utilize Theorem 3.1, are
chosen so as to guarantee the existence of the number N0 in the previous proof, and that the
necessary hypotheses for producing N0 depend upon the properties of R and N .

4 Transfering the Noetherian property from R to R[[X⃗N ]]
(via R[X⃗N ])

Let F be a field and R be a ring with a generalized division algorithm. The goal of this section is
to apply Theorem 3.1 to successively more general power series rings of the form R[[X]], F [X⃗N ],

and finally R[[X⃗N ]]. Each application corresponds to a different subsystem of Second-Order
Arithmetic.

In the proofs of each of the theorems below F = {fk}k∈N will always denote the ideal of

R[[X⃗N ]], X⃗N = {X0, X1, . . . , Xn}, n ∈ N, for which we produce a finite set of generators via
Theorem 3.1 above. Also, as in Theorem 3.1, recall that M = {mi}i∈N denotes an enumeration

of X⃗N−monomials of nondecreasing N−degree, and for each k ∈ N, ℓk ∈ N is least such that
the leading summand of fk is of the form aℓk ·mℓk for some 0 ̸=R ak. With all of this notation
and definitions in mind and out of the way, the main focus of our proofs will be the construction
of the number N0 mentioned in the hypothesis of Theorem 3.1 above.

Theorem 4.1 (RCA0). R[[X]] is Noetherian whenever R is a Noetherian ring possessing a
generalized division algorithm.

Proof. To construct N0 in the current context, there are two cases to consider. The first case
says that

ak+1 /∈ ⟨a0, a1, . . . , ak⟩R
for infinitely many k ∈ N. In this case it follows that R is not Noetherian, which is a contradic-
tion. So we are in the second case which says that there exists N0 ∈ N such that for all k ∈ N,
k ≥ N0, we have that

ak ∈ ⟨a0, a1, . . . , aN0⟩R.

5
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Abstract

This paper focuses on a less-known version of Abstractionism, that we’ll call Arbitrary
Logicism. It is obtained by means of a double revision of Frege’s Logicist program: on
the one side, weakening the Canonical interpretation function for the implicitly defined
(abstract) expressions of the vocabulary, I prove that any consistent revision of BLV turns
out to be logical (i.e. permutation invariant); on the other side, I show that such a non-
canonical interpretation, on a (negative) free logic background, allows us to identify a
restriction of BLV, able to precisely exclude the paradoxical concepts, namely to avoid
Russell’s Paradox, but, at the same time, to preserve the derivational strength necessary
to derive second-order Peano axioms.

Keywords: Abstraction principles, Logicism, Arbitrariness, Frege, Arithmetic

Abstractionist theories in philosophy of mathematics are systems composed by a logical
theory augmented with an abstraction principle (AP), of form: ∀X∀Y (@X = @Y ) ↔ E(X,Y )1

– that introduces, namely rules and implicitly defines, a term-forming operator @ by means
of an equivalence relation E. As is well-known, the seminal abstractionist program, Frege’s
Logicism, failed2: Russell’s Paradox proved its inconsistency and, a fortiori, its non-logicality.
In the last century, both the issue of consistency and the issue of logicality have been resumed
in the abstractionist debate (cf. [13], [7], [1], [4], [3]). More precisely, on the one side, different
revisions of Frege’s original system have been proposed in order to avoid Russell’s Paradox and
to obtain a consistent system that is strong enough to derive (at least, a relevant portion of)
Peano Arithmetic. On the other side, given a semantical definition of logicality as permutation
invariance, some abstraction principles have been proved to be logical ([1], [4]).

Nevertheless, many concerns are still open. Particularly, regarding the preliminary condition
of consistency, the ways out of Russell’s Paradox proposed so far do not precisely mirror a
corresponding explanation of the origin of the contradiction and often imply a weakening of the
hoped strength of the theory (cf. [11], [14], [6])3; regarding the issue of logicality, an undesired
dilemma overshadows the abovementioned results: precisely in case of logical (i.e. permutation
invariant) abstraction principles, their implicit definienda turn out to be non logical ([1]) – so
preventing a full achievement of the Logicist goal.

My preliminary aim consists in arguing that these – apparently unrelated –problems have
a common source in some unquestioned assumptions of Frege’s project (inherited also by the
following abstractionist programs). I argue that such assumptions are part of what we can
call the Traditional view of abstraction, that includes the choice of classical logic as the base
theory, with the related semantical consequence of full referentiality of the vocabulary, and the

1In the rest of the paper, I’ll adopt this axiomatic version of AP. Given full Comprehension Axiom Schema
(that will be assumed in the systems that we’ll investigate), it is provably equivalent to the schematic form:
@x.α(x) = @x.β(x) ↔ E(α(x), β(x)). Cf. [12]

2It was proposed with the foundational purpose to derive arithmetical laws as logical theorems and to define
arithmetical expressions by logical terms.

3In [5] and [2], second-order Peano Axioms are recovered but by appealing to stronger logical resources –
i.e. double-sorted variables
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choice of a so-called Canonical interpretation function for all the (both primitive and defined)
expressions of the language.

In the rest of the talk, I show that by renouncing one or both of these problematic as-
sumptions we can recover consistency and/or logicality. More precisely, I propose a double
revision of Frege’s Logicist program: on the one side, weakening the Canonical interpretation
function for the implicitly defined (abstract) expressions of the vocabulary (cf. [3]), I prove
that any consistent revision of BLV turns out to be logical (i.e. permutation invariant); on the
other side, I show that such an arbitrary interpretation, on a (negative) free logic background,
allows us to identify a restriction of BLV, able to precisely exclude the paradoxical concepts,
namely to avoid Russell’s Paradox, but, at the same time, to preserve the derivational strength
necessary to derive second-order Peano axioms. This means that this system – that we’ll call
Arbitrary Logicism, precisely renouncing to the Traditional assumptions mentioned above, is
able to recover both Frege’s goals of consistency and logicality.

The logical part of the language of Arbitrary Logicism, LF , includes denumerably many
first-order variables (x, y, z, ...), denumerably many second-order variables (X,Y, Z, ...), logical
connectives (¬, →) and a first-order existential quantifier (∃)4. We can also usefully define a
predicative monadic constant (E!), whose extension is equal to the range of identity: E!a =def

∃x(x = a). The only non-logical primitive symbol is the term-forming operator ϵ which applies
to monadic second-order variables to produce complex singular terms (ϵ(X))5.

The theory involves, as its logical part, the axioms and inference rules of non-inclusive
negative free logic with identity (NF=):

NF1) ∀vα→ (E!t→ α(t/v));

NF2) ∃vE!v;

NF3) s = t→ (α→ α(t//s))6;

NF4) ∀v(v = v);

NF5) Pτ1, ..., τn → E!τi (with 1 ≤ i ≤ n);

∀I): E!a...ϕ(a/x) ⊢ ∀xϕ;

∃E): ϕ(a/x), E!a...ψ,∃xϕ ⊢ ψ, where a is a new individual constant which does not occur in
ϕ and ψ.

4We can also define the other connectives and the universal quantifier ∀xAx =def ¬∃x¬Ax.
5Let D be the full first-order domain (then, the second-order domain is constituted by its power-set ℘(D)).

The satisfaction clauses for the formulas of LF are defined in terms of an evaluation function V and an assignment
function I that ascribes elements of D to the first-order terms and elements of ℘(D) to the second-order terms:

• V (Pt1, ..., tn) = 1 ↔ I(t1), ..., I(tn) ∈ D∧ < I(t1), ..., I(tn) >∈ I(P ); 0 otherwise;

• V ((s) = (t)) = 1 ↔ I(s), I(t) ∈ D ∧ I(s) = I(t); 0 otherwise;

• V (E!t) = 1 ↔ I(t) ∈ D; 0 otherwise;

• V (¬α) = 1 ↔ V (α) = 0; 0 otherwise;

• V (α ∧ β) = 1 ↔ α = 1 ∧ β = 1; 0 otherwise;

• V (α ∨ β) = 1 ↔ α = 1 ∨ β = 1; 0 otherwise;

• V (∀vα) = 1 ↔ ∀s ∈ D,V(t,s)(α(t/v)) = 1 – where t is not in α and V(t,s) is the valuation function on the
model < D, I∗ > such that I∗ = I, except that I∗(t) = s.

• V (∀V α) = 1 ↔ ∀S ⊆ D,V(T,S)(α(T/V )) = 1 – where T is not in α and V(T,S) is the valuation function
on the model < D, I∗ > such that I∗ = I, except that I∗(T ) = S.

6Where α(t//s)) is the result of replacing one or more occurrences of s in A by t.

2
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Additionally, the theory involves an axiom-schema of universal instantiation for second-order
variables (∀Xϕ(X) → ϕ(Y )), a rule of universal generalisation (GEN), a second-order compre-
hension axiom schema (CA: ∃X∀x(Xx↔ α)) and modus ponens (MP)7.

The abstraction principle that characterizes this theory is obtained by weakening the right-
to-left conditional of Basic Law V (BLV: ∀F∀G(ϵF = ϵG ↔ ∀x(Fx ↔ Gx)), i.e. BLVa
(arbitrarily interpreted), by means of the condition of Permutation Invariance (cf. [1], [3]).

W-BLV: ∀F∀G(ϵF = ϵG↔ ∀x(Fx↔ Gx) ∧ ϵ(π(F )) = π(ϵF ))8

As well known, the ϵ operator (as defined by standard BLV), also arbitrarily interpreted,
is not Permutation Invariant – because, roughly speaking, by being inconsistent it is unable
to define or rule any function. We can emphasize that, given an arbitrary interpretation,
Permutation Invariance fails precisely for the argument that determines its inconsistency. In
other words, as can be pointed out for other consistent revisions of BLV, in any case in which it
is safely restricted, ϵ turns out to satisfy Permutation Invariance, namely it is such that π(ϵ) = ϵ,
i.e. ∀X∀y(ϵX = y ↔ ϵ(π(X)) = π(y)). Then, the second conjunct of the right-hand side of
W-BLV requires that – no matter which object y is identical to ϵF – ϵ satisfies Permutation
Invariance for the considered arguments9.

Accordingly, W-BLV, as a bi-conditional, turns out to be satisfied by any concept instantiat-
ing the universal quantifier. On the one side, given an arbitrary interpretation of the abstraction
operator, for any concept different from Russellian concept (R), π(ϵ) = ϵ. On the other side,
we can consider Russell’s Paradox as a reductio ad absurdum of the alleged truth of both the
sides of the bi-conditional for the concept R: the contradiction proves that ϵR – as legitimately
admitted on a free logical background – does not exist, namely it is a term devoid of denotation;
accordingly, it is not identical to itself (so, falsifying the left-hand side of W-BLV) and, even if
R, as any other concept, is co-extensional with itself, it falsifies Permutation Invariance of the
operator10. Accordingly, also the right-hand side of W-BLV is false and also the instance of the
bi-conditional for the concept R is verified.

Such a restricted version of W-BLV allows us to derive a corresponding restricted version
of Hume’s Principle. Nevertheless, the same restriction, on HP, is trivially satisfied by any
instantiation, so it actually does not represent a weakening of the principle itself and allow us
to derive the main arithmetical results, including Frege’s Theorem.
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Abstract
We revisit the work studying homomorphism preservation in sparse classes of structures

initiated in [Atserias et al., JACM 2006] and [Dawar, JCSS 2010]. These established that
first-order logic has the homomorphism preservation property in any sparse class that is
monotone and addable. It turns out that the assumption of addability is not strong enough
for the proofs given. We demonstrate this by constructing classes of graphs of bounded
treewidth which are monotone and addable but fail to have homomorphism preservation.
We also show that homomorphism preservation fails on the class of planar graphs. On the
other hand, the proofs can be recovered by replacing addability by a stronger condition
of amalgamation over bottlenecks. This is analogous to a similar condition formulated for
extension preservation in [Atserias et al., SiCOMP 2008].

1 Introduction
Preservation theorems have played an important role in the development of finite model theory.
They provide a correspondence between the syntactic structure of first-order sentences and their
semantic behaviour. In the early development of finite model theory it was noted that many
classical preservation theorems fail when we limit ourselves to finite structures. An important
case in point is the Łoś-Tarski or extension preservation theorem, which asserts that a first-order
formula is preserved by embeddings between all structures if, and only if, it is equivalent to an
existential formula. Interestingly, this was shown to fail on finite structures [9] much before the
question attracted interest in finite model theory [6]. On the other hand, the homomorphism
preservation theorem, asserting that formulas preserved by homomorphisms are precisely those
equivalent to existential-positive ones, was remarkably shown to hold on finite structures by
Rossman [8], spurring applications in constraint satisfaction and database theory.

However, even before Rossman’s result, these preservation properties were investigated on sub-
classes of the class of finite structures. In this context, restricting to a subclass weakens both
the hypothesis and the conclusion, therefore leading to an entirely new question. Thus, while
the class of all finite structures is combinatorially wild, it contains tame classes which are both
algorithmically and model-theoretically better behaved [4]. A study of preservation properties
for such restricted classes of finite structures was initiated in [3] and [2], which looked at homo-
morphism preservation and extension preservation respectively. The focus was on tame classes
defined by wideness conditions, allowing for methods based on the locality of first-order logic.

The main result asserted in [3] is that homomorphism preservation holds in any class C which
is almost wide and is monotone and addable. From this, it is concluded that homomorphism
preservation holds for any class C whose Gaifman graphs exclude some graph G as a minor,
as long as C is monotone and addable. The result was extended from almost wide to quasi-
wide classes in [5], from which homomorphism preservation was deduced for classes that locally
∗Supported by a George and Marrie Vergotis Scholarship awarded by Cambridge Trust, an Onassis Foundation

Scholarship, and a Robert Sansom Studentship
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exclude minors and classes that have bounded expansion, again subject to the proviso that they
are monotone and addable. Quasi-wide classes were later identified with nowhere dense classes,
which are now central in structural and algorithmic graph theory [7].

The main technical construction in [3] is concerned with showing that classes of graphs which
exclude a minor are indeed almost wide. The fact that homomorphism preservation holds
in monotone and addable almost wide classes is deduced from a construction of Ajtai and
Gurevich [1] which shows the “density” of minimal models of a first-order sentence preserved
under homomorphisms, and the fact that in an almost wide class a collection of such dense
models must necessarily be finite. While the Ajtai and Gurevich construction is carried out
within the class of all finite structures, it is argued in [3] that it can be carried out in any
monotone and addable class because of “the fact that disjoint union and taking a substructure
are the only constructions used in the proof” [3, p. 216].

The starting point of the present paper is that this argument is flawed. The construction re-
quires us to take not just disjoint unions, but unions that identify certain elements: in other
words amalgamations over sets of points. On the other hand, we can relax the requirement of
monotonicity to just hereditariness. The conclusion is that homomorphism preservation holds
in any class C that is quasi-wide, hereditary and closed under amalgamation over bottleneck
points. The precise statement is given in Theorem 4.1 below. We also show that the require-
ments formulated in [3] are insufficient by constructing a class that is almost wide (indeed, has
bounded treewidth), is monotone and addable, but fails to have the homomorphism preserva-
tion property. The class of planar graphs is an interesting case as it is used in [2] as an example
of a hereditary, addable class with excluded minors in which extension preservation fails. We
show that homomorphism preservation also fails in this class, strengthening the result of [2].

2 Preliminaries

We fix a finite relational vocabulary τ ; by a structure we implicitly mean a τ -structure. Given
two structures A,B, a homomorphism f ∶ A→ B is a map such that for all relation symbols R
and tuples ā from A we have ā ∈ RA Ô⇒ f(ā) ∈ RB . If moreover f(ā) ∈ RB Ô⇒ ā ∈ RA then
f is said to be strong. An injective strong homomorphism is called an embedding.

A structure B is said to be a weak substructure of a structure A if B ⊆ A and the inclusion
map ι ∶ B ↪ A is a homomorphism. Likewise, B is an induced substructure of A if the inclusion
map is an embedding. An induced substructure B of A is said to be free in A if there is some
structure C such that A is the disjoint union B +C. Finally, a substructure B of A is said to
be proper if the inclusion map is not full. We say that a class of structures is monotone if it is
closed under weak substructures, and it is hereditary if it is closed under induced substructures.
Moreover a class is called addable if it is closed under taking disjoint unions.

Given structures A,B,S and embeddings f ∶ S → A and g ∶ S → B, we write A⊕S,f,g B for the
quotient of the disjoint union A+B by the equivalence relation generated by {(f(s), g(s)) ∶ s ∈
S}. Whenever S ⊆ A∩B, we write A⊕S B for A⊕S,ιA,ιB B where ιA, ιB are the corresponding
inclusion maps, and call this the free amalgam of A and B over S.

Fixing a graph H, we say that a graph G is H-free and H-minor-free if it does not contain H
as an induced subgraph and minor respectively. By Wagner’s Theorem, a graph is planar if
and only if it is K5-minor-free and K3,3-minor-free. Finally, a class of graphs C is said to be
quasi-wide if for every r ∈ N there exist sr ∈ N and fr ∶ N → N such that for every m ∈ N and

2

Proceedings of the 14th Panhellenic Logic Symposium

— 74 —



Preservation on sparse classes Dawar and Eleftheriadis

every G ∈ C there exist disjoint sets A,S ⊆ V (G) such that A is r-independent in G ∖ S.

We say that a formula ϕ is preserved by homomorphisms (respectively extensions) over a class of
structures C if for all A,B ∈ C such that there is a homomorphism (respectively embedding) from
A to B, A ⊧ ϕ implies that B ⊧ ϕ. We say that a class of structures C has the homomorphism
preservation property (HPP) (respectively extension preservation property, EPP) if for every
formula ϕ preserved by homomorphisms (respectively extensions) over C there is an existential-
positive (respectively existential) formula ψ such that M ⊧ ϕ ⇐⇒ M ⊧ ψ for all M ∈ C.
Given a formula ϕ and a class of structures C, we say that M ∈ C is a minimal induced model of ϕ
in C if M ⊧ ϕ and for any proper induced substructure N of M with N ∈ C we have N /⊧ ϕ. The
relationship between minimal models and preservation is highlighted by the following theorem.

Theorem 2.1. Let C be a hereditary class of finite structures. The C has the HPP (respectively
EPP) if and only if every formula preserved by homomorphisms (respectively extensions) overC has finitely many minimal induced models in C. So, if C has the EPP then it has the HPP.

3 Preservation can fail on classes of small treewidth
Theorem 4.4 of [3] can be paraphrased in the language of this paper as saying that homomor-
phism preservation holds over any monotone and addable class of bounded treewidth. Here, we
provide a simple counterexample to this, exhibiting a monotone and addable class of graphs of
treewidth 3 where homomorphism preservation fails.

Definition 3.1. Fix k ∈ N and ni ≥ 3 for every i ∈ [k]. We define the bouquet of cycles of
type (n1, . . . , nk), denoted by Wn1,...,nk

, as the graph obtained by taking the disjoint union of
k cycles of length n1, . . . , nk respectively, and adding an apex vertex, i.e. a vertex adjacent to
every vertex in these cycles. Whenever k = 1, we refer to the graph Wn as the wheel of order n.

Figure 1: The bouquet of cycles of type (6,9,10) and the wheel of order 9 respectively.

First, observe that each bouquet has treewidth 3. Indeed, taking a tree decomposition of each
cycle of width 2, and adding the apex to every bag in the decomposition gives the required tree
decomposition. The advantage of working with bouquets of cycles is that, unlike single cycles,
there is a formula that defines their existence as free induced subgraphs. To see this, we let

ψ(x, z) ∶= ∃u∃v[u ≠ v ∧ u ≠ x ∧ v ≠ x ∧E(z, u) ∧E(z, v) ∧ ∀w(E(w, z)→ w = u ∨w = v ∨w = x)],
and ϕ ∶= ∃x∃y[E(x, y) ∧ ∀z(z ≠ x ∧ dist(x, z) ≤ 2→ E(x, z) ∧ ψ(x, z)].

Intuitively, ϕ asserts the following: “there is a vertex x of degree at least one such that every
other vertex reachable from x by a path of length two is adjacent to x and has exactly two
distinct neighbours which are not x”.

3
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Lemma 3.2. Let G be an arbitrary finite graph. Then G ⊧ ϕ if, and only if, it contains a
bouquet of cycles as a free induced subgraph.

It is evident that ϕ is not preserved by homomorphisms over the class of all undirected graphs.
However, when restricting to subgraphs of disjoint unions of wheels we no longer have non-free-
occurring bouquets of cycles in the class. This is precisely the core of the following theorem.

Theorem 3.3. The monotone and addable closure of {W2n+1 ∶ n ∈ N} does not have the HPP.

4 Preservation under bottleneck amalgamation

The main result of this section is the corrected version of Theorem 4.4 in [3] and its generalisa-
tion, Theorem 9 in [5]. More precisely, we establish homomorphism preservation on hereditary
quasi-wide classes which are closed under certain free amalgams. While the existence of ar-
bitrary amalgams certainly suffices, it prohibits any sort of sparsity in the class. Indeed, any
hereditary class of undirected graphs with the free amalgamation property contains arbitrarily
large 1-subdivided cliques, and hence, cannot be quasi-wide.

The proof proceeds by obtaining a concrete bound on the size of minimal models of ϕ in C,
and concluding by Theorem 2.1. The existence of this bound is guaranteed by quasi-wideness,
as any large enough structure contains a large scattered set after removing a small number
of bottleneck points. To isolate the bottleneck points p̄ of M we consider a structure p̄M
in an expanded language which is bi-interpretable with M , and work with the corresponding
interpretation ϕk of ϕ; in particular p̄M contains a large scattered set itself and it models ϕk.
Then, by removing a carefully chosen point from the scattered set of p̄M , we obtain a proper
induced substructure p̄N of p̄M such that N ∈ C by hereditariness. To argue that this still
models ϕk, we use a relativisation of the locality argument of Ajtai and Gurevich from [1].
While in its original version the argument only considers disjoint copies of M , working with the
interpretation p̄M of M corresponds to taking free amalgams of M over the set of bottleneck
points; this is precisely the subtlety that was missed in [3] and [5].

Theorem 4.1. Let C be a hereditary class such that for every r ∈ N there exist kr ∈ N and
fr ∶ N → N satisfying that for every m ∈ N and M ∈ C of size at least fr(m) there exist disjoint
sets A,S ⊆M such that ∣A∣ ≥m, ∣S∣ ≤ kr, A is r-independent in M ∖S, and ⊕nSM ∈ C for every
n ∈ N. Then homomorphism preservation holds over C.
Obtaining homomorphism preservation for quasi-wide classes therefore amounts to verifying
closure under amalgams over bottleneck points. This is precisely the case for K4-minor-free
and outerplanar graphs. Another class with this property is already known to exist by [2], that
is, the class Tk of all graphs of treewidth bounded by k, for any k ∈ N.

Theorem 4.2. The classes of K4-minor-free graphs and outerplanar graphs have the HPP.

5 Preservation fails on planar graphs

In this section we witness that homomorphism preservation fails on the class of planar graphs.
Previously, it was established [2] that the extension preservation property fails on planar graphs.
Since extension preservation implies homomorphism preservation on hereditary classes by The-
orem 2.1, our result strengthens the above. Our construction will in fact also reveal that
homomorphism preservation fails on the class of K5-minor-free graphs.

4
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Definition 5.1. Fix n ∈ N. Define Dn as the undirected graph on vertex set

V (Dn) = {v1, v2} ∪ {ai ∶ i ∈ [n]} ∪ {bi ∶ i ∈ [n]}, and edge set

E(Dn) = {(v1, ai) ∶ i ∈ [n]} ∪ {(v2, bi) ∶ i ∈ [n]} ∪ {(ai, bi) ∶ i ∈ [n]} ∪ {(ai, ai+1) ∶ i ∈ [n − 1]}∪{(bi, bi+1) ∶ i ∈ [n − 1]} ∪ {(ai+1, bi) ∶ i ∈ [n − 1]} ∪ {(a1, an), (b1, bn), (a1, bn)}.

Figure 2: A planar embedding of D9.

We proceed to characterise the K5-minor-free homomorphic images of Dn.

Theorem 5.2. Fix n ≥ 4. Then any K4-free and K5-minor-free homomorphic image of Dn

contains an induced copy of Dm for some m ≥ 4 such that m ∣ n.
We then show that the existence of the graphs Dn as induced subgraphs is definable among
K4-free K5-minor-free graphs by a simple first-order formula. Indeed, consider the formula

χ(x1, x2, y1, z1, y2, z2) = E(x1, y2) ∧E(y1, y2) ∧E(z1, y2) ∧E(z1, z2) ∧E(y2, z2) ∧E(z2, x2),
and ϕ = ∃x1, x2, y, z[E(x1, y) ∧E(y, z) ∧E(z, x2) ∧ ∀a, b(E(x1, a) ∧E(a, b) ∧E(b, x2))→ ∃c, d χ(x1, x2, a, b, c, d))]

Proposition 5.3. Let H be a finite K4-free and K5-minor free graph. Then H ⊧ ϕ if and only
if, there is some n ≥ 4 such that H contains Dn as an induced subgraph.

Putting the above together, we deduce the main theorem of this section.

Theorem 5.4. The class of planar graphs does not have the HPP.

Proof. Let ϕ̂ be the disjunction of ϕ with the formula that induces a copy of K4, i.e. ϕ̂ ∶=
ϕ∨∃x1, x2, x3, x4⋀i≠j E(xi, xj). We argue that ϕ̂ is preserved by homomorphisms over the class
of planar graphs. Indeed, let f ∶ G→H be a homomorphism with G,H planar such that G ⊧ ϕ̂.
Clearly, if H contains a copy of K4 then H ⊧ ϕ̂. Without loss of generality we may assume that
G ⊧ ϕ and G,H are K4-free. It follows by Proposition 5.3 that there exists some n ≥ 4 such that
G contains Dn as a subgraph. Theorem 5.2 thus implies that H that there is some m ≥ 4 such
that H contains Dm as a subgraph. Proposition 5.3 then implies that that H ⊧ ϕ, and thus
H ⊧ ϕ̂ as required. To conclude, observe that the minimal models of ϕ̂ over the class of planar
graphs are K4 and the graphs Dn for n ≥ 4; since these are infinitely many Theorem 2.1 implies
that ϕ̂ is not equivalent to an existential-positive formula over the class of planar graphs.

Since we only use exclusion of K5-minors, the same proof relativises to the following theorem.

Theorem 5.5. The class of all K5-minor-free graphs does not have the HPP.
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Abstract

In 1987, Pheidas showed that the field of Laurent series Fq((t)) with a constant for the
indeterminate t and a predicate for the natural powers {tn | n > 0} of t is existentially
undecidable. We show that the same result holds true if t is replaced by any element α of
positive t-adic valuation.

Introduction. Hilbert’s Tenth Problem asks for an algorithm that, given a polynomial
f(X1, . . . , Xn) with integer coefficients, will determine whether or not it has a root in inte-
gers Z, see [10, 11]. Building on previous work by Robinson, Davis, and Putnam, Matiyasevich
famously showed that no such algorithm exists [16]. Hilbert’s Tenth Problem can be equiva-
lently phrased as asking whether or not the positive existential theory Th∃+(Z) in the first-order
language of rings Lring = {0, 1,+, ·} is decidable [13, 1.1] (in what follows, we will omit the
symbols of Lring when speaking of ring structures). In the context of model theory, it is both
natural to consider other structures M that may differ from Z and to extend the family of
sentences that we look at (e.g. the existential theory Th∃(M) or the entire theory Th(M)).
Many classical results in logic and model theory subsume answers to decidability questions.

Before Matiyasevich’s negative solution to Hilbert’s Tenth Problem, it was already known
by Gödel’s work on his Incompleteness Theorems [8] that the full first-order Lring-theory Th(Z)
is undecidable. In the 1930s and 1950s, Tarski [18, 19] determined the Lring-theories of the real
and complex fields R, C (the archimedean local fields) and consequently showed that both are
decidable. Ax and Kochen [4] studied the model theory of non-archimedean local fields, i.e.,
p-adic fields K (finite field extensions of the p-adic numbers Qp) and Laurent series fields

Fq((t)) =

{ ∞∑

i=−k
ait

i
∣∣∣ ai ∈ Fq, k ∈ Z

}

over finite fields Fq with q = pn elements, p a prime number. It follows from their work that
the theory Th(K) of any p-adic field K is decidable. Whether or not the Laurent series fields
are decidable, is a major open question in the model theory of valued fields. In 2016, Anscombe
and Fehm [2] made substantial progress towards this question by proving the decidability of the
existential theory Th∃(Fq((t))) of Laurent series fields. For other recent results in this direction,
we refer to Anscombe, Dittmann, and Fehm [1, 7].

It is natural to consider the structures mentioned above in expansions of the language of
rings. Van den Dries [20] considered the real ordered field with a new predicate for 2Z, the
cyclic multiplicative subgroup generated by 2. He proves the surprising result that (R, 2Z) is
decidable by showing quantifier elimination in a natural expansion of (R, 2Z). This still holds if 2
is replaced by a recursive real number α > 1. In the same paper, van den Dries asks if his results
can be generalised to the structure (R, 2Z, 3Z). In 2010, Hieronymi [9] gave a negative answer:
for two real numbers α, β > 1 satisfying αZ∩βZ = {1}, the theory Th(R, αZ, βZ) is undecidable.
Expansions of Qp by discrete cyclic (multiplicative) subgroups have been studied by Mariaule
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[14, 15]. He proves that for α ∈ Qp of positive p-adic valuation vp(α) > 0, the theory Th(Qp, αZ)
is decidable, whereas Th(Qp, αZ, βZ) is undecidable whenever vp(β) > 0 and αZ ∩ βZ = {1}.
Ax already knew (unpublished) that Th(Fq((t)), tZ) is undecidable. An elementary proof was
given by Becker, Denef, and Lipshitz [5]. Later, a considerable strengthening was obtained by
Pheidas [17]. This is particularly interesting, as not much is known about these fields from the
point of view of (un)decidability. He shows:

Theorem (Pheidas). Let P = {tn | n > 0} be the set of powers of the indeterminate t. Then
Th∃(Fq((t)), t, P ) is undecidable.

Note that by virtue of Anscombe and Koenigsmann [3], who show that the valuation ring
FqJtK in Fq((t)) is existentially Lring-definable without parameters, it follows moreover that
Th∃(Fq((t)), t, tZ) is undecidable (observe that tZ∩FqJtK = P ∪{1}). We generalise this theorem
to arbitrary cyclic discrete subgroups of Fq((t)), i.e., subgroups generated by an element α of
positive t-adic valuation vt(α).

Theorem. Let α ∈ Fq((t)) be an element with vt(α) > 0. Then the existential theory of the
structure (Fq((t)), α, αZ) is undecidable.

See Remark 10 for a more general formulation. Another way of viewing αZ is to think of it
as the image of a homomorphism from the value group Z into the multiplicative group Fq((t))×.
When vt(α) = 1, such a homomorphism is called a cross-section.

Pheidas’ work. Pheidas proves his theorem in two steps. His key tool is the following
(somewhat unusual) relation on natural numbers that goes back to Denef [6] and is sometimes
called p-divisibility. We write

n |p m if and only if ∃k ∈ N m = n · pk.

His proof now proceeds as follows.

(I) Prove that Th∃(N, 0, 1,+, |p) is undecidable by giving an existential definition of multi-
plication in this structure and invoking the Matiyasevich/MRDP theorem.

(II) Show that the relation n |p m can be effectively coded in Fq((t)) by an existential formula
via P = {tn | n > 0}.

To generalise from t to arbitrary α, we precisely follow Pheidas’ strategy. The main content of
this note is to explain how Pheidas’ coding needs to be modified in this more general context.

Essential to the coding is the unique arithmetic of Fq((t)).

Remark 1. In characteristic p, both the Frobenius map x 7−→ xp and the Artin-Schreier map
x 7−→ xp − x are additive. Moreover, the Frobenius map is an automorphism on the finite field
Fq and a non-surjective monomorphism on Fq((t)) with image

Fq((tp)) =

{ ∞∑

i=−k
apit

pi
∣∣∣ api ∈ Fq, k ∈ Z

}
.

This is the field of pth powers in Fq((t)).

Lemma 2. Fix an element α ∈ Fq((t)) with vt(α) > 0 not divisible by p. We can characterise
the relation n |p m for natural m,n > 0 as follows:

n |p m iff m ≥ n ∧ ∃a ∈ Fq((t)) α−m − α−n = ap − a. (1)

2
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Proof. Pheidas’ proof [17, Lem. 1] for α = t goes through in this case. We will use this
opportunity to show his beautiful argument.

Assume n |p m holds such that m = n · pk for some k ∈ N. In that case, the element

a = α−npk−1

+ α−npk−2

+ . . .+ α−n

witnesses the right-hand side of (1). Conversely, assume that for positive integers m ≥ n, there
exists a ∈ Fq((t)) satisfying α−m−α−n = ap−a. Write m = m0p

vp(m) and n = n0p
vp(n), where

both m0, n0 > 0 are not divisible by p. By the first part of the proof, we can find b, c ∈ Fq((t))
with

α−m − α−m0 = bp − b

α−n − α−n0 = cp − c.

Setting d = a − b + c, we can combine these three equations to α−m0 − α−n0 = dp − d. If
m0 = n0, we are done since m ≥ n. Otherwise, we may assume m0 ̸= n0, in which case

vt(d
p − d) = vt(α

−m0 − α−n0) = −vt(α) max{m0, n0}.

We know vt(d) < 0 implies that vt(d
p − d) is divisible by p, which is in contradiction to our

assumptions that vt(α), m0, n0 are not divisible by p.

Remark 3. Note that (1) still holds in the case when we can write α = βp
k

, k ∈ N, where
vt(β) is not divisible by p. Indeed, for m ≥ n, we have

∃a ∈ Fq((t)) α−m − α−n = β−mpk − β−npk = ap − a

iff npk |p mpk iff n |p m.

The general case. This characterisation of |p given by (1) will not work for all possible
values of α, as we can see by the following counterexample.

Example 4. Consider p = q = 3, i.e., the local field F3((t)) and the element

α = (t−3 + 1 + t+ t2)−1

with vt(α) = 3 divisible by p = 3. Then α−2 − α−1 = a3 − a has a solution in F3((t)),

a = t−2 + t−1 − t+ t2 +
∑

i≥0

(−1)i(−t4·3i + t6·3
i

),

but the relation 1 |3 2 does not hold.

Hence a new observation is needed. For this purpose, we define the following unusual
function, which we call the “pth-powers-omitting t-adic valuation” for lack of a better name.∗

Definition 5. Given x ∈ Fq((t)), written as a Laurent series

x =

∞∑

i=−k
ait

i,

∗Note that, strictly speaking, v̂t is not a valuation on Fq((t)): it does not satisfy x = 0 ⇐⇒ v̂t(x) = ∞ and
it is also not a group homomorphism.

3
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define v̂t(x) to be the integer

v̂t(x) = min{i | ai ̸= 0 ∧ p ∤ i},

and v̂t(x) = ∞ if this minimum does not exist, i.e., if x ∈ Fq((tp)).

Curiously, it captures exactly the kind of algebraic-combinatorial behaviour of Fq((t)) that
becomes invisible to vt.

Lemma 6. Assume that α ∈ Fq((t)) is not a pth power, but p | vt(α) > 0. Let N ∈ N be not
divisible by p. Then

v̂t(α
N ) = (N − 1)vt(α) + v̂t(α).

Proof. Decompose α as α = β+ γ, where β ̸= 0 contains all monomials with exponent divisible
by p and γ ̸= 0 contains all monomials with exponent not divisible by p. By our assumptions,

vt(β) = vt(α) < v̂t(α) = v̂t(γ).

Considering the binomial theorem for (β + γ)N , we observe that

(
N

N − 1

)
βN−1γ

must contain the monomial with smallest exponent not divisible by p. Thus

v̂t(α
N ) = v̂t(Nβ

N−1γ) = (N − 1)vt(β) + v̂t(γ) = (N − 1)vt(α) + v̂t(α).

Lemma 7. Fix an element α ∈ Fq((t)) with valuation vt(α) = C > 0 divisible by p. Assume
additionally that α is not a pth power, so that v̂t(α

−1) = D ∈ Z. Then for any choice of N > 0
satisfying

N >
D

C
+ 1 and p ∤ N,

we have
n |p m iff m ≥ n ∧ ∃a ∈ Fq((t)) α−mN − α−nN = ap − a

for all m,n > 0.

Proof. If n |p m holds, we essentially take the same witness a ∈ Fq((t)) as in Lemma 2. As for
the converse, let us consider positive integers m ≥ n such that there exists a ∈ Fq((t)) with

α−mN − α−nN = ap − a.

By repeating the same steps as in the proof of Lemma 2, we can write m = m0p
vp(m), n =

n0p
vp(n) and find d ∈ Fq((t)) such that

α−m0N − α−n0N = dp − d. (2)

We are done if m0 = n0. So assume without loss of generality that m0 > n0 ≥ 1. Instead of
considering the t-adic valuation on both sides of (2), we look at the pth-powers-omitting t-adic
valuation instead. By Lemma 6 and p ∤ m0N , we observe

v̂t(α
−m0N − α−n0N ) = −(m0N − 1)C +D. (3)

4
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If we evaluate the right-hand side of (2), we get

v̂t(d
p − d) = v̂t(d) ≥ vt(d). (4)

Since vt(d) < 0, we can use

pvt(d) = vt(d
p − d) = vt(α

−m0N − α−n0N ) = −m0NC,

together with (2), (3), and (4), to deduce the inequality

−(m0N − 1)C +D ≥ −m0NC

p
.

After rearranging, we have

N ≤ Cp+Dp

m0C(p− 1)
=
C +D

C

p

m0(p− 1)
≤ D

C
+ 1,

contradicting our choice of N . Hence m0 = n0.

In Example 4, it would suffice to take N = 2.
By combining Lemma 2 and Lemma 7, we can complete our coding of |p inside Fq((t)).

Proposition 8. Fix an element α ∈ Fq((t)) with valuation vt(α) > 0. Then there exists a
parameter N > 0, depending on α, such that

n |p m iff m ≥ n ∧ ∃a ∈ Fq((t)) α−mN − α−nN = ap − a

holds for all m,n > 0.

Proof. Write α = βp
k

, k ∈ N, such that β is not a pth power in Fq((t)). We consider two cases:

Case 1. p does not divide vt(β). By Lemma 2 and Remark 3, we can choose N = 1.

Case 2. p divides vt(β). By Lemma 7 and Remark 3, we can choose N to be the smallest
natural number not divisible by p bigger than v̂t(β

−1)/vt(β) + 1.

From this, we conclude our main theorem.

Theorem 9. Let α ∈ Fq((t)) be an element with vt(α) > 0. Then the existential theory of the
structure (Fq((t)), α, αZ) is undecidable.

Proof. First, we identify {αn | n > 0} in this structure. This set is given by αZ ∩ FqJtK \ {1}.
In [3], Anscombe and Koenigsmann show that FqJtK is existentially Lring-definable in Fq((t))
without parameters, so the same is true of {αn | n > 0} inside (Fq((t)), α, αZ). By Proposition
8, we can interpret (N, 0, 1,+, |p) in (Fq((t)), 0, 1,+, ·, α, αZ) using existential formulas. By (I),
Th∃(N, 0, 1,+, |p) is undecidable, so Th∃(Fq((t)), α, αZ) must also be undecidable.

Remark 10. Pheidas formulates his theorem in slightly more general terms: for any integral
domain F of characteristic p, quotient field K of F , and intermediate ring F [t] ⊆ R ⊆ K((t)),
the existential theory Th∃(R, t, P ) is undecidable. The same is true of our result: as long as
α ∈ R, we have that Th∃(R,α, {αn | n > 0}) is undecidable (essentially by the same proof).

More recently, an adaption of Pheidas’ theorem via the so-called Krasner-Kazhdan-Deligne
philosophy was obtained by Kartas [12], who shows that the asymptotic theory of all p-adic
fields is undecidable in the language of rings with a cross-section. We hope to further adapt
these types of results to infinitely ramified valued fields.
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Abstract
In our presentation, we intend to showcase the central role that formal philosophy ought
to play in the engineering of AI models that exercise judicial power legitimately. We begin
by arguing that according to the value of legitimacy, such AI models ought to provide
justifications for their outputs that have the same logical form as the justifications found
in case-law. We further argue that the conceptual re-engineering methods of Carnapian
explication & narrow reflective equilibrium can be combined to guide formal philosophers
in the practice of descriptively formalising those logical forms. Finally, we exhibit how this
can be done when the formal philosopher uses λ-calculus to perform such formalisations.
To make our case, we refer to two state-of-the-art methodologies of logically reconstructing
judicial reasoning, those of LogiKEy & Catala.

1 Introduction
Algocracies, i.e., political orders where political power is exercised inter alia by or via algorithms,
are already a reality [9]. A prime example of such algorithmic political authorities are AI models
that exercise judicial power. Such is the example of AI that partakes in the interpretation &
application of the law, the so-called “robot judges”[22] (e.g., identifying irregularities in contracts
between the public & private sector [10], predicting the probability of recidivating [23], deciding
the outcome of a criminal law case [24]). Since such AI models exercise judicial power, they
now constitute political authorities themselves, and hence, they should be checked & balanced
so as to avoid any abuse of power. Such a check & balance is the alignment of those models
towards the value of legitimacy: is the exercise of power by the robot judge legitimate (cf. [9])?

The practice of engineering AI that abides by specific values is known in the literature as
value-alignment [23]. Despite its seemingly “practical” character, value-alignment lies at the
core of a traditional problem in diverse fields of analytic philosophy (e.g., philosophy of logic,
(meta-)ethics, philosophy of science), that of deciding the truth value of the so-called evaluative
judgements. Specifically, an evaluative judgement is a judgement of whether a particular value
(e.g., the value of legitimacy) is applicable to a particular case (e.g., the exercise of power
by a judge) ([18]; cf.[20]). In analytic meta-semantics, an evaluative judgement is essentially
construed as a question of whether an object is subsumed by a concept or whether a term is
subsumed by a specific predicate or whether a particular is an instantiation of a universal [2, 15].
The challenge with evaluative judgements’ truth value is that evaluative judgements are accused
of not being objective [18]. For instance, since the value of legitimacy has a different meaning
in the European Enlightenment-rooted political tradition than the Chinese Confucian-based
one[11], the evaluative judgement of whether a judicial authority is legitimate has a different
answer in each of the two traditions. A method to overcome this (seemingly) subjective nature
of evaluative judgement is to reduce it to specific factual judgements, where the latter can be
minimally construed as empirical judgments about states of the physical world. I.e., judgements
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about a non-subjective ordo essendi for which there is a strong intersubjective consensus about
its characteristics. E.g., a judge’s decision is legitimate only if the factual condition of the judge
not being bribed is true. In practice, before an evaluative judgement is (partially) reduced to
factual judgements, it is customary to reduce it to other evaluative judgements and then reduce
those evaluative judgements to factual ones (see e.g. [1, 14]). Such reductions of evaluative
judgement to factual ones are called operationalisations [7]. In our case, the evaluative judgment
of AI’s legitimacy-alignment should be operationalised minimally to AI’s alignment towards the
following two values: (i) the epistemic value of foreseeability. Specifically, the application of
the law should be foreseeable.; (ii) the legal value of legality which can be minimally construed
as the so-called supremacy of law: everyone, even those that exercise power, should abide by
the law [8, 14].

The necessity of alignment towards the values of legality & foreseeability imposes to the
robot judge the factual requirement of providing a justification for its output that has the same
logical form with the justifications provided by the judicial authorities that have the authority
by the law to judge the cases in question. In particular, for the application of the law to be
foreseeable, AI should apply the same reasoning methods in similar circumstances. Otherwise,
one can not know with certainty the circumstances under which they violate the law. However,
different judicial authorities propose the application of different reaosning methods to similar
cases raising the question of which one should the robot judge adopt. For instance, in order
to establish a causal relation between an action of a defendant (e.g., shooting the victim) and
the alleged harm induced by that action (e.g., the victim dying), Anlgo-American criminal law
courts often employ the so-called but-for test: but-for the action of the defendant (legal cause),
the harm (legal effect) would not have happened [17]. However, the European Court of Human
Rights (ECtHR) has explicitly rejected the but-for test as a reasoning method of establishing
legal causal relations between actions and harm (E. and others v. UK, no. 33218/96, 2002, ¶99;
cf. [21]). Subsequently, different construals of causal reasoning can lead to different (conflicting)
judgements making the application of the law less foreseeable.

The foregoing bring about the question of which should be the reasoning methods used in
the application of the law. E.g., should we use the but-for test or not? The answer is given by
the value of legality. Specifically, the supremacy of law dictates that the legitimate reasoning
methods are those employed by the judicial authorities that are prescribed by law to judge the
case in question (e.g., criminal courts judging criminal law cases). Any divergence from the
reasoning methods found in the case law of those authorities undermines the value of legality.

Considering the above, we ought to impose specific logical constraints to AI that exercises
judicial power so as to output justifications of the desired logical form (for an overview of such
logical constraints to connectionist AI see [12]). Therefore, one needs to logically reconstruct
the judicial reasoning used by the legitimate judicial authorities so as to determine which should
those logical constraints be. Which then brings about the question of which methodology should
one use to perform such descriptive logical reconstructions of judicial reasoning.

Two such methodologies of logical reconstruction are LogiKEy1 and Catala,2 which can
be abstracted in the following four-steps high-level schema:3 (i) parsing case & statutory law
documents so as to mine in natural language the reasoning methods a judicial authority uses;
(ii) choosing an object logic to formally model the mined reasoning methods. In Catala, they
choose a prioritised default typed logic. The priority relation is used to model exceptions in
the application of the law by prioritising conditions that override the default way that the law

1Introduced in [4]. The acronym stands for Logic and Knowledge Engineering Framework and Methodology.
2Introduced in [16]. It is “[n]amed after Pierre Catala [...] a pioneer of French legal informatics”[13].
3Note that there can (and should) be a fluctuation among those steps, albeit the basic order remains as is.
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is applied. In juxtaposition to the choice of a unique object logic, LogiKEy can be employed
for (a combination of) different object logics like modal logics of preferences or dyadic deontic
logics [3, 4].; (iii) translating the logical reconstructions of the object logic to λ-terms in a target
λ-calculus. LogiKEy λ-translates formulae ϕi of the object logic while Catala λ-translates
terms ti.; (iv) translating those λ-translations to (functional) programming code. In Catala,
this code is directly used to engineer AI, while in LogiKEy, it is used by automated theorem
provers (ATPs) for verifying whether the object logic is a faithful reconstruction of judicial
reasoning (more on faithfulness below). Catala can generate code in programming languages
from diverse programming paradigms (e.g., OCaml, (Java)Script, Python), while LogiKEy
can employ only programming languages used by ATPs that use HOL (e.g., Isabelle/HOL).

The existence of different methodologies of logically reconstructing judicial reasoning like
Catala & LogiKEy necessitates the employment of a methodology that can evaluate which of
the available logical reconstruction methodologies is more adequate. Since a good methodology
for logically reconstructing judicial reasoning is a methodology that generates good models of
that reasoning, the evaluation of that methodology’s goodness is reduced to the evaluation of
goodness of the models that it generates. To evaluate a model’s goodness, we can identify a list
of criteria that a good model should satisfy. For such a list, we have to look no further than for-
mal philosophy’s early pioneer Rudolf Carnap’s explication criteria. Specifically, explication is
a conceptual re-engineering method of identifying a particular concept in a particular discourse
(e.g., the concept of causal reasoning in the discourse of the ECtHR), and then, re-engineering
this concept in a (non-)formal form in a different discourse (e.g., the discourse of formal phi-
losophy of law) such that the re-engineered concept being similar to the initial concept, more
exact, more fruitful, and more simple. I.e., the re-engineered concept needs to corroborate
the epistemic values of similarity, exactness, fruitfulness, and simplicity. The initial concept
is called explicandum and its explicated form is called explicatum. In our case, the reasoning
method used by judicial authorities (e.g., causal reasoning) is the explicandum and its model
in the object logic is the explicatum. The λ-translations of the object logic and the subsequent
(functional) programming codes are not explicata since they are formalisations of the object
logic in the same discourse as the object logic.

Considering the above, one should prefer the logical reconstruction methodologies that cor-
roborate explication’s four epistemic values the strongest. Subsequently, the choice of a logical
reconstruction methodology becomes a value-driven decision. Hence, we are faced once more
with the problem of the objectivity of evaluative judgements. We can once more overcome it
by operationalising the four evaluative judgements. Since we want to use those operational-
isations to engineer legitimate models of judicial reasoning, they should be grounded on the
operationalisation of the value of legitimacy (e.g., choose operational definitions of similarity
that make the application of the law more foreseeable). In what follows, we briefly exhibit
how such an operationalisation of similarity can be used to compare LogiKEy’s & Catala’s
adequacy.4 We focus on the role that λ-calculus plays in the two methodologies due to its key
contribution to the corroboration of the value of similarity.

The first similarity operational requirement is imposed by the value of foreseeability:
legitimacy-aligned logical reconstruction need to make explicit necessary and/or sufficient con-
ditions under which a reasoning method should be used to interpret the law so as for that
interpretation to be foreseeable. I.e., the explicandum & the explicatum need to be intention-
ally similar. Intentional similarity conditions are many times determined by specific theories of
interpretation of the law. In LogiKEy, λ-translations can be used to model such interpretation
theories in ATPs. Through those ATP embeddings, we can evaluate whether those theorems

4A more thorough operationalisation of the 4 values can be found in one of the authors’ MSc Thesis: [14].
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are true in the object logic. The use of HOL in the LogiKEy approach is necessary for the
theorem verification task. Specifically, in order to evaluate the truth of theorems expressed
in λ-terms, one has to provide a semantical interpretation of those terms that allows those
theorems to be truth bearers. To deal with this challenge, LogiKEy’s λ-translations in HOL
have bodies with the same syntactic structure as formulae of classical higher-order logic (e.g.,
λw.φ(w)∧ψ(w)). Via this syntactical similarity, λ-translations can be semantically interpreted
using Henkin models. Thus, if one uses a Henkin-sound ATP, then a proof of a theorem entails
its truth. The only thing left is to prove that there is a truth preservation between the HOL’s &
object logic’s semantics, what in [4] call as faithfulness of the embedding. Contra to LogiKEy,
Catala’s λ-translations do not have a semantical interpretation, and hence, its current form
does not suffice to verify the truth of interpretation theories.

However, both Catala and LogiKEy can be used to corroborate the similarity requirement
of coherence: a formal model of a judicial reasoning should verify paradigmatic applications of
that reasoning method in judicial judgements so as to corroborate the coherence among those
judgements. The requirement for coherence is imposed by both the value of legality and value of
foreseeability. Firstly, formal models of judicial reasoning should produce the same judgements
as those of the legitimate human judicial authorities (legality). Secondly, paradigmatic cases of
how a reasoning method is applied in past cases are used to determine future applications of
the law (foreseeability). In philosophy of law, the construal of the epistemic value of coherence
as the satisfaction of paradigmatic judgements is on par with another landmark conceptual
re-engineering method, that of narrow reflective equilibrium (NRE) advocated by pioneers in
philosophy of law like John Rawls & Richard Dworkin (see e.g. [19]). The combination of
explication and NRE can be used to balance out their perils and maximise their efficiency[6].

In order to verify paradigmatic applications of a reasoning method, both LogiKEy and
Catala make use of λ-calculi’s translatability to functional programming code: one can give
as input to the code the facts of past cases and then verify whether the output of the code
coincides with the respective judgements. For that to be possible, both methods need to
employ some kind of judgement-preservation theorems: judgements that can be derived in the
object logic should be derivable in the target λ-calculi as well. In the case, of LogiKEy, this is
secured once more through HOL’s semantical interpretation via Henkin models. On the other
hand, in order to ensure judgement-preservation without semantics, Catala adopts the GOFAI
rule-based modelling of judicial reasoning. Specifically, certain λ-translations have the syntactic
structure of if-then rules with exceptions: the heads of the rules are potential judgements and
the bodies are sufficient conditions for each of those judgements as well as possible exceptions
to those conditions. By following the reduction rules of the target λ-calculus, those rule-like
λ-terms can be reduced to either their heads (i.e., specific judgements) or to their exceptions.
Using this rule-reduction schema, Catala ensures judgement-preservation though what they
call correctness theorem: a rule-like λ-translation is reduced to the same λ-term that the λ-
translation of the object logic’s true judgement (or its true exception) is reduced to.

Summing up, it seems that LogiKEy corroborates the value of similarity better than
Catala since it can be used to enhance both intentional similarity & coherence. Having
said that, before concluding on which of the two methodologies is more adequate, one has to
evaluate their performance in other similarity requirements (e.g., extensional & relational sim-
ilarity) as well as to the rest three explication values [14, 6, 5]. Another conclusion from the
above analysis is the ways that λ-calculus can be used corroborate the value of similarity setting
a precedent for other logical reconstruction methodologies to follow. The foregoing remarks are
a quick taste of how explication & NRE can guide a formal philosophers practice of modelling
legitimate models of judicial reasoning that can be employed by robot judges.
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Abstract

We consider the logic space of countable (enumerated) groups and show that closed
subspaces corresponding to some standard classes of groups have (do not have) generic
groups.

1. INTRODUCTION. The recent paper [1] considers countable groups as elements of
a Polish space in the following way. An enumerated group is the set ω together with a
multiplication function · : ω × ω → ω, an inversion function −1 : ω → ω , and an identity
element e ∈ ω defining a group. The space G of enumerated group is the closed subset of the
space X = ωω×ω × ωω × ω (under the product topology). If U is a universal extension of the
theory of groups then the space of enumerated groups satisfying U , say GU , is a closed subspace
of G. Since all these spaces are Polish (separable and completely metrizable), Baire category
methods can be applied.

In fact, instead of U any abstract property of groups, say P , can be considered. It naturally
defines the invariant subset GP of G. Assuming that GP is Polish it is studied in [1] which group-
theoretic properties define comeagre subsets of GP . In particular, are there generic groups in
GP (i.e.groups forming a comeagre isomorphism class)? The main results of [1] state that there
is no generic group in G and moreover, when P is the property of left orderability the space GP
does not have a generic group. The authors deduce this using involved arguments in the style
of model-theoretic forcing.

A. Ivanov studied the problem of existence of generic objects in [2] in full generality. He
introduced some general condition which is now called the weak amalgamation property (WAP)
and showed that it together with the joint embedding property characterizes the existence of
generics. (In [2] this condition was called the almost amalgamation property. It was considered
later for automorphisms in the very influential paper [4] were the name WAP was used.)

The goal of our paper is to demonstrate that the results of [1] mentioned above can be
deduced by an application of [2]. We also add some new important examples of this kind.
Furthermore, the approach of [1] is extended to actions of groups on first-order structures, for
example on (Q, <). We also show how [2] works in the contrary direction, i.e. for proving of
existence of generics in GU for some natural group varieties U .

In this text we omit proofs. They can be found in [3]. Theorems 4 and 7 are already
available to the reader at this stage. These are our new results concerning Burnside varieties.
Other results below describe our approach and technical details.

General preliminaries. Fix a countable ω-categorical structure M in a language L. Let
T be an expansion of Th(M) in some L ∪ r̄ where r̄ = (r1, . . . , rι) is a sequence of additional
relational/functional symbols. We assume that T is axiomatizable by sentences of the following
form:

(∀x̄) (
∨
i(φi(x̄) ∧ ψi(x̄)),
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where φi(x̄), is a quantifier-free formula in the language L∪ r̄, and ψi(x̄) is a first order formula
of the language L. Let XM be the space of all r̄-expansions of M to models of T . This is a
topological space with respect to so called logic topology. In the following few paragraphs we
introduce some notions from [2]. They will be helpful in a description of the logic topology too.

For a tuple ā ⊂ M we define a diagram φ(ā) of r̄ on ā as follows. To every functional
symbol from r̄ we associate a partial function from ā to ā. When ri is a relational symbol from
r̄ we choose a formula from every pair {ri(ā′),¬ri(ā′)}, where ā′ is a subtuple from ā of the
corresponding length.

Let BT be the set of all theories D(ā), ā ⊂M , such that each of them consists of Th(M, ā)∪T
together with a diagram of r̄ on ā satisfied in some (M, r̄) |= T . Since M is atomic, each element
of BT is determined by a formula of the form φ(ā)∧ψ(ā), where ψ(x̄) is a complete formula for
M realized by ā and φ(ā) is a quantifier-free formula in the language L∪ r̄. The corresponding
φ(x̄) ∧ ψ(x̄) is called basic.

For every diagram D(ā) ∈ BT the set
[D(ā)] = {(M, r̄) ∈ XM | (M, r̄) satisfies D(ā)}

is clopen in the logic topology. In fact the family {[D(ā)] |D(ā) ∈ BT } is usually taken as a
base of this topology. It is metrizable. Each D(ā) ∈ BT can be viewed as an expansion of M by
finite relations corresponding to r̄. When ri is a functional symbol the corresponding relation
is Graph(ri) the graph of the corresponding partial function on ā. We will say that ā is the
domain of this diagram: ā = Dom(D(ā)).

Definition 0. An expansion (M, r̄) is called generic if it has a comeagre isomorphism class
in XM .

The set BT is ordered by the relation of extension: D(ā) ⊆ D′(b̄) if ā ⊆ b̄ and D′(b̄) implies
D(ā) under T (in particular, the partial functions defined in D′(b̄) extend the corresponding
partial functions defined in D(ā)).

In these terms we formulate the definitions of JEP, AP and WAP.

� The family BT has the joint embedding property if for any two elements D1, D2 ∈ BT
there is D3 from BT and an automorphism α ∈ Aut(M) such that D1 ⊆ D3 and α(D2) ⊆
D3.

� The family BT has the amalgamation property if for any D0, D1, D2 ∈ BT with
D0 ⊆ D1 and D0 ⊆ D2 there is D3 ∈ BT and an automorphism α ∈ Aut(M) fixing
Dom(D0) such that D1 ⊆ D3 and α(D2) ⊆ D3.

� The family BT has the weak amalgamation property if for every D0 ∈ BT there is
an extension D′0 ∈ BT such that for any D1, D2 ∈ BT with D′0 ⊆ D1 and D′0 ⊆ D2 there
is D3 ∈ B′ and an automorphism α ∈ Aut(M) fixing Dom(D0) such that D1 ⊆ D3 and
α(D2) ⊆ D3.

By Theorem 1.2 from [2]:
XM has a generic expansion (M, r̄) if and only if the family BT has JEP and WAP.

I. Enumerated groups. The basic case. The structure M is just ω and L consists of one
constant symbol 1 which is interpreted by number 1. Let r̄ consist of the binary function of
multiplication · and a unary function −1. Let T be the universal theory of groups with the unit
1. 1

1It is not necessary to fix 1 in the language of M . We do it just for convenience of notations in Scenario II
below.
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Each element of BT consists of a tuple c̄ ⊂ ω containing 1 and partial functions for · and −1

on c̄. The space XM corresponding to T is the logic space of all countable groups, where the
unit is fixed. We emphasize that this is exactly the space G of enumerated groups from [1].

If instead of T above one takes a universal extension of the theory of groups, say T̄ , then
the corresponding space of enumerated groups is the closed subspace GT̄ ⊆ G.

In the paragraph below we will have several sorts in M . The sort just described will always
occur. We will denote it by Gp. In particular if (M, r̄) ∈ XM then we denote by Gpr̄ the group
defined by r̄ on this sort.

II. The case of an action. Let M0 be an atomic structure of some language L0. Define M
to be M0 with an additional sort ω called Gp and the constant symbol 1 interpreted by 1. The
symbols r̄ include ·, −1 and a new symbol ac for a function M0 × Gp → M0. The theory T
contains the universal axioms of groups on Gp with 1. We also add the axioms for an action:

ac(x, z1 · z2) = ac(ac(x, z1), z2) , ac(x, 1) = x.
The space XM is the logic space of all countable expansions of M where the group structure

is defined on Gp, with a fixed unit 1 and an action ac .
It is natural to add the universal axioms that ac preserves the structure of M0. In this way

we obtain the space of actions on M0 by automorphisms.

2. SEEKING GENERICS. The following definition concerns cases I,II.

Definition 1. Let c̄ be a subtuple of c̄′ and D(c̄′) ∈ BT . We say that D(c̄′) is t-isolating
(term-isolating) for c̄ if for any two members of [D(c̄′)] the groups 〈c̄ ∩ Gp〉 coincide (on the
sets of group words of the alphabet c̄ ∩ Gp).

In (basic) case I let G be a group which is defined on the sort Gp and G = 〈c̄〉 for some
c̄ ⊆ ω (it is not assumed that G = ω). We say that G is t-isolated by D(c̄′) if D(c̄′) is t-isolating
for c̄ and G is the corresponding 〈c̄〉.

Definition 2. (Case I) We say that an abstract group G is t-isolated if it has a Gp-copy, say
〈c̄〉, which is isolated by some D(c̄′) for c̄ where c̄′ ⊂ 〈c̄〉.

We say that t-isolated diagrams are dense in BT if any D0(c̄) ∈ BT extends to some D(c̄′)
which is t-isolating for c̄ and c̄′ ⊂ 〈c̄〉.

The following proposition is our tool for seeking generics.

Proposition 3. Under the circumstances of case I assume that t-isolated diagrams are dense
in BT . Then WAP for BT is equivalent to the following property:

any t-isolated G0 can be extended to a t-isolated G1 such that any two t-isolated
extensions of G1 can be amalgamated over G0.

Let us note that every finite group F = 〈c̄〉 is t-isolated. Using this we can conclude that if all
groups satisfying T are residually finite then t-isolated diagrams are dense in BT . Furthermore,
then t-isolated groups satisfying T are exactly finite ones.

Under the scenario of case I abelian groups form a closed subspace of XM . Proposition 3
gives an easy proof that this subspace has a generic group, a result proved in [5]. The following
situation is more complicated.

Theorem 4. Let c, p ∈ ω \ {0, 1} and p be prime > max(2, c). The closed subspace Gcnilp ⊆ G
of all nilpotent groups of degree c and of exponent p has a generic group.
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3. STRONG UNDECIDABILITY IMPLIES NON-WAP. We will assume below the
setup of one of the cases I - II, where T is a universal theory including group axioms for the
sort Gp.

The following proposition is a generalization of the theorem of Kuznetsov that a recursively
presented simple group has decidable word problem.

Proposition 5. Assume that D(c̄) ∈ BT and an extension D′(c̄′) ∈ BT is t-isolating for c̄.
Let (M, r̄) ∈ [D′(c̄′)]. Assume that D′(c̄′) is a computably enumerable set. Then in (M, r̄) the
elements of c̄ which belong to the group sort Gpr̄ generate a recursively presented group with
decidable word problem.

Our main tool for proving the absence of generics in GT is as follows.

Theorem 6. Assume that D(c̄) ∈ BT (where c̄ includes all distinguished elements of M)
satisfies the property that every extension D′(c̄′) is computably enumerable and for every
(M, r̄) ∈ [D′(c̄′)] the group 〈c̄ ∩ Gpr̄〉 (defined in (M, r̄)) has undecidable word problem.

Then D(c̄) does not have an extension required by WAP for BT .

We now give one of our applications of Theorem 6 for concrete spaces of enumerated groups.

Theorem 7. There is a constant C such that for every odd integer n ≥ C, the space Gexp.n of
all groups of exponent n does not have a generic group.

Remark 8. A similar approach works for the logic spaces of semigroups and rings. We prove
that there is neither generic semigroup nor generic associative ring.

Generics over rationals. Consider Scenario II, where M0 = (Q, <). Define M to be M0

with the additional sort Gp and the constant symbol 1 interpreted by 1 ∈ ω. The symbols r̄
are ·, −1 and ac for an action M0 × Gp→M0 by automorphisms.

The theory T contains the universal axioms of groups on the sort Gp with the unit 1 and
the axioms for an action by automorphisms. The space XM is the logic space of all countable
expansions of M where the group structure is defined on Gp, with a fixed unit 1 and an action
ac . We denote it by X(Q,<).

Theorem 9. The space X(Q,<) does not have a generic action.
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Abstract

This paper shows how Argumentation Logic can be further extended to cover more fully
paraconsistent forms of reasoning. The extension is based on the notion of non-acceptable
self-defeating arguments as a generalization of the Reductio ad Absurdum principle.

1 Motivation and Background

Argumentative inference relies on the central normative condition of the acceptability of a (set
of) argument(s). Informally, this condition states that “a (set of) argument(s) is acceptable
iff it defends against all its counter-arguments”. An acceptable argument thus forms a “case”
that supports satisfactorily its claim and hence the claim is a possible or credulous conclusion
under the argumentative reasoning.

When this is applied to formal logical reasoning where arguments are sets of logical formulae,
e.g., propositional formulae, a case corresponds to a set of formulae which can be enveloped in
a model of the theory and thus a credulous conclusion corresponds to a satisfiable formula. We
can then show that such a form of Argumentation Logic (AL) is logically equivalent to classical
Propositional Logic (PL). This equivalence though holds only when reasoning under a set of
given premises that are classically consistent. When the premises are inconsistent, AL does not
trivialize like PL but smoothly extends PL into a paraconsistent logic.

Technically, AL does this by encompassing the proof rule of Reduction ad absurdum through
the notion of non-acceptability of arguments, namely the contrary notion of acceptability of
arguments. Non-acceptable arguments are “self-defeating” arguments. Informally, such an
argument is one that either forms a counter-argument to itself or that it is a counter-argument
to an argument that it necessarily needs in order to defend against some counter-argument to
it. In other words, a non-acceptable or self-defeating argument invalidates its possible case of
support by rendering the set of arguments in the case incompatible with each other.

In this paper, we will explore further the notion of non-acceptable arguments and study
how this can give in the AL reformulation of PL new acceptable sets of arguments (under
inconsistent premises) that were not recognized as such before. Whereas in the previous work
on AL in [3] this was carried out only for the limiting case of non-acceptability of a self-attacking
counter-argument, in this paper we will show how more complex forms of self-defeating non-
acceptable arguments can be identified and used to “neutralize” the effect of such arguments
when they appear as counter-arguments to other arguments.

Section 2, reviews the acceptability semantics for general abstract argumentation frame-
works under which the classical Propositional Logic is reformulated as an Argumentation logic.
Section 3 discusses the non-acceptability of arguments. Section 4 defines the proposed extension
of the acceptability semantics and applies this to the specific case of AL as a reformulation of
PL. Section 5 concludes with a brief discussion of future work.
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2 Acceptability semantics of Argumentation

Let us briefly review the area of Abstract Argumentation and its semantics [1, 2] as developed
and used in the area of Artificial Intelligence. In abstract argumentation we are not interested
in the internal structure of arguments but only in their relative properties.

Definition 1. [Abstract Argumentation Framework]
An abstract argumentation framework is a triple, ⟨Arg,Att,Def⟩, where

• Arg is a set (of arguments)

• Att is a binary (partial) relation on Arg (attack relation)

• Def is a binary (partial) relation on Arg (defence relation)

Given A,∆, D ⊆ Arg, we say that A attacks ∆ (written A ⇝ ∆) iff there exists a ∈ A and
b ∈ ∆ such that (a, b) ∈ Att and that D defends against A (written D ↠ A) iff (d, c) ∈ Def
for some d ∈ D and c ∈ A.

A typical realization of a triple argumentation framework in some language, L, for con-
structing and comparing arguments is given by: (1) a is in conflict in L with b for (a, b) ∈ Att
to hold and (2) a is at least as strong in L as b for (a, b) ∈ Def to hold. In such realizations,
the attack relation is symmetric and the defence relation is a subset of the attack relation.

The semantics of an abstract argumentation framework is defined via subsets of arguments
that satisfy an acceptability property, Acc(∆,∆0), whose informal meaning is that the set of
arguments ∆ is acceptable in the context of a given set of arguments ∆0, only when ∆ can
defend against all its counter-arguments.

Definition 2 (Acceptability property).
Let AF = ⟨Arg,Att,Def⟩ be an abstract argumentation framework and ∆,∆0 ⊆ Arg. Then:

• Acc(∆,∆0) iff

– ∆ ⊆ ∆0, or

– for any A ⊆ Arg such that A⇝ ∆:

◦ A ̸⊆ ∆ ∪ ∆0, and

◦ there exists ∆′ ⊆ Arg such that ∆′ ↠ A and Acc(∆′,∆ ∪ ∆0)

In other words, counter-arguments must be defended against by arguments that are them-
selves acceptable in the extended context of ∆ ∪ ∆0, and hence ∆ can contribute to its own
defense. Formally, the acceptability property is defined through the least fixed point of an associ-
ated monotonic operator on the binary Cartesian product of sets of arguments R = 2Arg×2Arg.

Definition 3 (Acceptability operator). Let AF = ⟨Arg,Att,Def⟩ be an abstract argumentation
framework. The acceptability operator A : R → R is defined as follows. Given r ∈ R and
∆,∆0 ⊆ Arg, (∆,∆0) ∈ A(r) iff:

• ∆ ⊆ ∆0, or

• for any A ⊆ Arg such that A⇝ ∆:

– A ̸⊆ ∆ ∪ ∆0, and

– there exists ∆′ ⊆ Arg such that ∆′ ↠ A and (∆′,∆ ∪ ∆0) ∈ r

2
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We denote by Afix the least fixed point of this operator. Then the semantics of an argu-
mentation framework is given through the subsets of arguments ∆ that are acceptable with
respect to the empty set of arguments, i.e. such that (∆, {}) ∈ Afix holds. We say that such
sets of arguments are acceptable.

Example 1. Let AF = ⟨Arg,Att,Def⟩ be the abstract argumentation framework where

• Arg = {a, b}

• Att = {(a, b), (b, a)}

• Def = {(b, a)}

In this framework its two arguments attack each other but only b is able to defend against
its counter-argument of a, e.g., because b is stronger than a. We can then see that the set {b} is
acceptable whereas the set {a} is not acceptable as it cannot defend against its counter-argument
A = {b}. Instead, if the defense relation contained also (a, b), e.g., when the two arguments are
of equal strength, then both {a} and {b} would be acceptable sets of arguments.

2.1 Propositional Logic as Argumentation Logic

We will review the reformulation [3] of classical Propositional Logic and its paraconsistent
extension of Argumentation Logic as a realization of the abstract argumentation framework
and its acceptability semantics.

Definition 4 (Argumentation Logic Framework). We denote by ⊢MRA the Natural Deduction
direct derivation relation of propositional logic modulo Reduction ad Absudrum (MRA), i.e.
without the proof rule of Reduction ad Absudrum.

Let T be a propositional theory. The argumentation logic framework corresponding to T is
the triple AFT = ⟨Args,Att,Def⟩ with:

• Arg = {Σ | Σ is a finite set of propositional sentences}

• given ∆,Γ ∈ Arg, with ∆ ̸= {}, (Γ,∆) ∈ Att iff T ∪ Γ ∪ ∆ ⊢MRA ⊥

• given ∆ ∈ Arg, ({ϕ},∆) ∈ Def , where ϕ is the complement of some sentence ϕ ∈ ∆ and
({},∆) ∈ Def whenever T ∪ ∆ ⊢MRA ⊥.

We see that the attack relation is symmetric, i.e. arguments are always counter-arguments
of each other when together they are directly inconsistent in the context of the given premises
T . The defense relation essentially expresses the fact that any argument can be defended
against by undermining one of its premises. In logical terms the defense relation expresses the
property that for any formula ϕ we are free to choose this or its complement. The second part
of the defense relation expresses the fact that if an argument is self-inconsistent with respect
to the given premises then this can be trivially defended against by the “safe” empty argument
(which in turn can not be attacked). We will see below that when we extend the acceptability
semantics, this second part of the defense relation will not need to be stated explicitly at this
level but will be captured at the extended acceptability semantic level.

We will denote by ALfix (or simply by AL) the least fix point of the corresponding oper-
ator A in the general abstract argumentation frameworks as above in definition 3. We then
have [3] a logical correspondence between propositional logic (for classically consistent premises
T ) and the argumentation acceptability semantics. For any formula ϕ: ϕ is acceptable, i.e.,

3

Proceedings of the 14th Panhellenic Logic Symposium

— 97 —



Extended Argumentation Logic Kakas and Mancarella

({ϕ}, {}) ∈ ALfix if and only if there is a model of T in which ϕ is true. Furthermore, for clas-
sically inconsistent premises which are directly consistent, i.e. consistent under the restricted
derivation of ⊢MRA, the argumentation semantics does not trivialize but smoothly extends the
propositional deductive semantics into such cases of inconsistent premises. The full technical
details of these results can be found in [3]. For the purposes of this paper, it is important to
point out that the results rest on the correspondence between proofs via Reductio ad Absurdum
and the non-acceptability of formulae, i.e. formulae ϕ such that ({ϕ}, {}) ̸∈ ALfix holds.

3 Non-acceptable Arguments

In this section, we will examine further the nature of non-acceptable arguments and the relative
defeatedness of such arguments in the context of a given set of arguments.

Example 2 (Motivating Example 1). Let AF = ⟨Arg,Att,Def⟩ be the abstract argumentation
framework where

• Arg = {a, b}
• Att = {(a, b)}
• Def = {}

The argument set {b} is attacked by the argument set {a}. Trivially then, ({b}, {a}) ̸∈ Afix

i.e., {b} is non-acceptable in the context of {a}, as {b} is attacked by an argument that belongs
to the context . We will also say that {b} is defeated in the context of {a}.
Example 3 (Motivating Example 2). Let AF = ⟨Arg,Att,Def⟩ be the abstract argumentation
framework where

• Arg = {a, b}
• Att = {(a, a), (a, b)}
• Def = {}

The argument set {a} is self-attacking and hence it is non-acceptable or defeated in its own
context. We consider this argument as a self-defeating argument exactly because it contains
one of its attacks. This property of {a} being self-defeating is not affected by the argument {b}.

The above example shows a simple (and limiting) case of a non-acceptable self-defeating
argument. More complex forms of such arguments exist as it is illustrated in the next example.

Example 4 (Motivating Example 3). Let AF = ⟨Arg,Att,Def⟩ be the abstract argumentation
framework where

• Arg = {a, b, a1, d1}
• Att = {(a, b), (a1, a), (a, d1), (d1, a1)}
• Def = {(d1, a1)}

Argument a is attacked by a1 which can only be defended against by argument d1. But a attacks
this defense of d1, i.e. d1 is defeated in the context of a. Hence, as in the example above, a is
non-acceptable and we can consider it as self-defeating, but now in an indirect way, because a
renders its necessary defending argument(s) non-acceptable or defeated in its own context.

4
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These more complex forms of self-defeated arguments arise from the recursive nature of
non-acceptability given by negating the recursive definition of acceptability.

Proposition 1 (Non-acceptability).
Let AF = ⟨Arg,Att,Def⟩ be an abstract argumentation framework and ∆,∆0 ⊆ Arg. Let
non Acc(∆,∆0) denote the statement (∆,∆0) ̸∈ Afix. Then the following holds1:

non Acc(∆,∆0) iff ∆ ̸⊆ ∆0 and

∃A ⊆ Arg such that A⇝ ∆ and

∗ A ⊆ ∆ ∪ ∆0, or

∗ ∀∆′ ⊆ Arg s.t. ∆′ ↠ A: non Acc(∆′,∆ ∪ ∆0).

A non-acceptable argument A such that (A, {}) ̸∈ Afix holds, is one where when we collect
recursively the defenses against one of its counter-arguments and recursively the defenses against
attacks of the earlier defenses we end up with a collection of defenses that is self-attacking.

4 Extended Acceptability semantics

The extension of the notion of acceptability of arguments follows the simple idea that counter-
arguments that are non-acceptable or self-defeating can be dealt with without the need to
explicitly defend against them. It is sufficient to recognize that such attacks are self-defeating.

Definition 5 (Extended Acceptability).
Let AF = ⟨Arg,Att,Def⟩ be an abstract argumentation framework and ∆,∆0 ⊆ Arg. Then a
set of arguments ∆ is acceptable in the context of ∆0, denoted by Acc+(∆,∆0), when the
following holds:

Acc+(∆,∆0) iff

– ∆ ⊆ ∆0, or

– for any A ⊆ Arg such that A⇝ ∆:

∗ A ̸⊆ ∆ ∪ ∆0, and

∗ (A, {}) ̸∈ Afix, or ∃ ∆′ ⊆ Arg such that ∆′ ↠ A and (∆′,∆ ∪ ∆0) ∈ Afix

Proposition 2. Let AF = ⟨Arg,Att,Def⟩ be an abstract argumentation framework and
∆,∆0 ⊆ Arg. Then (∆,∆0) ∈ Afix =⇒ Acc+(∆,∆0).

Example 5 (Examples 1 and 4 cnt.). In both of these examples ({b}, {}) does not belong to
Afix, i.e. the argument set {b} is not acceptable. However, Acc+({b}, {}) holds because the
only (minimal) attack against {b}, namely the set {a}, is self-defeating. Hence the argument
set {b} is acceptable in the extended semantics.

1Proofs in this paper are omitted due to lack of space.
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4.1 AL+: Extended Argumentation Logic

We will now apply the extended acceptability semantics to obtain an extended form of Argu-
mentation Logic (AL). We simply apply definition 5 to the case of AL. In effect, this will give
us a generalized form of proof by contradiction under inconsistent premises.

Definition 6 (Extended Argumentation Logic). Let AFT = ⟨Args,Att,Def⟩ be the argumen-
tation logic framework corresponding to a (directly consistent) propositional theory T . Then the
extended argumentation logic, AL+, is given by:

AL+(∆, {}) holds iff for any A ⊆ Arg such that A⇝ ∆:

• A ̸⊆ ∆, and

• (A, {}) ̸∈ AL, or there exists ∆′ ⊆ Arg such that ∆′ ↠ A and (∆′,∆) ∈ AL

Hence a set of formulae is acceptable in AL+ either because its attacks could be defended
acceptably, as before in the basic logic of AL, or because its attacks are non-acceptable in AL.

The following result shows that the extended argumentation logic, AL+, is a “proper”
extension of AL when the given premises T are classically consistent.

Theorem 1. Let T be a classically consistent theory and AFT = ⟨Arg,Att,Def⟩ its cor-
responding argumentation logic framework. Let also ϕ be a propositional formula such that
({ϕ}, {}) ̸∈ AL holds. Then AL+({ϕ}, {}) does not hold.

Thus the extension of the logic does not trivialize the original logic and specifically classical
Propositional Logic for consistent premises. We also know from proposition 2 that AL+ contains
the original logic of AL. The following example, taken from [3], clarifies the link between the
extended AL and the original AL and how the former gives genuinely new cases of acceptable
formulae.

Example 6. Consider the following two theories of propositional logic:

• T1 = {¬(β ∧ α),¬α} T2 = {¬(β ∧ α),¬(α ∧ γ),¬(α ∧ ¬γ)}
It is easy to see that the argument {β} is acceptable in AL relative to theory T1. Its minimal
attack {α} is directly self-inconsistent and hence self-attacking (i.e. T1 ∪ {α} ⊢MRA ⊥) and
so it can be defended by {}. The argument {β} is also acceptable in AL relative to theory T2,
even though its attack α is not directly inconsistent. The defense against the attack of {α},
namely {¬α}, is such that ({¬α}, {β}) ∈ AL. Notice, however, that this attack of {α} is itself
a non-acceptable self-defeating argument, as it cannot defend acceptably against its attack by
{γ}: the only possible defense of {¬γ} in non-acceptable in the context of {α}, because {α}
attacks {¬γ}. Therefore, recognizing the non-acceptability of the attack {α} is an alternative
way to enforce the acceptability of {β}. The extended acceptability semantics of AL+ uses this
alternative way. Importantly, it does so in the same way for both theories T1 and T2.

The extended acceptability semantics becomes relevant when the theory of premises is in-
consistent, and attacks like {α} above cannot be defended acceptably by {¬α}.

Example 7 (Example 6 cnt.). Consider the following theory, obtained from T2 by making also
¬α non acceptable: T3 = T2 ∪ {¬(¬α ∧ δ),¬(¬α ∧ ¬δ)}. The attack {α} cannot be acceptably
defended because the possible defense of {¬α} is non-acceptable in a way similar to the non-
acceptability of {α} shown above (replacing {γ} with {δ}). Nevertheless, as {α} is by itself
non-acceptable, it is reasonable to accept {β} as acceptable, as AL+ does.
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5 Conclusions

We have shown how to extend Argumentation Logic to capture the intuitive idea that for attacks
which are by themselves self-defeating it is not necessary to defend against. This extension is
based on definition 5. We can then consider applying this definition iteratively to give possible
further extensions of acceptability and study the properties of such extensions.
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1 Introduction

Model constructions based on equivalence relations and partial equivalence relations (PERs) are
instrumental in type theory, programming language theory and categorical logic. They provide
well-behaved models of intensional type theory (e.g. [7]) and polymorphism (e.g. [6]). PERs
are also a key feature in the tripos-to-topos construction [5]. This work draws on Martin-Löf’s
identity types [2, 4] to describe universal properties of certain forms of such constructions.

Universal properties of constructions based on equivalence relations have appeared in works
by Lawvere and subsequent authors on exact completions (particularly the ex/reg completion [3,
8]) at the generality of categories, and in more recent works by Maietti and Rosolini on quotient
completions [10, 11] and by Pasquali on the ‘elementary completion’ [12] at the generality of
indexed posets. The present work builds upon Pasquali’s completion result and the construction
that underlies it, the latter of which was in essence originally described by Maietti and Rosolini
for their ‘effective quotient completion’ [11] and we shall refer to as the ER-descent construction
(Definition 3.3).

Theorem 1.1 (Pasquali [12], §3). The ER-descent construction gives a right 2-adjoint to the in-
clusion of the 2-category of elementary doctrines and strict-natural morphisms in the 2-category
of primary doctrines (= indexed (∧,⊤)-posets over finite-product categories) and strict-natural
morphisms.

This result will be reinterpreted in terms of identity types, in the following way. In view
that indexed preorders are an interpretation of many-sorted predicate logic, and many-sorted
predicate logic in turn is a (extremely) truncated version of dependent type theory, we formulate
an adaptation of the inductive axioms of identity types to indexed preorders, calling the resulting
notion identity objects (Definition 3.1). It turns out that a primary doctrine has identity objects
if and only if it is an elementary doctrine (Theorem 3.2). Therefore, Theorem 1.1 is telling us
that the ER-descent construction is a right 2-adjoint completion that adds identity objects.

We then describe a universal property analogous to this for the PER-descent construction
(Definition 4.1), the partial equivalence relations version of the ER-descent construction. This
construction can be seen as a step in the tripos-to-topos construction (cf. [9]). The universal
property is obtained by considering a suitable weakening of identity objects, called partial
identity objects (Definition 4.2). We show that the PER-descent construction is a right-biadjoint
completion that adds partial identity objects (Theorem 4.6).

Partial identity objects can be promoted to identity objects by a comonadic construction we
call virtualisation (Definition 5.2 and Remark 5.3). It serves as another step in the tripos-to-
topos construction (cf. [9]), where it in particular turns the PERs emerged from the PER-descent
construction into equivalence relations. Virtualisation in fact plays a role in the definition of par-
tial identity objects (Remark 4.3). We establish universal properties of virtualisation (Theorem
5.6). It is an ambidextrously biadjoint completion with respect to oplax-natural morphisms of
indexed preorders. With respect to pseudonatural morphisms of indexed preorders, it is merely
a left-biadjoint completion.

Proceedings of the 14th Panhellenic Logic Symposium

— 103 —



Identity types in predicate logic Lee

2 2-categories of indexed preorders

Let Pre, Pre∧ and Pre∧,⊤ denote the category of preorders, ∧-preorders and (∧,⊤)-preorders
respectively.

Definition 2.1. A (strictly) indexed preorder, ∧-preorder and (∧,⊤)-preorder P consists of a
category P 0 and a functor P 1 : (P 0)op → Pre, Pre∧ and Pre∧,⊤ respectively.

Definition 2.2. Let P and Q be indexed preorders. An oplax-natural morphism F : P → Q
consists of a functor F 0 : P 0 → Q0 and an oplax natural transformation

(P 0)op (Q0)op

Pre.
P 1

(F 0)op

F 1

⇒
Q1

A pseudonatural morphism is an oplax-natural morphism F for which F 1 is a pseudonatural
transformation. A strict-natural morphism is an oplax-natural morphism F for which F 1 is a
strict natural transformation.

Terminology 2.3. Let P and Q be indexed preorders. An oplax-natural morphism F : P → Q
preserves binary products if the functor F 0 preserves binary products, and preserves meets or
top if each component of the oplax natural transformation F 1 does so respectively.

Definition 2.4. A 2-morphism ρ : F → G : P → Q between oplax morphisms of indexed
preorders is a natural transformation ρ : F 0 → G0 : P 0 → Q0 such that

P 1(X)

Q1F 0(X) Q1G0(X)

≤
F 1

X G1
X

ρX
∗ := Q1(ρX)

(1)

as homomorphisms of preorders for each object X ∈ P 0.

The following defines notations for some 2-categories of indexed preorders that we will need.

Proposition 2.5. Indexed

a. ∧-preorders over binary-product categories,

b. (∧,⊤)-preorders, c. (∧,⊤)-preorders over binary-product categories,

their structure-preserving

1. oplax-natural 2. pseudonatural

morphisms, and 2-morphisms form a 2-category, denoted

1a. IdxPre×,∧on , 1b. IdxPre∧,⊤on , 1c. IdxPre×,∧,⊤on

2a. IdxPre×,∧pn , 2b. IdxPre∧,⊤pn , 2c. IdxPre×,∧,⊤pn

respectively.
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3 Identity objects and ER-descent construction

Let P be an indexed (∧,⊤)-preorder over a binary-product category.

Definition 3.1. An identity object on an object X ∈ P 0 is

1. (formation) an element IdX ∈ P 1(X ×X),

such that

2. (introduction or reflexivity) ⊤ ≤ (X
δ→ X ×X)∗(IdX), and

3. (elimination) for any object Y ∈ P 0 and elements p, q ∈ P 1(X ×X × Y ), if

(X × Y
δ×Y→ X ×X × Y )∗(p) ≤ (X × Y

δ×Y→ X ×X × Y )∗(q),

then (X ×X × Y
π1,π2→ X ×X)∗(IdX) ∧ p ≤ q.

We say P has identity objects if each X has an identity object.

This Martin-Löf notion of equality is equivalent to Lawvere’s hyperdoctrine equality [1] as
extracted by Maietti and Rosolini [10] in the notion of elementary doctrine:

Theorem 3.2. An indexed (∧,⊤)-poset over a finite-product category has identity objects if
and only if it is an elementary doctrine.

This means Pasquali’s ‘elementary completion’ result (Theorem 1.1) is telling us that the
ER-descent construction is a right 2-adjoint completion adding identity objects. Let us review
this construction.

Definition 3.3. An equivalence relation on an object X ∈ P 0 is an element ∼ ∈ P 1(X ×X)
that is

1. (reflexive) ⊤ ≤ (X
δ→ X ×X)∗(∼)

2. (symmetric) ∼ ≤ (X ×X
π2,π1→ X ×X)∗(∼), and

3. (transitive) (X×X×X π1,π2→ X×X)∗(∼)∧(X×X×X π2,π3→ X×X)∗(∼) ≤ (X×X×X π1,π3→
X ×X)∗(∼).

The ER-descent construction on P is the indexed preorder ER(P ) where an object in ER(P )0

is a pair (X,∼) with X ∈ Ob(P 0) and ∼ ∈ P 1(X×X) an equivalence relation, an arrow (X,∼X
) → (Y,∼Y ) is an arrow f : X → Y in P 0 satisfying ∼X ≤ P 1(f × f)(∼Y ), and ER(P )1(X,∼)
the full subpreorder of P 1(X) on those elements p satisfying P 1(π1)(p) ∧ ∼ ≤ P 1(π2)(p).

Proposition 3.4. ER(P ) is an indexed (∧,⊤)-preorder over a binary-product category, and
has identity objects: if (X,∼) is an object in ER(P )0, then ∼ is an identity object on it.

We will state an adaptation of Pasquali’s result to our settings. The following definition is
needed.

Definition 3.5. Let P and Q be indexed (∧,⊤)-preorders with identity objects over binary-
product categories. Let F : P → Q be an oplax-natural morphism that preserves binary prod-
ucts. We say F preserves identity objects if

IdF 0(X) ≃ (F 0(X) × F 0(X)
∼=→ F 0(X ×X))∗F 1

X×X(IdX)

for every object X ∈ P 0.
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Let IdxPre×,∧,⊤,Idpn denote the 2-category whose 0-cells are indexed (∧,⊤)-preorders with
identity objects over binary-product categories, 1-cells are pseudonatural morphisms that pre-
serve binary products, meets, tops and identity objects, and 2-cells are 2-morphisms.

Theorem 3.6. The assignment P 7→ ER(P ) extends to a 2-functor IdxPre×,∧,⊤pn →
IdxPre×,∧,⊤,Idpn that is right biadjoint to the inclusion 2-functor.

4 PER-descent construction and partial identity objects

Let P be an indexed ∧-preorder over a binary-product category.

Definition 4.1. A partial equivalence relation on an object X ∈ P 0 is an element ∼ ∈ P 1(X×
X) that is symmetric and transitive.

The PER-descent construction on P is the indexed preorder PER(P ) defined in the same
way as ER(P ) but with as objects in PER(P )0 partial equivalence relations in P instead.

The following weakened form of identity objects will give us a result analogous to Theorem
3.6 for the PER-descent construction.

Definition 4.2. P has partial identity objects if each object X ∈ P 0 is equipped with an
element PIdX ∈ P 1(X ×X), such that

1. (partial reflexivity) PIdX ≤ (X ×X
π1,π1→ X ×X)∗(PIdX), (X ×X

π2,π2→ X ×X)∗(PIdX),

2. (paravirtual elimination) for any object Y ∈ P 0 and elements p, q ∈ P 1(X ×X × Y ), if

(X × Y
π1,π1→ X ×X)∗(PIdX) ∧ (X × Y

π2,π2→ Y × Y )∗(PIdY ) ∧
(X × Y

δ×Y→ X ×X × Y )∗(p) ≤ (X × Y
δ×Y→ X ×X × Y )∗(q)

then (X ×X × Y
π3,π3→ Y × Y )∗(PIdY ) ∧ (X ×X × Y

π1,π2→ X ×X)∗(PIdX) ∧ p ≤ q,

3. each arrow f : X → Y in P 0 satisfies PIdX ≤ (f × f)∗(PIdY ), and

4. PIdX×Y ≃ (X×Y ×X×Y π1,π3→ X×X)∗(PIdX)∧ (X×Y ×X×Y π2,π4→ Y ×Y )∗(PIdY ).

Remark 4.3. Paravirtual elimination, as the name suggests, is related to virtualisation (§5).
Specifically, under the assumption of the other axioms (1., 3. and 4.), PIdX satisfies paravirtual
elimination if and only if it satisfies elimination (Definition 3.1) in the virtualisation Virt(P ) of
P (Definition 5.2).

Proposition 4.4. PER(P ) is an indexed ∧-preorder with partial identity object over a binary-
product category, with PId(X,∼) := ∼.

The preservation of partial identity objects is defined in the same way as that of identity
objects:

Definition 4.5. Let P and Q be indexed ∧-preorders with partial identity objects over binary-
product categories. Let F : P → Q be an oplax-natural morphism that preserves binary prod-
ucts. We say F preserves partial identity objects if

PIdF 0(X) ≃ (F 0(X) × F 0(X)
∼=→ F 0(X ×X))∗F 1

X×X(PIdX)

for every object X ∈ P 0.
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Let IdxPre×,∧,PId
pn denote the 2-category whose 0-cells are indexed ∧-preorders with par-

tial identity objects over binary-product categories, 1-cells are pseudonatural morphisms that
preserve binary products, meets and partial identity objects, and 2-cells are 2-morphisms.

Theorem 4.6. The assignment P 7→ PER(P ) extends to a 2-functor IdxPre×,∧pn → IdxPre×,∧,PId
pn

that is right biadjoint to the forgetful 2-functor.

In other words, the PER-descent construction is a right-biadjoint completion adding partial
identity objects.

5 Virtualisation

Virtualisation is a construction that allows us to promote partial identity objects into identity
objects. Its general definition involves the following structure on indexed preorders.

Definition 5.1. An indexed preorder P is oplaxly sectioned if each object X ∈ P 0 is equipped
with an element osX ∈ P 1(X) and each arrow f : X → Y in P 0 satisfies osX ≤ f∗(osY ).

We may regard an indexed preorder with partial identity objects as oplaxly sectioned, with

osX := (X
δ→ X ×X)∗(PIdX).

Let P be an oplaxly sectioned indexed ∧-preorder.

Definition 5.2. The virtualisation of P is the indexed preorder Virt(P ) given by Virt(P )0 :=

P 0 and Virt(P )1(X) := (USetP
1(X),

v
≤) where p

v
≤ q if and only if osX ∧ p ≤ q.

Remark 5.3. Let [(P 0)op,Pre∧]o denote the preorder-enriched category of functors and oplax
natural transformations. Virt(P )1 is in fact a Kleisli as well as Eilenberg-Moore object for the
(necessarily idempotent) comonad vP : P 1 ⇒ P 1 in [(P 0)op,Pre∧]o given by (vP )X(p) := osX∧p.

Proposition 5.4. Virt(P ) is an indexed (∧,⊤)-preorder, with top elements given by the osX .
If P has partial identity objects, then Virt(P ) has identity objects given by the PIdX .

We will describe universal properties of virtualisation. The following definition is needed.

Definition 5.5. Let P and Q be oplaxly sectioned indexed preorders. An oplax-natural mor-
phism F : P → Q preserves the specified oplax section if osF 0(X) ≃ F 1

X(osX) for every object
X ∈ P 0.

Let IdxPre∧,oson denote the 2-category whose 0-cells are oplaxly sectioned indexed ∧-preorders,
1-cells are oplax-natural morphisms that preserve meets and the specified oplax section, and
2-cells are 2-morphisms. Let IdxPre×,∧,PId

on and IdxPre×,∧,⊤,Idon be the variants of IdxPre×,∧,PId
pn

and IdxPre×,∧,⊤,Idpn respectively whose 1-cells are oplax- rather than pseudonatural morphisms.

Theorem 5.6. The assignment P 7→ Virt(P ) extends to a 2-functor IdxPre∧,oson → IdxPre∧,⊤on

as well as a 2-functor IdxPre×,∧,PId
on → IdxPre×,∧,⊤,Idon that is ambidextrously biadjoint to ‘the’

respective inclusion 2-functor. The left-biadjoint part also holds with respect to pseudonatural
morphisms.
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[2] P. Martin-Löf, Hauptsatz for the Intuitionistic Theory of Iterated Inductive Definitions, Proceed-
ings of the Second Scandinavian Logic Symposium, 179–216, Elsevier (1971).
https://doi.org/10.1016/S0049-237X(08)70847-4

[3] F.W. Lawvere, Theory of Categories over a Base Topos, Lectures given at the University of Perugia
(1972).
https://github.com/mattearnshaw/lawvere
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Shelah’s conjecture fails for higher cardinalities

Georgios Marangelis

Aristotle University of Thessaloniki

Abstract

The main goal of this paper is to generalize the results that where presented in [3] for
ℵ1-Kurepa trees to ℵα+1-Kurepa trees.

We construct an Lω1,ω-sentence ψα, that codes ℵα+1-Kurepa trees, for some countable
α. One of the main results for its spectrum (the spectrum of a sentence is the class of all
cardinals for which there exists some model of the sentence) is the following:

It is consistent that 2ℵα < 2ℵα+1 , that 2ℵα+1 is weakly inaccessible and that the spectrum
of ψα is equal to [ℵ0, 2

ℵα+1).

This relates to a conjecture of Shelah, that if ℵω1 < 2ℵ0 and there is a model of some
Lω1,ω-sentence of size ℵω1 , then there is a model of size 2ℵ0 . Shelah proves the consistency
of this conjecture in [2]. This statement proves that it is consistent that there is no Hanf
number below 2ℵα+1 for every countable α.

There are some interesting results for the amalgamation Spectrum too (the amal-
gamation Spectrum is defined similarly to the Spectrum, but we also require that κ-
amalgamation holds). We prove that the κ-amalgamation for Lω1,ω- sentences is not
absolute. More specifically we prove:

• for α > 0 finite, it is consistent that 2ℵα < ℵωα+1 and the Amalgamation Spectrum

of ψα is equal to [(2ℵα)+,ℵωα+1 ].

• for α > 0 finite, it is consistent that 2ℵα < 2ℵα+1 , 2ℵα+1 is weakly inaccessible and
the Amalgamation Spectrum of ψα is equal to [(2ℵα)+, 2ℵα+1).

1 Kurepa trees and Lω1,ω

Firstly, we need to see some useful definitions.

Definition 1.1. For an Lω1,ω sentence ϕ, the spectrum of ϕ is the class

Spec(ϕ) = {κ|∃M |= ϕ and |M | = κ}.

If Spec(ϕ) = [ℵ0, κ], we say that ϕ characterizes κ.
The maximal models spectrum of ϕ is the class

MM-Spec(ϕ) = {κ|∃M |= ϕ and |M | = κ and M is maximal }.

We can, also, define the amalgamation spectrum of ϕ, AP-Spec(ϕ) and the joint
embedding spectrum of ϕ, JEP-Spec(ϕ) as follows:

AP-Spec(ϕ) = {κ|ϕ has at least one model of size κ and the models of size κ satisfy the
amalgamation property }

JEP-Spec(ϕ) = {κ|ϕ has at least one model of size κ and the models of size κ satisfy the joint
embedding property }.
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Definition 1.2. Assume κ is an infinite cardinal. A κ-tree has height κ and each level has at
most < κ elements. A κ-Kurepa tree is a κ-tree with at least κ+ many branches of height κ.

If λ ≥ κ+, a (κ, λ)-Kurepa tree is a κ-Kurepa tree with exactly λ branches of height κ.
KH(κ, λ) is the statement that there exists a (κ, λ)-Kurepa tree.

Define B(κ) = sup{λ|KH(κ, λ) holds }.
A weak κ-Kurepa tree is a κ-Kurepa tree, where each level has at most ≤ κ elements.

Comment:For this paper we will assume that κ-Kurepa trees are pruned, i.e. every node is
contained in a maximal branch of order type κ.

Definition 1.3. Let κ ≤ λ be infinite cardinals. A sentence σ in a language with a unary
predicate P admits (λ, κ), if σ has a model M such that |M | = λ and |PM | = κ. In this case,
we will say that M is of type (λ, κ).

Our goal, now, is to construct an Lω1,ω sentence such that every ℵα+1-Kurepa tree (where
α is countable) belongs to its spectrum.

From [1], we know the following theorem.

Theorem 1.4. There is a first order sentence σ such that for all infinite cardinals κ, σ admits
(κ++, κ) iff KH(κ+, κ++).

We will not present the proof for this theorem, but we are going to use some parts of the
construction for σ, in order to construct the desired Lω1,ω sentence, ψα.

Assume that α is a countable ordinal. The vocabulary τ consists of the constants 0, (cn)n∈ω,
the unary symbols L0, L1, ..., Lα, Lα+1, the binary symbols S, V, T,<1, <2, ..., <α, <α+1 and the
ternary symbols F0, F1, ..., Fα, G. The idea is to build an ℵα+1-Kurepa tree. Lα+1 is a set that
corresponds to the “levels” of the tree. Lα+1 is linearly ordered by <α+1 and 0 is its minimum
element. Lα+1 may or may not have a maximum element. Every element a ∈ Lα+1 that is not
a maximum element has a successor b that satisfies S(a, b). We will denote the successor of a by
S(a). The maximum element (which we will call m) is not a successor. For every a ∈ L, V (a, ·)
is the set of nodes at level a and we assume that V (a, ·) is disjoint from all the L0, L1, . . . , Lα+1.
If V (a, x), we will say that x is at the level a and we may write x ∈ V (a).

T is a tree ordering on V =
⋃
a∈Lα+1

V (a). If T (x, y), then x is at some level strictly less

than the level of y. If y ∈ V (a) and b < a, there is some x so that x ∈ V (b) and T (x, y). If a
is a limit, that is neither a successor nor 0, then two distinct elements in V (a) cannot have the
same predecessors. If m is the maximum element of Lα+1, V (m) is the set of maximal branches
through the tree. Both “the height of T” and “the height of Lα+1” refer to the order type of
(Lα+1, <α+1). We can also stipulate that the ℵα+1-Kurepa tree is pruned.

Our goal, now is to bound the size of each Lβ by ℵβ . For the first level, we require that
∀x(L0(x) ↔ ∨

n x = cn). That gives us that |L0| = ℵ0.
Each Lβ , β = 1, 2, ..., α is linearly ordered by <β .
In order to bound the size of Lβ+1 by ℵβ+1, we bound the size of each initial segment by

ℵβ . Our treatment is slightly different for β < α than for β = α.
Let β < α. For every x ∈ Lβ+1 there is a surjection Fβ(x, ·, ·) from Lβ to (Lβ+1)≤(β+1)x =

{b ∈ Lβ+1|b ≤(β+1) x}. This bounds the size of each initial segment (Lβ+1)≤(β+1)x, β < α by
|Lβ |.

At limit stages we take Lβ as the union of the previous Lγ . The linear order on limit stages
is not relevant to the linear orders in the previous stages.

Finally, for every x ∈ Lα+1, that is not the maximum element, there is a surjection Fα(x, ·, ·)
from Lα to (Lα+1)≤(α+1)x and another surjection G(x, ·, ·) from Lα to V (x). This bounds the
size of (Lα+1)≤(α+1)x and the size of every V (x), which is not maximal level, by |Lα|.

2
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Observation: Defining the Fα(x, ·, ·), we demand that x is not the maximum element of
Lα+1. We don’t have the same restriction for the rest of the Fβ ’s. That difference plays an
important role throughout the rest of the paper.

This construction gives us that for all β = 1, 2, ..., α+ 1, |Lβ | ≤ ℵβ and for all non maximal
levels |V (x)| ≤ ℵα.

So, our desired Lω1,ω sentence, ψα is the conjuction of all the above requirements.

Definition 1.5. A (κ− λ)-Kurepa tree, where λ ≥ κ, is a tree of height κ, each level has
at most ≤ λ elements with at least λ+ branches of height κ. A (κ − κ)-Kurepa tree is a weak
κ-Kurepa tree.

The dividing line for models of ψ to code ℵα+1-Kurepa trees is the size of Lα+1. By
definition, every initial segment of Lα+1 has size at most ℵα. If in addition |Lα+1| = ℵα+1,
then we can embed ωα+1 cofinally into Lα+1. Hence, every model of ψ of size ≥ ℵα+2 and for
which |Lα+1| = ℵα+1, codes an ℵα+1-Kurepa tree.

Let K be the collection of all models of ψ, equipped with the substructure relation. I.e. for
M,N ∈ K,M ≺K N if M ⊂ N .

Now, I present some interesting results and theorems, without their proofs.

Lemma 1.6. If M ≺K N , then

1. LM0 = LN0

2. LM1 is initial segment of LN1

3. For 1 ≤ β ≤ α, if |LMγ | = ℵγ , for every γ ≤ β, then LMβ = LNβ

4. For 1 ≤ β ≤ α, if |LMγ | = ℵγ , for every γ ≤ β, then LMβ+1 is an initial segment of LNβ+1

5. If |LMβ | = ℵβ, for every β ≤ α, then VM (x) = V N (x), for every non maximal x ∈ LMα+1

6. the tree ordering is preserved

Corollary 1.7. If M ≺K N , then

1. If |LMβ | = ℵβ for every β ≤ α and LMα+1 = LNα+1, then N differs from M only in the
maximal branches it contains.

2. If |LMβ | = ℵβ for every β ≤ α+ 1 and LNα+1 is a strict end extension of LMα+1, then L
M
α+1

does not have a maximum element and LNα+1 is one point end extension of LMα+1.

3. If |LMβ | = ℵβ for every β ≤ α, LMα+1 has a maximum element and LNα+1 is a strict end

extension of LMα+1, then |M | = ℵα.
Proposition 1.8. (K,≺K) is an Abstract Elementary Class (AEC) with countable Lowenheim-
Skolem number.

Theorem 1.9. The spectrum of ψ is characterized by the following properties:

1. [ℵ0,ℵℵ0
α ] ⊆ Spec(ψ) and ℵα+1 ∈ Spec(ψ).

2. if there exists a (µ − λ)-Kurepa tree, where ℵ1 ≤ µ ≤ λ ≤ ℵα, with κ cofinal branches,
then [ℵ0, κ] ⊆ Spec(ψ).

3. if there exists an ℵα+1-Kurepa tree with κ cofinal branches, then [ℵ0, κ] ⊆ Spec(ψ).

3
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4. no cardinal belongs to Spec(ψ) except those required by (1)-(2)-(3). I.e. if ψ has a model
of size κ, then κ ∈ [ℵ0,max{ℵℵ0

α ,ℵα+1}] or there exists a (µ − λ)-Kurepa tree with κ
cofinal branches or there exists an ℵα+1-Kurepa tree with κ cofinal branches.

Theorem 1.10. The maximal models Spectrum of ψ is characterized by the following:

1. ψ has maximal model of size ℵα+1

2. If λℵ0 ≥ ℵα+1, for some ℵ0 ≤ λ ≤ ℵα, then ψ has maximal model of size λℵ0

3. If there exists an (µ − ℵα)-Kurepa tree, µ ≥ ℵ1, with exactly κ cofinal branches, then ψ
has maximal model in κ

4. If there exists an ℵα+1-Kurepa tree with exactly κ cofinal brnches, then ψ has maximal
model in κ

5. ψ has maximal models only on those cardinalities required by (1)-(4).

Corollary 1.11. 1. If there are no (µ − λ)-Kurepa trees and no ℵα+1-Kurepa trees, then
Spec(ψ) = [ℵ0,max{ℵℵ0

α ,ℵα+1}] and MM − Spec(ψ) = {λℵ0 |ℵ0 ≤ λ ≤ ℵα and λℵ0 ≥
ℵα+1} ∪ {ℵα+1}.

2. If B(ℵα+1) is a maximum, i.e. there is an ℵα+1-Kurepa tree of size B(ℵα+1) and
there are no (µ − λ)-Kurepa trees for ℵ1 ≤ µ ≤ λ ≤ ℵα, then ψ characterizes
max{ℵℵ0

α ,ℵα+1,B(ℵα+1)}.

3. If B(ℵα+1) is not a maximum and there are no (µ − λ)-Kurepa trees for ℵ1 ≤ µ ≤
λ ≤ ℵα, then Spec(ψ) equals [ℵ0,max{ℵℵ0

α ,ℵα+1}] or [ℵ0,B(ℵα+1)), whichever is greater.
Moreover, ψ has maximal models in ℵα+1, λ

ℵ0 , if it is ≥ ℵα+1 and in cofinally many
cardinalities below B(ℵα+1).

Theorem 1.12. 1. (K,≺K) fails JEP in all cardinals.

2. • If α < ω, then (K,≺K) satisfies AP for all cardinals > 2ℵα that belong to Spec(ψ),
but fails AP in every cardinal ≤ 2ℵα .

• If α ≥ ω, then (K,≺K) fails AP in all cardinalities.

2 Consistency results

Theorem 2.1. It is consistent with ZFC that 2ℵα < ℵωα+1
= B(ℵα+1) < 2ℵα+1 and there exists

an ℵα+1-Kurepa tree with ℵωα+1-many cofinal branches.

Theorem 2.2. From a Mahlo cardinal, it is consistent with ZFC that 2ℵα < B(ℵα+1) = 2ℵα+1 ,
for every κ < 2ℵα+1 there is an ℵα+1-Kurepa tree with at least κ-many maximal branches, but
no ℵα+1-Kurepa tree has 2ℵα+1-many maximal branches.

Corollary 2.3. For every α countable ordinal, there exists an Lω1,ω-sentence ψ that it is
consistent with ZFC that:

1. ψ characterizes max{ℵα+1,ℵℵ0
α }

2. 2ℵα < ℵωα+1 and ψ characterizes ℵωα+1

4
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3. 2ℵα < 2ℵα+1 , 2ℵα+1 is weakly inaccessible and Spec(ψ) = [ℵ0, 2
ℵα+1)

4. MM − Spec(ψ) = {λℵ0 |ℵ0 ≤ λ ≤ ℵα and λℵ0 ≥ ℵα+1} ∪ {ℵα+1}

5. 2ℵα < 2ℵα+1 , 2ℵα+1 is weakly inaccessible and MM − Spec(ψ) is a cofinal subset of
[ℵα+1, 2

ℵα+1)

If, in addition α is finite, then it is also consistent that

6. 2ℵα < ℵωα+1
and AP − Spec(ψ) = (2ℵα ,ℵωα+1

]

7. 2ℵα < 2ℵα+1 , 2ℵα+1 is weakly inaccessible and AP − Spec(ψ) = (2ℵα , 2ℵα+1)

Finally, throughout the paper there are some interesting open questions that have been
risen:

Open Question 1. Is the negation of Shelah’s conjecture consistent with ZFC?

Open Question 2. Is ℵ1-amalgamation for Lω1,ω-sentences absolute for models of ZFC?
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Abstract

This short paper investigates the prospects of designing semantically satisfactory fuzzy
models for the formal language of precise truth. We start by showing that this language fails
to admit fuzzy models based on Kronecker-Delta semantics for sharp truth-predications,
and then we explore some alternative semantic possibilities.

1 Species of Truth Predicates

In his work on the topic of vagueness, Smith [Smi08] made an important logico-philosophical
distinction between two kinds of truth predicates:

1. The global truth-predicate T with the property that the semantic value of any truth
predication T(⌜φ⌝) matches the semantic value of the underlying sentence φ, i.e.

JT(⌜φ⌝)K = JφK.

2. The family {Ti ∣ i ∈ [0,1] } of indexed truth-predicates that we use in order to say that
a sentence has a specific degree of truth—e.g. that it is true to degree 0.54, written as
T0.54(⌜φ⌝).

The formal semantics literature contains many non-classical ways in which one can success-
fully add the basic symbol T to the (object-)language of arithmetic, viz. LPA (e.g. [Kri75]).
We shall now add more symbols to LPA in order to enhance its expressive powers, so that
precise truth-predications can be articulated. Let L∞T ∶= LPA ∪ {Ti ∣ i ∈ [0,1] }.1 Ideally, the
semantics for precise truth-predications should be governed by the Kronecker-Delta function
δ ∶ [0,1]2 → {0,1} given by:

δ(x, y) = ⎧⎪⎪⎨⎪⎪⎩
1 if x = y
0 otherwise

More explicitly, if Tr(⌜φ⌝) is an atomic precise truth-predication for some r ∈ [0,1], we want
that:

JTr(⌜φ⌝)K = ⎧⎪⎪⎨⎪⎪⎩
1 if r = JφK
0 otherwise

∗I would like to thank Johannes Stern for many insightful discussions. This paper is based on Section 6.5 of
my PhD thesis, and my research was supported by an ERC Starting Grant (TRUST, Grant No. 803684).

1Of course, we can avoid making our language uncountable. We can restrict our indexes to range over

Q ∩ [0,1] and use a two-place predicate T with the property that T(n, ⌜φ⌝) is (perfectly) true iff φ has the
nth rational number—in the canonical enumeration of the countable set Q—as its truth-degree. In other words,

when we’re writing Ti(⌜φ⌝), this can be seen as shorthand for T(#i, ⌜φ⌝), where #i ∈ N is i’s code. For simplicity,
in this paper we’ll carry out our formal investigation as if everything were real-valued.
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2 δ-Semantics for L∞T
Under this picture, there are prima facie no obvious obstacles in providing semantic values

for some sentences of interest. For example, consider the following lemma, that we shall prove,
which concerns the semantic value of the sentence that denies its bivalence:

Lemma 2.1 (The Bivalence Denier). The L∞T -sentence which says about itself that it is a
counterexample to the principle of bivalence can only be perfectly false (regardless of the truth-
structure underpinning the fuzzy semantics).

Proof. The bivalence denier, τ , asserts that its semantic value is neither 0 nor 1. Let τ be a
fixed point of the open formula ¬(T0(x) ∨T1(x)). By the semantic definition of a fixed point, it

follows that JτK = J¬(T0(⌜τ⌝) ∨T1(⌜τ⌝))K. Suppose JτK ∈ (0,1). Then J¬(T0(⌜τ⌝) ∨T1(⌜τ⌝))K =
f¬(f∨(δ(JτK,0), δ(JτK,1))) = f¬(f∨(0,0)) = f¬(0) = 1. Hence we cannot assign a truth de-
gree strictly between 0 and 1 to τ . Now suppose that JτK ∈ {0,1}. In this case we have

that J¬(T0(⌜τ⌝) ∨T1(⌜τ⌝))K = f¬(f∨(δ(JτK,0), δ(JτK,1))) = f¬(1) = 0. Thus, truth-value 1 is
discounted and 0 is the only possibility.

That being said, some unfortunate news are due. Even though the Kronecker-Delta seman-
tics for L∞T seems promising with respect to a multitude of sentences, we can mathematically
prove the negative result that L∞T has no models at all. The result resembles in many respects
Tarski’s [Tar56] classical argument:

Theorem 2.2 (The Undefinability of Precise Truth). There are no fuzzy modelsM of languageL∞T .2

Proof. Suppose there is a modelM of our language, where the semantics of the indexed truth-
predicates is guided by the Kronecker-Delta proposal. For any y ∈ [0,1], let λy be ¬Ty(x)’s liar
sentence. To show thatM cannot exist, we just need to show that there is at least one number
r in the unit interval such that there’s no truth-degree that can be assigned to λr.

Let’s start by checking what happens to λ1. Given the semantics of the indexed truth-
predicates (and the workings of the generalised negation function), it follows that J¬T1(⌜λ1⌝)K ∈{0,1}, which means that λ1 itself can only be interpreted as 0 or 1. Now, if Jλ1K = 1, then

δ(Jλ1K,1) = 1, so JT1(⌜λ1⌝)K = 1, which in turn means that J¬T1(⌜λ1⌝)K = 0. Since ¬T1(⌜λ1⌝)
and λ1 must have matching semantic values, this is impossible.

On the other hand, if Jλ1K = 0, then δ(Jλ1K,1) = 0, so JT1(⌜λ1⌝)K = 0, which means that

J¬T1(⌜λ1⌝)K = 1. Just as in the last case, this cannot obtain. In conclusion, there cannot be any
fuzzy models of the entire language L∞T because there is at least one uninterpretable symbol ofL∞T —and T1 serves as an explicit example.

3 Alternative Fuzzy Semantics for L∞T
Perhaps the Kronecker-Delta semantics that we relied on is overly punishing of close mis-

matches of values. Under this brand of semantics, if some sentence φ has semantic value r,

2Hájek, Paris and Shepherdson [HPS00] prove a result in this vicinity, but theirs is slightly different than
ours. In their paper, they show that the standard model of arithmetic, N , cannot be extended to a model of
PAT L∀. There are no indexed truths in their framework—it’s only about a global, disquotational truth-predicate
T. They have also shown that theory PAT L∀ is actually consistent, but it immediately becomes inconsistent if
one attempts to extend it with truth-theoretic axioms which say that T commutes with connectives.

2
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then for any small ε > 0 and s ∈ (r − ε, r + ε) ∖ { r }, the precise truth-predication Ts(⌜φ⌝) will
have semantic value 0. This seems too harsh. For a concrete example, suppose that:

JφK = 0.67583 for some φ ∈ SentL∞
T

Then, using our semantics, the following assignment will obtain:

JT0.67584(⌜φ⌝)K = 0

even though, roughly speaking, the indexed-predicate T0.67584 “got it right”—the error is
just 0.00001. It seems reasonable to suggest that the proper semantic value of T0.67584(⌜φ⌝)
ought to be some number s ∈ (1 − ε,1) for some very small ε > 0. One way of accomplishing
this might be to suggest that, if φr ∈ SentL∞

T
is a sentence with semantic value r ∈ [0,1], then:

JTs(⌜φr⌝)K = γd(s,r)
where γ > 0 is some tiny, epsilonic number, e.g. Liouville’s constant (or any other small

quantity), and d ∶ R2 → R≥0 is the ordinary distance function on the reals, defined as follows:

d(x, y) = ⎧⎪⎪⎨⎪⎪⎩
y − x if x ≤ y
x − y otherwise

This semantic framework has the following upshots:

• When s = r, then JTs(⌜φr⌝)K = γ0 = 1.

• When s ≈ r, then JTs(⌜φr⌝)K ≈ 1.

Thus, unlike the Kronecker-Delta semantics, where indexed truth predications can only take
Boolean values, we now allow for fuzzy semantic values for precise statements such as Ts(⌜φr⌝).
That being said, this fuzzified framework makes some odd predictions of its own. For instance,
this framework makes it impossible for any precise truth-predication to be perfectly false, since
0 is not in the range of function f(x, y) ∶= γd(x,y). This means that even statements that

attribute perfect truth to outright falsities, e.g. T1(⌜2 + 2 = 5⌝), will turn out partially true.
This seems seriously problematic.

What if, instead of imposing JTs(⌜φr⌝)K = γd(s,r), we designed our semantics to assign the

product s × r as the semantic value of Ts(⌜φr⌝)? This sounds like a natural suggestion, but it

comes with some other problematic predictions. For example, the sentence Tr(⌜φr⌝) should be
a paradigmatic example of a perfectly true sentence, since it says that sentence φr has semantic
value r, which it does.3 However, the product-semantics gets this wrong, since for any r ∈ (0,1),
we have that JTr(⌜φr⌝)K = r2, which is strictly less than 1. Another problem arises when we

consider positive truth-predications of perfectly false sentences, e.g. Tr(⌜φ0⌝), or perfectly false

predications of partially true sentences, e.g. T0(⌜φr⌝). With respect to the former case: if r ≈ 0,

the product-semantics makes the wrong assignment JTr(⌜φ0⌝)K = 0, when in fact it should be

the case that JTr(⌜φ0⌝)K ≈ 1.4

3In particular, JT 1
2
(⌜λ⌝)K should arguably be 1, where λ is the liar sentence with JλK = 1

2
.

4The truth-predication correctly states that the perfectly false sentence φ0 has a truth-value that is extremely

3
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4 Modulus Semantics for L∞T
Hence, we must look for a new binary function f to underpin our semantics. In light of the

discussion above, it seems reasonable to impose that the function f ∶ [0,1]2 → [0,1] such that

JTx(⌜φy⌝)K = f(x, y) should obey the following desiderata:

• f ought to be a continuous function.

• f(1,0) = f(0,1) = 0.

• f(x,x) = 1 for all x ∈ [0,1].
• If x ≈ y, then f(x, y) ≈ 1.

• If d(x, y) ≈ 1, then f(x, y) ≈ 0.

We will denote the distance between x and y, viz. d(x, y) via the usual modulus notation,
i.e. ∣x − y∣. The cleanest function f ∶ [0,1]2 → [0,1] which obeys all of these properties is:

f(x, y) = 1 − ∣x − y∣
Under the modulus semantics for L∞T , we do not have the same obstacle with respect to the

truth-value of the fixed point of ¬T1.

Theorem 4.1 (Perfect Truth and Modulus Semantics). The L∞T sentence which says about
itself that it is not perfectly true can only have fuzzy equilibriums as semantic values, i.e. fixed
points of the truth-function for negation.

Proof. Let λ1 be the fixed point of ¬T1. Then Jλ1K = J¬T1(⌜λ1⌝)K = f¬(JT1(⌜λ1⌝)K) = f¬(1 −∣1 − Jλ1K∣) = f¬(Jλ1K). Thus, depending on the negation truth-function that one chooses, the
semantic value of λ1 will need to be a fuzzy equilibrium.

There are a handful of choices for the truth-functions of our usual connectives. With respect
to the foregoing theorem, the choice of the negation function will directly impact the fuzzy
equilibriums that can serve as the semantic value of λ1, which should be a value in [0,1] such
that f¬(Jλ1K) = Jλ1K.

This immediately discounts the Gödel and Product semantics for L∞T , because it is impossi-
ble for λ1 to have a semantic value in [0,1] such that Jλ1K = fG¬ (Jλ1K) or Jλ1K = fP¬ (Jλ1K). The
proof is straightforward. Both fG¬ and fP¬ are identical to the function g which returns 1 on
argument 0 and returns 0 on any other positive argument in the unit interval. There’s no value
in [0,1] that Jλ1K can have such that g(Jλ1K) = Jλ1K, because if Jλ1K = 0, then g(Jλ1K) = 1 and
if 1 ≥ Jλ1K > 0, then g(Jλ1K) = 0.

The only contender left amongst the canonical fuzzy systems is  Lℵ1 semantics, because the

function f  L¬ ∶ [0,1] → [0,1] demonstrably admits a unique fixed point, since it is a decreasing
continuous function from a real interval to itself. This fixed point happens to be 1

2
and our

semantics for L∞T ought to be designed such that Jλ1K gets assigned this value.

close to 0. Thus, its overall value should be extremely close to 1, and yet it actually happens to be as far as
possible from 1.

4
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Abstract

We prove an NP upper bound on a theory of integer-indexed integer-valued arrays that
extends combinatory array logic with the ability to express sums of elements. The decision
procedure that we give is based on observations obtained from our analysis of the theory
of power structures.

1 Introduction

Many applications of computer science to operations research and software engineering require
some form of constraint solving technology. We focus in the satisfiability modulo theories
(SMT) framework which was intensively developed in the first decade of the century, leveraging
progress in the architecture of propositional satisfiability solvers [19, 21, 8].

SMT addresses the satisfiability problem of fragments of first-order theories that are
quantifier-free or have a small number of quantifier alternations. In fortunate occasions, this
restriction makes the satisfiability problem NP-complete. In such cases, it is possible to reduce
the satisfiability problem of the fragments to the satisfiability problem of propositional logic in
polynomial time. Some theories supported using such reduction include real numbers, integers,
lists, arrays, bit vectors, and strings [2, 15].

This work analyses the structure of a well-known fragment of the quantifer-free theory of
arrays. In the SMT framework, arrays are conceived as indexed homogeneous collections of
elements from some fixed domain. This is in contrast to other data-structures, like lists, which
can only be accessed with recursive operators. The popularity of arrays stems from the fact
that they can be used to model many abstractions useful in applications such as programming
[6, 30], databases [12, 9], model checkers [11], memory models [5] or quantum circuits [4].

Several theories of arrays in the literature express essentially the same concepts under dif-
ferent syntactic appearances [29, 7, 13, 1]. As a consequence, a systematic classification of these
theories is becoming increasingly difficult. This results in duplicated engineering efforts. It has
been argued [18, Lecture 19] that some of these redundancies could be avoided by adopting a
semantic perspective on the study of SMT theories.

Our results show that the semantic approach is fruitful in the area of decision procedures
for theories of arrays. We demonstrated in [26, 27] how, by fixing a model of such theories,
we are able to reconstruct and extend the celebrated combinatory array logic fragment [3]. In
this paper, we further show how these observations can be extended to support summation
constraints. Our methodology is inspired in the model theory of power structures [20, 10],
which we adapt from the first-order to the quantifier-free setting, which is the one relevant for
applications to SMT.

∗Research supported by the Swiss NSF Project P500PT 222338
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2 First-order model theory

We start reviewing some notions from first-order model theory.
A first-order language is one whose logical symbols are ¬,∧,∨,∀ and ∃, whose terms are

either variables, constants or function symbols applied to terms and whose formulas are either
atomic (relation symbols applied to terms) or general (atomic formulas and inductively, from
formulas A,B, we get new formulas ¬A,A∧B and A∨B and from a formula A and a variable
symbol x we get the new formulas ∃x.A and ∀x.A).

A variable in a formula is free if there is no occurrence of a quantifier binding the variable
name on the path of the syntax tree of the formula reaching the occurrence of the variable.
A formula without free variables is a sentence. A first-order theory is a set of sentences
written in some first-order language.

A first-order structure A over a first-order language L is a tuple with four components:
a set A called the domain of A; a set of elements of A corresponding to the constant symbols
of L; for each positive integer n, a set of n-ary relations on A (i.e. subsets of An), each of
which is named by one or more n-ary relation symbols of L and for each positive integer n,
a set of n-ary operations on A (i.e maps from An to A), each of which is named by one or
more n-ary function symbols of L. The mapping assigning each first-order symbol of L to its
corresponding interpretation in A is denoted ·A. This function is extended to work on terms,
i.e. the application of function symbols to constants, variables or other terms, by requiring that
(f(s1, . . . , sn))A = fA(sA1 , . . . , s

A
n ).

Let ϕ be a sentence in a first-order language L and let ·A be an interpretation of the symbols
of L in the structure A. The sentence ϕ is satisfied in the structure A, written A |= ϕ, if
the following conditions apply.

- If ϕ is the atomic sentence R(s1, . . . , sn) where s1, . . . , sn are terms of L then A |= ϕ if
and only if (sA1 , . . . , s

A
n ) ∈ RA.

- A |= ¬ϕ if and only if it is not true that A |= ϕ.

- A |= ϕ1 ∧ ϕ2 if and only if A |= ϕ1 and A |= ϕ2.

- A |= ϕ1 ∨ ϕ2 if and only if A |= ϕ1 or A |= ϕ2.

- If ϕ is the sentence ∀y.ψ(y) then A |= ϕ if and only if for all elements b of A, A |= ψ(b).

- If ϕ is the sentence ∃y.ψ(y) then A |= ϕ if and only if there is at least one element b of A
such that A |= ψ(b).

Let Ax be a set of first-order sentences. We define the relation Ax |= ϕ which holds if and
only if for every structure A, if A |= ax for each sentence ax ∈ Ax then A |= ϕ.

The axiomatic theory defined by a set of axioms Ax is Th(Ax) = {ϕ|Ax |= ϕ}.
The semantic theory of a structure A is the set Th(A) := {ϕ | A |= ϕ}.
When studying the sets Th(A) and Th(Ax) we may assume the sentences are in prenex

normal form. A prenex normal form of a first-order formula F is a first-order formula
consisting of a string of quantifiers (called the prefix of the formula) followed by a quantifier-
free formula (known as the matrix of the formula) which is equivalent to F . It is well-known
that there is a polynomial time algorithm transforming sentences of a first-order theory into to
equivalent sentences in prenex normal form.

The existential fragment of the first-order theory T , denoted Th∃∗(T ),is the subset
of sentences in T whose prefix in prenex normal form is purely existential. We write Th∃∗(Ax)
if T is axiomatically specified and Th∃∗(A) if T is semantically specified.
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3 Array theories

The theory of arrays TA is defined as a first-order theory with three sorts: A for arrays, I for
indices and E for elements of arrays. It has one “read” function symbol ·[·] : A × I → E, one
“write” function symbol ·⟨·◁·⟩ : A×I×E → A and includes the equality relation symbol · = · for
indices and elements. The theory is described axiomatically as the sets of sentences satisfying
axioms Ax of the following form [2]. = is axiomatised as a reflexive, symmetric and transitive
relation. Array read is assumed to be a congruence relation, i.e. ∀a, i, j.i = j → a[i] = a[j].
Finally, there are axioms relating the read and write operations ∀a, v, i, j.i = j → a⟨i ◁v⟩[j] = v
and ∀a, v, i, j.i ̸= j → a⟨i ◁ v⟩[j] = a[j].

The quantifier-free fragment of TA is the set of formulas that can be written without any
use of quantifiers. Our goal is to decide which quantifier-free formulas are satisfiable. The
satisfiable quantifier-free formulas correspond precisely to set of formulas in Th∃∗(Ax).

Proposition 1. The existential closure of the satisfiable formulas in the quantifier-free fragment
of TA is the set Th∃∗(Ax). Conversely, if we drop the existential prefixes in Th∃∗(Ax), we obtain
the satisfiable formulas of the quantifier-free fragment of TA.

Proof. The existential closure of a satisfiable formula in the quantifier-free fragment of TA is, by
definition, in Th∃∗(Ax). A formula in Th∃∗(Ax) is true by definition. Converting it to prenex
normal form and dropping the existential quantifier prefix leaves a formula of the quantifier-free
fragment of TA.

Many works, starting with [29], consider an extension of the theory TA with axioms of the
form R(a1, . . . , an) ↔ ∀i.R(a1(i), . . . , an(i)) which says that some relation holds on a tuple
of array variables a1, . . . , an if and only it holds at each component. One example is the
extensionality axiom ∀a, b.a = b ↔ (∀i.a[i] = b[i]). In [26], we observed that several fragments
extending combinatory array logic [7] can be described semantically as the theory of a power
structure [20]. More precisely, we showed the following results.

Definition 2. The generalised power P(M, I) of the combinatory array logic fragment is a
structure whose carrier set is the set M I of functions from the index set I to the carrier set of
the structure of the array elements M and whose relations are interpreted as sets of the form

{(a1, . . . , an) ∈ (M I)n|Φ(S1, . . . , Sk)}

where Φ is a Boolean algebra expression over P(I) using the symbols ⊆, ∪, ∩ or ·c and each set
variable S is interpreted as S = {i ∈ I|θ(a1(i), . . . , an(i))} where θ is a formula in the theory
of the elements.

Theorem 3. The quantifier-free formulas of combinatory array logic can be encoded in poly-
nomial time as sentences in the theory of the generalised power P(A, I) in a way that preserves
satisfiability of the formulas.

Theorem 4. The theory Th∃∗(P(A, I)) can be decided in NP even when the algebra of indices
P(I) includes a cardinality operator and the language includes linear arithmetic constraints on
the cardinality constraints.

Our goal in this note is to generalise this result to summation constraints over the array
(function symbols) variables. Interestingly, to preserve decidability one has to disallow constants
in the element theory specifications θ.
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4 Decision Procedure

Our first step is defining the input language to be decided.

Definition 5. The theory of generalised powers with sums consists of formulae of the form

F (S1, . . . , Sk, σ) ∧
k∧

i=1

Si = {n ∈ I|φi(c(n))} ∧ σ =
∑

Lc(n) | φ0(c(n))M (1)

where F is a formula from Boolean algebra of sets, φ0, . . . , φk are formulae in the existential
fragment of Presburger arithmetic and c is a tuple of arrays of natural numbers. We will refer
to the first conjunct of this formula as the Boolean algebra term, to the second conjunct as the
set interpretations and to the third conjunct as the multiset interpretations.

There are some differences between Definition 5 and [23, Definition 2.1]. [23, Definition 2.1]
has a quantifier-free Presburger arithmetic formula instead of the Boolean algebra term F .
Second, the term ∀e.F corresponds to our set interpretations. Third, the term (u1, . . . , un) =∑
e∈E(t1, . . . , tn) corresponds to our multiset interpretation. It should be noted that the indices

in our setting range over the natural numbers and not over a finite set E as in [23].

An important observation is that the definition does not allow free variables to be shared
between the three conjuncts. In fact, if we allowed such shared constants, the resulting fragment
would have an undecidable satisfiability problem.

Corollary 6. The satisfiability of formulas of the form

F (S1, . . . , Sk, σ, f) ∧
k∧

i=1

Si = {n ∈ I|φi(c(n), f)} ∧ σ =
∑

Lc(n) | φ0(c(n), f)M (2)

is undecidable.

Proof. By reduction from Hilbert’s tenth problem [17]. One can encode in this theory the
addition of two natural numbers using the formula F which is in Boolean algebra of sets with
cardinalities and thus includes quantifier-free Presburger arithmetic. Multiplication z = xy can
be encoded by imposing the array c to be equal to the constant x in each position, have length
y and sum up to z.

Let us now describe the main steps of the decision procedure for the theory in Definition 5.

Elimination of terms in Boolean algebra with Cardinalities. To eliminate these
constraints, we introduce k array variables c1, . . . , ck and we rewrite the Boolean algebra ex-
pressions and cardinality constraints in terms of set interpretations and summation constraints.
See the appendix for further details.

As a result of this phase, we obtain a formula of the form:

ψ(σ) ∧
k∧

i=1

I = {n ∈ I|φi(c(n))} ∧ σ =
∑

Lc(n) | φ0(c(n))M (3)

where ψ is a quantifier-free Presburger arithmetic formula and all the Boolean algebra and
cardinality constraints has been translated into set interpretations and summation constraints.
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Elimination of the Set Interpretations. The next step in the decision procedure is to
eliminate the set interpretation term. However, in the form of Formula 3, this is particularly
simple. Formula 3 is equivalent to:

ψ(σ) ∧ σ =
∑

Lc(n) |
k∧

i=0

φi(c(n))M (4)

It thus remains to remove the summation operator.
Elimination of the Summation Operator. The next step is to rewrite sums to a star

operator introduced in [24]. Given a set A, the set A∗ is defined as:

A∗ = {u | ∃N ≥ 0, x1, . . . , xN ∈ A.u =

N∑

i=1

xi}

Proposition 7 (Multiset elimination). The formula

∃σ, c.ψ(σ) ∧ σ =
∑

n∈N
Lc(n) | φ(c(n))M (5)

and the formula
∃σ.ψ(σ) ∧ σ ∈ {k | φ(k)}∗ (6)

are equivalent.

The argument needs to be adapted from Theorem 2.4 of [25] since both our index and
element set are infinite. The details are given in the appendix.

The next step is to eliminate the star operator introduced in Proposition 7. To do so, one
could use [25, Theorem 2.23] which shows that if Formula 6 is satisfiable then it also has a
solution that can be written with a polynomial number of bits. We adapt this result to the
case where we consider explicit integer exponents in the sets. That is we consider given a set
A and an integer m ∈ N, the set Am defined as Am = {u | x1, . . . , xm ∈ A.u =

∑m
i=1 xi}. The

reason to do this is that when mixing summation and other kinds constraints such as in [27],
we need to synchronise the cardinality constraints of the combined theory with the cardinality
constraints arising from the number of addends used in the sums.

Definition 8. LIA with sum cardinalities, denoted LIAcard, is the theory consisting of formulas
of the form F0∧

∧n
i=1 u ∈ {x | Fi(x)}xi where F0 and F are quantifier-free Presburger arithmetic

formulae.

Proposition 9. LIAcard is in NP.

A detailed proof is given in the appendix.

5 Conclusion

Despite the numerous works that are dedicated to the theory of arrays and its variations, it
remains a challenge to provide a comprehensive classification of array theories according to
the computational complexity of their satisfiability problem and their expressive power. This
paper shows that even classical theories such as the combinatory array logic fragment can be
optimised with respect to both metrics. An interesting extension that we leave open is to
support combinatory array logic with sums and different element sorts.
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[4] Yu-Fang Chen, Philipp Rümmer, and Wei-Lun Tsai. A Theory of Cartesian Arrays (with Ap-
plications in Quantum Circuit Verification). In Brigitte Pientka and Cesare Tinelli, editors,
Automated Deduction – CADE 29, pages 170–189, Cham, 2023. Springer Nature Switzerland.
doi:10.1007/978-3-031-38499-8_10.

[5] Sylvain Conchon, David Declerck, and Fatiha Zan̈di. Parameterized Model Checking on the TSO
Weak Memory Model. Journal of Automated Reasoning, 64(7):1307, 2020. URL: https://inria.
hal.science/hal-03149332, doi:10.1007/s10817-020-09565-w.

[6] Przemys law Daca, Thomas A. Henzinger, and Andrey Kupriyanov. Array Folds Logic. In Com-
puter Aided Verification, Lecture Notes in Computer Science, pages 230–248, Cham, 2016. Springer
International Publishing. doi:10.1007/978-3-319-41540-6_13.

[7] Leonardo de Moura and Nikolaj Bjorner. Generalized, efficient array decision procedures. In 2009
Formal Methods in Computer-Aided Design, pages 45–52, Austin, TX, November 2009. IEEE.
doi:10.1109/FMCAD.2009.5351142.

[8] Leonardo de Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver. In Tools and Algo-
rithms for the Construction and Analysis of Systems, volume 4963 of Lecture Notes in Com-
puter Science, pages 337–340, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. doi:10.1007/
978-3-540-78800-3_24.

[9] Haoran Ding, Zhaoguo Wang, Yicun Yang, Dexin Zhang, Zhenglin Xu, Haibo Chen, Ruzica Piskac,
and Jinyang Li. Proving Query Equivalence Using Linear Integer Arithmetic. Proceedings of the
ACM on Management of Data, 1(4):1–26, December 2023. URL: https://dl.acm.org/doi/10.
1145/3626768, doi:10.1145/3626768.

[10] S. Feferman and R. Vaught. The first order properties of products of algebraic systems. Funda-
menta Mathematicae, 47(1):57–103, 1959.

[11] Silvio Ghilardi and Silvio Ranise. MCMT: A Model Checker Modulo Theories. In Jürgen Giesl
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1 Introduction

In [8], Tarski1 laid down a series of axioms aiming to characterise a primitive notion of con-
sequence and showed that, by means of this notion only, other metalogical concepts could
be defined; among them the concepts of theory, logical equivalence, consistency, completeness.
Stemming from Tarski’s seminal work, the study of abstract consequence relations — motivated
by their logical interpretations — has developed into a mature and active field of research (see,
for instance, Martin & Pollard’s book [4]).

Later, in [9], Tarski initiated a study of the notion of definition showing important analogies
with the abstract approach taken in [8]:

In the methodology of the deductive sciences two groups of concepts occur which,
although rather remote from one another in content, nevertheless show considerable
analogies, if we consider their role in the construction of deductive theories, as well
as the inner relations between concepts within each of the two groups themselves.
To the first group belong such concepts as ‘axiom’, ‘derivable sentence’ (or ‘theo-
rem’), ‘rule of inference’, ‘proof’, to the second — ‘primitive (undefined) concept’ (or
‘primitive term’), ‘definable concept’, ‘rule of definition’, ‘definition’. A far-reaching
parallelism can be established between the concepts of the two groups: the primitive
concepts correspond to the axioms, the defined concepts to the derivable sentences,
the process and rules of definition to the process and rules of proof. [10, p. 296].

According to Pogorzelski & Surma review of an English translation2 of [9],

“Paper X belongs to those papers of Tarski which have organized a certain
branch of metalogic and established some of its fundamental notions. It deals with
syntactic definability of terms, and together with some earlier results concerning the
concept of semantic definability [...] it establishes the foundations of the theory of
definability of terms. X is a natural extension of Tarski’s papers [...] on the notion
of consequence, since it establishes for terms a number of notions analogous to those

1An earlier exposition, without proofs, of the results collected in [8] appeared in [7].
2The English translation of [9] by J. H. Woodger is included in [10] and referred to as “paper X” of the

collection.
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which are fundamental for propositional expressions. We find in X the definitions of
such notions as: equivalence of sets of terms, closure of a set of terms (an analogue
of the concept of the system), system of primitive terms (an analogue of the concept
of the set of axioms), the notion of independent and complete set of terms (the last
notion relativized to an arbitrary but fixed set of sentences) [. . . ] Results contained
in X virtually exhausted syntactic problems of definability”. [5, p. 104].

Even though the intimate connections of [9] with [8] are emphasised by Tarski himself, the
study on definitions is developed in [9] within a framework which is considerably less ‘abstract’
than that assumed in [8] in order to study the notion of consequence: The former presupposes
an internal structure of the sentences that distinguish variables and extra-logical terms, as the
minimum setting for speaking about “the definability and the mutual independence of concepts”
[10, p. 296]. By contrast, in the present paper my aim is that of establishing the fundamentals
of an abstract theory of definitions in the same framework of Tarski’s [8], by taking an arbitrary
notion of consequence as the only primitive concept.

Reasons for undertaking the above project are mainly the same as those advanced by Tarski
for an abstract study of the notion of consequence, namely, the wish of reaching the highest
level of generality, by establishing the fundamental properties of concepts which are common
to special meta-disciplines, and of applicability to specific deductive disciplines understood
as instances of the abstract notion. In particular, an abstract theory of definitions might be
applied to a realm of objects, for instance, propositions, which lack the internal structure of
the sentences of a fully formalised language.

2 The classical theory of definitions

An abstract theory of definitions aims to define in terms of an abstract consequence relation
some notions which intend to capture analogue concepts studied by theories of definitions within
formalised languages and logic. Therefore we start by briefly recalling the fundamentals of the
most developed and uncontroversial of such theories: The classical theory of definitions for
first-order languages.

Let L be a first-order language with identity. We will use the same symbol L also to denote
the set of all sentences (closed formulæ) of the language. The symbol ⊢ denotes the relation of
(classical) logical consequence between sets of sentences of L and sentences of L, equivalently
defined, by the completeness theorem, either in terms of rules of inference or in terms of models.

We assume, for simplicity, that among the non-logical constants of L there is a unary
predicate P we want to define in terms of the other non-logical constants of L. We denote by
L− the set of sentences of the sublanguage of L built from the same non-logical constants of L,
except P.

Let Σ be any set of sentences of L. Let Σ− = Σ ∩ L−. We understand the sentences which
are in Σ but not in Σ− as axioms added to the base theory Σ− in order to define the predicate
P. The classical theory of definitions3 has that the set of sentences Σ is a correct definition of
P (in terms of the base theory Σ−) iff Σ has both the following properties:

� Non-creativity4: Every sentence of L− which is provable from Σ is already provable from
Σ−.

3The two notions, described below, of “non-creativity” and “eliminability” are first explicitly introduced
(under a different terminology) as criteria for a correct definition in [9, fn. 3]. According to Hodges [3, p. 105],
Suppes’ [6] is probably the first place where the two criteria are “paired as the conditions for a sound definition”.

4An alternative name for the non-creativity property is (syntactic) conservativeness.
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� Eliminability5: Every formula ϕ of L is provably equivalent in Σ to a formula ϕ− of L−.

Moreover, the classical theory of definitions, via Beth’s theorem, establishes that the two con-
ditions of non-creativity and eliminability are jointly equivalent to the semantic condition of
determinability : Every model of Σ− has one and only one expansion to a model of Σ6.

3 An abstract theory of definitions

We now turn to Tarski’s [8] abstract setting. We work with an arbitrary non-empty set A
and with a primitive notion of consequence between elements of A. In the primarily intended
interpretation — the above-sketched classical theory of definitions — the set A is replaced by
the set of all sentences of L, however, in the abstract setting no properties of A are assumed and
its elements can be taken to be sentences as well as any other kind of “unstructured” entities
such as, for instance, propositions. For the notion of consequence — primarily interpreted
by the relation of classical first-order logical consequence — it is customary to start with the
properties characterising a generic notion of “closure”, to which further axioms can be added
to model more specific intended situations.

Officially, a consequence relation on A is a relation |= between subsets Φ and elements ϕ of
A satisfying the following properties:

� {ϕ} |= ϕ (reflexivity).

� Φ ⊆ Φ′ ⇒ ∀ϕ (Φ |= ϕ⇒ Φ′ |= ϕ) (monotonicity).

� Φ |= Ψ ∧ Ψ |= ϕ⇒ Φ |= ϕ (transitivity).

Given a consequence relation |= on A we define:

� Thm|=(Φ) = {ϕ ∈ A | Φ |= ϕ}.

� C|= = {Φ ⊆ A | Thm|=(Φ) = Φ}.

We omit the index |= in Thm|= and C|= (and in subsequent similarly defined objects) when it
is clear from the context. The members of Thm(Φ) are called the theorems of Φ (under the
consequence relation |=). The members of C are called the theories of |=.

The map Φ 7→ Thm(Φ) is a closure operator on A, i.e., is a function from P(A) to P(A)
which is monotone, progressive and idempotent. The family C of subsets of A is a closure
system on A, i.e., A ∈ C and for every non-empty family F ⊆ C the intersection

⋂F belongs
to C.

Following Tarski, we say that a subset Φ of A is consistent iff there exists ϕ ∈ A such that
Φ ̸|= ϕ. We say that Φ is maximal consistent iff Φ is maximal with respect to inclusion in
the family of all consistent subsets of A. We denote by U the family (possibly empty) of all
maximal consistent subsets of A.

Definitions in first-order logic assume that the full object language L is split into two subsets:
The set of the sentences of L in which the distinguished predicate P occurs and the set of the
sentences in which P does not occur, the latter denoted by L−. Analogously, we assume that
the abstract setting is endowed with a distinguished subset A− of A. We denote by |=− the

5An alternative name for the eliminability property is (logical) definability.
6By removing from determinability its existence claim, we obtain the uniqueness condition on Σ which in

literature is frequently called implicit definability: Every model of Σ− has at most one expansion to a model of
Σ.
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consequence relation |= restricted to subsets and elements of A−, which turns out to be itself a
closure relation.

Since A− has to play the role of a “sub-language” of A, it is reasonable to assume A− to
have some degree of “closure”. We assume A− to be closed under classical negation, a technical
condition which corresponds to the intuitive requirement for a language of being closed under
negation and which implies its inconsistency. This is enough to prove that the theories of |=−

are exactly the intersections with L− of theories of L.
We can give the following abstract counterpart of corresponding notions involved in the

classical theory of definitions. Let X be any subset of A, and let X− = X ∩A−. We say that

� W is a syntactic definition iff W has the properties (with respect to A−) of non-creativity
and abstract eliminability, namely, every element ϕ ∈ A is equivalent in W to an element
ϕ− of A−.

� W is a relative definition iff (a) for every consistent subset X of A− such that W− ⊆ X,
the set X ∪W is consistent, and (b) for every maximal (in A−) consistent subset X of
A− such that W− ⊆ X, the set X ∪W is maximal consistent.

� W is a semantic definition iff for every maximal (in A−) consistent subset X of A−

such that W− ⊆ X, there exists one and only one maximal consistent set U such that
X ∪W ⊆ U .

The above-mentioned abstract notions of definitions are motivated as follows. The prop-
erty of non creativity verbatim translates from the first-order to the abstract setting. The
property of abstract eliminability is a straightforward weakening of the property of first-order
eliminability, which we can call, in the first-order context, sentential eliminability. Sentential
eliminability is the property we obtain from first-order eliminability by replacing the existence
of a correspondent equivalent formula in the base language for every formula, with the ex-
istence of a correspondent equivalent sentence in the base language for every sentence. The
property of being a relative definition can be stated verbatim in the first-order context and
turns out to be equivalent to the conjunction of non-creativity and (first-order) eliminability.
Finally, the notion of semantic definition is an abstract counterpart of the first-order notion of
determinability: The talk about models is replaced by talk about maximal consistent sets by
observing that, in the first-order context, a set of sentences is maximal consistent if and only if
is the set of all sentences which are true in a model.

The virtue of the three notions of definition above introduced is that they can be formulated
in terms of just an arbitrary consequence relation |= on A and a subset A− of A, and that they
looks as natural counterparts of well-known first-order notions. However, we can say little about
the mutual relationships between the three notions in the general case. Even worse, without
further assumptions on the consequence relation |= the existence of maximal consistent set is
not granted, hence the notions of relative and semantic definition can trivialise.

For these reasons, we need to specify further the relation of consequence and the sublanguage
we are dealing with in order to study how the corresponding notions of definitions behave. As a
matter of example we can consider the notion of Henkin consequence. Recall that a non-empty
family S of subsets of A is a closure base for |= iff for every subset Φ and element ϕ of A,

Φ |= ϕ⇔ ∀Z ∈ S (Φ ⊆ Z ⇒ ϕ ∈ Z).

We say that a closure base S for |= has exclusion negation iff for every ϕ ∈ A there exists ϕ′ ∈ A
such that

∀Z ∈ S (ϕ ∈ Z ⇔ ϕ′ /∈ Z).
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Finally, we say that |= is Henkin iff there exists a closure base for |= having exclusion negation.
Some useful consequences of |= being Henkin:

1. The family U of all maximal consistent sets is not empty and is the unique closure base
for |= having exclusion negation.

2. The family U− of all maximal (in A−) consistent sets is formed by the intersections with
L− of the members of U.

The above-mentioned properties allow us to prove the following

Thm 3.1. Let |= be a Henkin consequence relation on the non-empty set A and let A− be a
non-empty subset of A closed under classical negation. Then, a non-empty subset W of A is a
relative definition iff is a semantic definition.

Moreover, in the first-order context, Theorem 3.1 leads to the following “sentential” version
of Beth’s theorem, which equates sentential eliminability with a natural weakening of first-order
implicit definability:

Thm 3.2. For a first-order theory Σ, the sentential eliminability property is equivalent to the
following model-theoretic property: Any two expansions of elementarily equivalent models of Σ−

to models of Σ are elementarily equivalent.

Finally, I conjecture that, by exploiting the abstract version of Craig’s interpolation lemma
given in [2], we can prove in the abstract setting that, under the hypotheses of Theorem 3.1,
if the Henkin consequence relation |= on A satisfies the further conditions of compactness and
weak conjunction7, then a non-empty subset W of A is a syntactic definition iff is a semantic
definition.
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Abstract

One of the first results in classical computability theory was establishing the undecid-
ability of the halting problem. In this presentation we will prove an even stronger version
in the internal logic of the effective topos; more precisely in its full subcategory Mod(K1)
of modest sets internal to assemblies Ass(K1). We will do this by proving that the diagonal
halting set K is creative with our new definition. Our notion of creativity is classically
equivalent to Post’s and Myhill’s definition, but more importantly, it contains recursive
content. The moral lesson is that if we do computability theory in the effective topos, the
proofs turn out to be more constructive and in the spirit of what one intended to begin
with.

1 Introduction

An analytic treatment of computability theory in a classical model for set theory inevitably leans
heavily towards informal proof methods. They are of course partially justified by the empirical
evidence provided by the works of Turing, Church and Kleene among others [6, 11, 12]. But
informal methods are mainly used to avoid cumbersome details involving Gödel numbers to be
able to get to the core mathematical ideas without having to deal with routine manipulations.
This creates the need for a more synthetic presentation, which factors those cumbersome details
into axioms.

A more suitable mathematical universe in which these ideas can be encoded turns out to
be Hyland’s effective topos Eff [4]. Here, all functions are recursive or computable so that no
reference to an external model of computation is necessary. Synthetic or axiomatic treatment
of computability theory, pioneered by Bauer among others [1], allows us for instance to talk
about recursively enumerable sets as just the (effective) sets, which are enumerable. In this
sense, the synthetic approach reveals the mathematical structures without the encoded ‘noise’.
What is more, both the objects and morphisms between them carry constructive data in the
effective topos. It therefore captures the essence of computability theory in which not only the
results, but also the proofs are uniformly effective.

2 Synthetic Computability Theory

The first steps in synthetic computability theory in the effective topos have been taken by
Bauer [1]. In this exposition, we take a few extra steps in this direction. We briefly present the
context in which our investigation is carried out. Our references are from [10, 8].

Definition 2.1. A K1−valued assembly X is a set |X| together with a function E : |X| → P∗(N)
assigning to each x ∈ |X| a nonempty subset Ex of N.

∗This work was done as part of a Bachelor’s thesis project completed at Lund University, Lund, Sweden.
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Here K1 refers to Kleene’s first model, and in the setting of recursive realizability, we think
of Ex as the set of proofs for x. Assemblies can intuitively be thought as data types with an
underlying set of values |X| whose elements are given machine-level representations, or in our
setting, realisers Ex. The representations of the elements in the underlying set is not unique as
the set of realisers are not necessarily disjoint. We therefore ask for those datatypes for which
the codes uniquely determine each value. The following definition captures this idea.

Definition 2.2. An assembly is said to be a modest set if for all x, x′ ∈ |X|,

x ̸= x′ =⇒ Ex ∩ Ex′ = ∅.

Definition 2.3. Suppose (|X|, E), (|Y |, F ) are two K1−valued assemblies. A function
f : |X| → |Y | is said to be tracked by an element t ∈ N if for all x ∈ X and for all a ∈ Ex,
ta↓ and ta ∈ Ff(x).

Following our analogy, the morphisms between assemblies are precisely the functions that
can be simulated, in our case, by a partial recursive function acting on the realisers instead of
the elements. Assemblies and modest sets on K1 together with tracked maps form a bicartesian
closed category, which is finitely complete and cocomplete with a natural numbers object N :=
(N, E), En := { n }. We denote these categories Ass(K1) and Mod(K1) respectively.

There are close connections between fragments of a certain logic and particular classes of
categories. In fact, the internal language of a cartesian closed category is simply typed λ-
calclulus, where the objects of the category serve as basic types and morphisms as basic terms
[7]. What is more, we are able to write down formulae of intuitionistic higher-order logic, which
readily have the intended meaning in Eff . We will use a suitable internal language without
much reference hereafter.

Now, the following is a nice fact: the category of modest sets Mod(K1) can be regarded as a
category internal to assemblies Ass(K1) which is internally complete [5]. For what this kind of
internalization means in a more general context see [3]. We will use this fact in order to carry
on our investigation in these categories. We point out a few objects and facts that form the
main ingredients of our results:

• While the subobject classifier Ω of Eff is itself not an object of Ass(K1), two of its
subobjects of interest are: the object of decidable truth-values 2 with the underlying set
{ p ∈ ω | p ∨ ¬p }, which up to isomorphism is the assembly ({ 0, 1 }, E) with E0 :=
{ 0 }, E1 := { 1 } [10, §3.2.7], and the object of semidecidable truth-values with the
underlying set Σ := { p ∈ Ω | ∃f :NN (p ↔ (∃n(f(n) = 0))) }, which up to isomorphism
is the assembly ({ 0, 1 }, E) with E0 := K and E1 := K, where K denotes the diagonal
halting set [10, Proposition 3.2.27]. Both are clearly modest, however the latter shows
that truth and falsehood in this sense are recursively inseperable.

• There is indeed an one-to-one correspondence between the decidable subobjects of X
and morphisms X → 2. In particular, in Eff the Cantor space 2N is the object of
decidable subobjects of N . Recall that these are precisely the subsets of N that posess
a recursive characteristic function, 2N ∼= (R,E), where R := { f : N → 2 | f is recurisve }
and Ef := { e | e is Gödel number for f }. In Eff , 2N and the space of functions NN

are isomorphic [10, Proposition 3.2.26]. Similarly, there is a one-to-one correspondence
between semidecidable subobjects of N and tracked maps N → Σ. The subobject Σ ↣
Ω is called the semidecidable subobject classifier because of the following isomorphism:
ΣN ∼= (RE,W ), where RE := {R ⊆ N |R is recursively enumerable} and WR := {e |R =
We } [10, Proposition 3.2.28].

2
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• The Σ-partial functions N → N⊥ are the synthetic analogue of partial recursive functions
in the effective topos whose domains are precisly the semidecidable subobjects of N , for
details see [1, §4]. This is part of a more general construction called lifting monads [2].

• We take for granted a pairing and unpairing isomorphism N ×N → N . There exists an
enumeration ϕ: N ↠ NN

⊥ such that ∀ψ:NN
⊥ ∃e:Nϕ(e) = ψ, which together with pairing

yields an enumeration ϕ2 : N ↠ N
(N2)
⊥ such that ϕ2(e)(a, b) = ϕ(e)(⟨a, b⟩). We can

continue the pattern to get a epimorphism ϕk for every natural number k. There is also
an enumeration W : N ↠ ΣN such that ∀A:ΣN∃e:NWe = A [1, §4].

• The principle of countable choice (ACC), ∀n:N∃x:XR(n, x) → ∃α:(XN )∀n:NR(n, α(n))
holds for every object X of Eff [10, Corollary 3.2.9].

2.1 Basic synthetic results

The various results in the two coming sections emerged as an ongoing joint work with J.M.E.
Hyland. Unless otherwise stated, to the best of our knowledge these results have not appeared
in the literature.

Theorem 2.4. In Eff , the s-m-n theorem holds:

∃smn :N (Nm+1)∀e, y1, . . . , ym:Nλx.ϕm+n(e)(y, x) = ϕn(s(e, y))

The crux of the argument of s-m-n lies within the ACC, and the two following results are
a direct application of it, much like the classical case.

Theorem 2.5. In Eff , the Fixed point theorem holds cf. [1, Corollary 4.24]:

∀f:NN∃n:Nϕ(f(n)) = ϕ(n)

Theorem 2.6. In Eff , the Second recursion theorem holds:

∀f:N (N2)∃n:NN∀x:Nϕ(f(n(x), x)) = ϕ(n(x))

2.2 Synthetic Myhill’s theorem

In this section we establish our main theorem, namely that creativeness and completeness
conincide in the effective topos. We will also show that K :ΣN is undecidable in the strong
sense that it is creative. This version is even stronger than its classical counterpart as we shall
see. We begin by stating the weak version, which is well known, and the argument mimics the
classical one.

Proposition 2.7. In Eff , the set K is undecidable, that is

∀R:2NR ̸= K.

Let us first consider Myhill’s characterisation of a creative set in our setting to see why it
fails to be valid in the effective topos. The statement that K is creative would read as follows,

∀A:ΣN [∃n:A ∩K ∨ ∃n(n:A ∪K → ⊥)]. (1)

Now consider A = ∅, then the first assertion of the disjunction is false and the second is
true, while if A = N then the situation is reversed. Recall, however, that Σ truth-values are
recursively inseperable. Thus the above statement is asking us to do too much ‘work’. Next,
we provide a definition that implies Myhill’s characterization and is classically equivalent to it.
It is a version, which has as much constructive information as possible.

3
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Definition 2.8 (Hyland). In Eff , a set A:ΣN is creative if ∃u:NN
⊥ ∀e:N

(i) ∃n:We ∩A ∨ u(e):N ;

(ii) u(e):We ∪A→ ∃n:We ∩A.

Remark 2.9. We have that N is regarded as a Σ-subobject of N⊥ via the pullback

N 1

N⊥ Σ

so that u(x):N in the above definition means u(x)↓.

The following proposition establishes that our characterization coincides with the standard
ones in the classical world. The proof is a matter of fiddling with the logic and the forward
direction uses the intuitionistically invalid De Morgan’s law ¬(p ∧ q) → ¬p ∨ ¬q. As a result,
our definition is constructively stronger.

Proposition 2.10. A set C is creative if and only if there exists a unary partial function u
such that for all x,

(i) ∃n ∈Wx ∩A ∨ u(x)↓;

(ii) u(x) ∈Wx ∪A =⇒ ∃n ∈Wx ∩A.
Definition 2.11. In Eff , the set A:ΣN is complete if and only if ∀B:ΣN∃f:NNB = f−1(A).

Note that f−1(A):ΣN whenever A:ΣN with characteristic morphism A ◦ f . We are now in
a position of establishing that K : ΣN is creative according to our definition. This forms part
of the key argument in our theorem stated below.

Proposition 2.12. In Eff , the set K is creative.

Based on the full force of the discussions above, we can conclude this section with our main
result:

Theorem 2.13. (Synthetic Myhill’s theorem) In Eff , a set A is creative if and only if A is
complete.

3 Conclusion and future work

The s-m-n theorem while being an important result in the classical world, has turned out to be
a simple application of the axiom of countable choice in the effective topos. This structure was
previously not present in the classical informal or formal proof. We showed thatK being creative
is a straightforward fact, despite the fact that our definition of creativeness is constructively
stronger. Indeed, we have demonstrated that non-trivial facts about computability theory
find their home in the effective topos. This synthetic version of Myhill’s theorem is only one
example. In general, the synthetic results made no explicit reference to Gödel encoding or
Turing machines, and the proofs were couched in purely set theoretic terms. As Andrej Bauer
puts it “we just [did] ordinary math–in an extraordinary universe” [1].
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There are various directions we can explore from here. Originally, the project started with
looking at a paper by Moschovakis [9], where Myhill’s theorem appeared among the applications
of the Second recursion theorem. Another interesting result there concering partial recursive
functionals is the Kreisel-Lacombe-Shoenfield-Ceiten theorem. As we did not use the full force
of the effective topos, such a development would show how higher-order computability results
appear here.
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The purpose of the paper is to answer the question of what additional existential premises
are needed in order to render Aristotelian syllogisms provable in First-Order Logic and to give
an overview of how the issue of ontological commitments in syllogistic was handled throughout
the history. In contemporary discussions concerning the history of logic, there is a widespread
assumption that the Aristotelian syllogistic, as it is the case with the modern formal logic, did
not allow for the use of empty terms. The issue is however much more complex, and ontological
commitments of syllogistic were discussed extensively throughout the history. In the paper, we
relate these discussions, covering four main areas: the logic of Aristotle, Arabic logic, medieval
European logic, and later discussions up till the emergence of modern formal logic, as well as
provide our own view of the issue.

The question of empty terms and existential import in syllogistic became first apparent
when Jan  Lukasiewicz [12] claimed that Aristotle supposes all terms used in syllogisms to be
non-empty. This view seems to be an orthodox way of interpreting up till now and was held by
many scholars [14, p. 7], [22, p. 144], [24, p. 343-4]. Kneales in their Development of Logic state
that “In order to justify Aristotle’s doctrine as a whole it is necessary, then, to presuppose that
he assumed application of all [original emphasis] the general terms with which he dealt.” [11,
p. 60]. The case is also true for Patzig, who writes that “The expression ‘one must examine the
set of subject (predicate, contrary) terms of S(P)’ clearly presupposes that in each case these
sets have at least one member.” [19, p. 6].

However, this viewpoint was never held by Aristotle himself, nor it was explicitly addressed
in any of his works, let alone those concerned with syllogistic. Malink [13, p. 82] says that
“the question of whether or not an individual falls under a term seems to be irrelevant in Prior
Analytics 1.1-22.”. In fact, a view that allows for the emptiness of terms when interpreting
Aristotle is getting more and more advocates, and the discussion is ongoing [18]. The nonempti-
ness assumption, in turn, is said to be forced by attempts to render Aristotle using the modern
notation [16, p. 74]. Scholars that opt for this view mostly refer to fragments from Prior and
Posterior Analytics where Aristotle is speaking about a “goat-stag” as a syllogistc term [3, p.
243], [13, 81]. For example: “(...) you may know what the account or the name signifies when
I say goat-stag, but it is impossible to know what a goat-stag is (...)” (Posterior Analytics
92b6-8). As a goat-stag is a nonexistent, from its presence it is then argued that Aristotle must
have been aware of such a possibility and thus his theory have to account for empty terms as
well. In this context, Wedin [25, p. 179] is also quoting Categories 13b12-36, where Aristotle
states that both “Socrates is sick” and “Socrates is healthy” are false in case Socrates does not
exist, but “Socrates is sick” and “Socrates is not sick” become opposites in that case. From
this it is argued that Aristotle is claiming the existence of a subject as a truth condition and
thus must be aware that additional existential premises are required for some statements to be
true.

The comments above cannot be easily generalized to syllogistic, but they point out the fact
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that Aristotle was in fact aware of the possibility of empty terms being taken into consideration.
The question of how Aristotle originally intended his syllogistic to treat empty terms remains
open. Here, it will suffice to say that he does not make any explicit statements about it
and (non)emptiness does not yet emerge as an issue. Nevertheless, when it comes to modern
discussions, we can observe a tendency leading from the one-sidedness of first interpretations
to a more nuanced view.

Whatever might be said about Aristotle, empty terms were widely discussed both in Arabic
and in medieval European logic. The first one acknowledged to explicitly talk about the exis-
tential import is Al-Farabi [8, p. 39], although in his Syllogism, he does not talk about empty
terms at all, and the discussion is confined to categorical statements. Avicenna continues to
explicitly talk about existential assumptions [17, p. 142]. He also does some explicit remarks
on syllogistic and require that negative propositions in syllogisms have an existential import as
well [3, p. 293]. Moreover, the existence he talks about is not restricted to real existence as in
Al-Farabi, but apart from existence in re, existence in intellectu is also considered [7, p. 90],
and this line of thought continues also in works of Averroes [4, p. 361].

In Europe, historically speaking, the question of existential import was not addressed ex-
plicitly until the rise of nominalism, with William of Ockham being the first one to pronounce
it [6, p. 420]. In general, the discussion of empty terms was virtually nonexistent before the
nineteenth century [18]. Early Scholastics, such as Peter of Spain, have never considered it
neither with respect to categorical statements nor to syllogistic [6, p. 417].

Ockham maintains that the truth conditions of both affirmation and denial are disjunctive,
with an existence of a subject and a predication for the first, and a lack of those for the latter
[1, p. 392-3]. He does not consider existence in intellectu and requires every subject of an
affirmative statement to exist in re [3, p. 302]. The thing worth mentioning about him is that
his treatment of existential assumptions tends to be conditional at times – when talking about
the dictum de omni et nullo, he states that for an example affirmative sentence to be true, its
subject need not always exist, but it suffices only that the sentence is true whenever it does
exist [23, p. 42]. Thus, he can be viewed as a precursor of the modern notion of the universe of
interpretation, with objects existing externally being the only possible interpretation. Buridan
alike requires the subject of every true affirmative sentence to exist in re and makes this claim
more explicit [9, p. 26]. He is, however, sceptical about Ockham’s conditional approach, and
the existence of a subject is to be read verbatim [23, p. 42]. From both points of view, talking
about nonactual beings existing somehow is forbidden and being regarded as a nonsense [10, p.
159].

Thus, even if we agree on the tacit existential assumption in Aristotle, this view was certainly
not held by the medieval logicians above, by which empty terms were discussed fervently [10,
p. 143]. The Ars Logica by John of St. Thomas can be regarded as the culmination of this
trend. John is holding the doctrine of existential import developed by nominalists, and his
theory is greatly resembling the modern notion of the universe of interpretation, with things in
intellectu considered as well as those existing in the past or in the future [6, p. 420]. And while
he was talking only about categorical sentences, Leibniz was the first one to allow for terms to
be systematically interpreted as things in intellectu in his syllogistic [15, p. 292].

Nevertheless, serious and detailed logical investigations of existential import were altogether
abandoned in the third decade of the sixteenth century, and the discussions ceased [2, p. 147].
Some authors point out that the invention of Venn diagrams in 1881 helped to make the issue
more explicit again [26, p. 416], which would be at least intuitively true with respect to
syllogistic as well. Certainly, the development of Boolean algebra sparked a renewed interest,
with such authorities as Peirce and Russell speaking up [26, p. 416], although they comment
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only on existential import in general, without making reference to syllogistic. Boole himself
refrains from making any direct comparison between his system and the one of Aristotle [5,
p. 226]. The first one acknowledged to state that Aristotle’s syllogistic requires its terms to
be non-empty was Śleszyński [21], and the widespread popularity of this view stems from the
works of  Lukasiewicz [20, p. 1-2].

Thus, the historical development of the issue of empty terms is twofold. First, we can
observe a rising awareness of the empty terms as an issue that needs to be covered – irrelevant
in Aristotle, present in the Middle Ages, and substantial in the modern interpretations of
Aristotle’s work. The difference is that up till  Lukasiewicz it was discussed either with respect
to the validity of the Logical Square, as in the medieval and early modern period, or with
respect to categorical statements in general, as when the Boolean algebra emerged, and only
with the works of  Lukasiewicz the discussion turned to syllogistic as such. Secondly, in parallel
with the above, the development of the notion of the universe of interpretation can be traced,
beginning with the works of Ockham and getting more and more pronounced, with Leibniz
being the first one to allow for the in intellectu interpretation, and Boolean algebra stating the
idea explicitly.

Building upon this rich historical background we may now turn to our main research ques-
tion, which is this: If we consider a proof of a given syllogism, are there any additional existential
premises required, besides the premises of the syllogisms itself, in order to prove it in First-Order
Logic?

T1: ∀x(Mx→ Px)
∀x(Sx→Mx)
∀x(Sx→ ¬Px)

∃xSx
Sa

Ma→ Pa
Sa→Ma
Sa→ ¬Pa

¬Sa
×

¬Pa

¬Ma

¬Sa
×

Ma
×

Pa
×

T2: ∀x(Mx→ Px)
∀x(Sx→Mx)
∀x(Sx→ ¬Px)

∃xPx
Pa

Ma→ Pa
Sa→Ma
Sa→ ¬Pa

¬Sa

¬Ma

¬Sa Ma
×

Pa

¬Sa Ma

¬Pa
×

There are different answers to this question possible, which allow dividing valid Aristotelian
syllogisms into three groups. To exemplify their members, we use syllogisms of the first figure:

G1 No additional premises are needed, as no special ontological commitments are required;
this is the case for syllogisms in which both premises and the conclusion are general
sentences (Barbara, Celarent).

G2 No additional premises are needed, as required ontological commitments are addressed by
a particular premise (Darii, Ferio).

G3 Additional existential premise is needed, as required ontological commitments are not
warranted by the premises of the syllogisms (Barbari, Celaront).
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Furthermore, for the syllogisms in the third group, only one extra existential premise is
necessary to prove them in First-Order Logic. Specifically, to demonstrate these syllogisms, we
only need to assume the non-emptiness of one of the three terms that make up the syllogism.

Let us consider a member of the G3 group, the syllogism Barbari (for simplicity, we use
analytic tableaux as the proof method). T1 above is an analytic tableau for Barbari, employing
one additional existential premise, ∃xSx. It is easily seen that without it, the tableau will not
close, while with it the tableau does close, thus forming a proof of the syllogism in question.
If we add to the Barbari ’s original premises any other existential premise, the tableau will not
close; T2 is an example involving the premise ∃xPx.

Moreover, only addition of the ∃xSx premise allows to prove Barbari in FOL. Consider T3,
the unsuccesfull attempt, with two existential premises added (∃xPx, ∃xMx):

T3: ∀x(Mx→ Px)
∀x(Sx→Mx)
∀x(Sx→ ¬Px)

∃xPx
∃xMx
Pa
Mb

Ma→ Pa
Sa→Ma
Sa→ ¬Pa
Mb→ Pb
Sb→Mb
Sb→ ¬Pb

¬Sa

¬Ma

¬Sa

¬Mb
×

Pb

¬Sb

¬Sb Mb

¬Pb
×

Ma
×

Pa

¬Sa

¬Mb
×

Pb

¬Sb

¬Sb Mb

¬Pb
×

Ma

¬Mb
×

Pb

¬Sb

¬Sb Mb

¬Pb
×

¬Pa
×

The same holds for all the other syllogisms in the G3 group. However, it is not always the
minor terms that needs to be non-empty in order to prove a G3 syllogism: this depends on the
figure.
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Abstract

How to characterise vagueness for entities of all types? The paper critically examines one
influential proposal to this effect and then offers an alternative, according to which an
entity is vague iff it (seemingly) possibly lacks a sharp boundary on some soritical series
for it.

1 Introduction: The Problem of Characterising/Defining
Vagueness across the Type Hierarchy

When is an entity vague (or, on the contrary, precise)? Perhaps a natural answer would be to
say that a property is vague iff it (possibly) presents borderline cases (and precise otherwise),
but such an answer is problematic on at least two counts. Firstly, it is not clear how to generalise
the answer to other types of entities such as e.g. objects. Secondly, the answer overgenerates as
it also makes vague e.g. the paradigmatically precise property x-is-a-geometrically-perfect-cube
(for there might be concrete cubes that are borderline geometrically perfect cubes).

This paper critically examines one influential proposal for characterising vagueness across
the type hierarchy and then offers an alternative. While most of the discussion will centre on
the task of simply providing a nontrivial necessary and sufficient condition for an entity to be
vague (using ‘characterisation’ as a shorthand for such a condition), some remarks will also be
made concerning the more ambitious task of providing an analysis of what it is for an entity to
be vague (using ‘definition’ as a shorthand for such an analysis).

2 The Rolf-Style Characterisation and Its Problems

According to an influential proposal going back at least as far as Rolf [1980] (and recently
defended e.g. by Bacon [2018]), we should take the notion of vagueness as primitive for some
types (say, objects and propositions) and characterise vagueness for other types by saying
that an entity is vague iff it takes at least one precise input and yields a vague output. For
example, assuming that 1 is precise and that the proposition 〈1 is small〉 is vague, this Rolf-
style characterisation correctly implies that the property x-is-small is vague.

I shall argue that the Rolf-style characterisation embodies an objectionably “purist” concep-
tion of vagueness. For example, consider a property (“schbaldness”) taking any precise object
x to yield, say, 〈x is a number〉 (plausibly assuming that the property x-is-a-number is precise)
and any vague object x to yield 〈x is bald〉. Schbaldness would seem vague, for, say, it takes a
man, Harry, whose vagueness (we may so suppose) only resides in the vagueness of where its
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right toe ends and who has 50, 000 hairs, to yield the vague 〈Harry is bald〉. If taking Harry
to yield 〈Harry is bald〉 is sufficient for baldness to be vague (and it is!), how could it not be
sufficient for schbaldness to be vague? Where else could the vagueness of 〈Harry is schbald〉
come from, if not from the vagueness in schbaldness (the only other entity at play is Harry,
but 〈Harry is schbald〉 is vague for the same reason as 〈Harry is bald〉 is, and Harry’s vague-
ness resides in a feature that is totally irrelevant for the vagueness of the “latter” proposition)?
However, schbaldness is precise on the Rolf-style characterisation, for it takes any precise object
x to yield the precise 〈x is a number〉.

This train of thought leads to the issue that, on the Rolf-style characterisation, it is not
even clear that baldness is vague, since objects capable of having hair on their scalp and for
which therefore the question of baldness could arise are typically—and, one may well suspect,
invariably—vague (and those of them that are vague are anyway those that paradigmatically
support the idea that baldness is vague). Typical precise objects (such as numbers, graphs,
points in space etc.) are not objects capable of having hair on their scalp and for which therefore
the question of baldness could arise, and, even granting the possibility of precise objects that are
capable of having hair on their scalp and for which therefore the question of baldness could arise,
such extravagant objects are certainly not necessary for supporting the idea that baldness is
vague. Nor, for analogous reasons, is it clear that a paradigmatically vague object like e.g. Mt
Athos is vague, since properties nontrivially applying to a mountain are typically—and, one
may well suspect, invariably—vague (and those of them that are vague are anyway those that
paradigmatically support the idea that Mt Athos is vague). For example, properties of the
kind x-is-at-most-im-high paradigmatically support the idea that Mt Athos is vague, but, pace
e.g. Bacon [2018], these are arguably vague, as manifested by the following kind of series: start
with a im-high mountain with a thin protuberance rising up to (i + 1)m, and then gradually
enlarge the protuberance, eventually ending up with a (i+ 1)m-high mountain.

3 The Lack-of-Sharp-Boundary Characterisation and Its
Developments

Turning now to my favoured alternative, let a soritical series for an entity be a series along a
dimension relevant for the entity’s presence (i.e., depending on the entity’s type, its existence
(in the case of objects) or truth (in the case of propositions) or occurrence (in the case of
properties) etc.), where at the start the entity is clearly present while at the end it is clearly
not present, and where each successive case in the series represents only a tiny worsening of
the conditions for the entity’s presence. Further, let an entity lack a sharp boundary on a
soritical series for it iff, for no pair of adjacent cases in the series, the entity is present in
one and not present in the other. Then, the same characterisation of vagueness that many
have thought to apply for properties can be defended to apply for all other types as well:
just as a property is vague iff it (seemingly) possibly lacks a sharp boundary on some soritical
series for it, so is any entity of any other type. I’d propose the version with ‘seemingly’—
understood epistemically, rather than psychologically, in terms of prima facie justification—as
a characterisation, whereas, within the nontransitive system to be mentioned in the remainder
of this section, I’d propose the version without ‘seemingly’ as a definition. It’s true that, in
the case of e.g. objects, for different cases, the (seeming) possible lack of a sharp boundary is
realised on different dimensions (spatial, temporal, mereological etc.) and, for each particular
case, good judgement is needed to set up a compelling soritical series for it manifesting such

2
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lack, but so it is also in the case of properties (because of their pervasive multidimensionality).
And it’s in fact extremely plausible that, on this understanding of soritical series, while there is
no possible soritical series for x-is-a-geometrically-perfect-cube where that property (seemingly)
lacks a sharp boundary, there are possible soritical series for x-is-schbald where that property
(seemingly) lacks a sharp boundary.

Let’s see how a nontransitive logic can be so developed as to satisfy the definition of vague-
ness as lack of a sharp boundary. The most promising family of nontransitive logics I know of
that does this is the family of tolerant logics I’ve first introduced in Zardini [2008a]; [2008b].
The logics are defined semantically, in particular lattice-theoretically. Say that a T -structure S
is a 6ple 〈US, VS,�S, DS, tolS, OS〉, where:

• US is a nonempty set of objects (the universe of discourse);

• VS is a nonempty set of objects (the values);

• �S is a partial ordering on VS such that, for every X ⊆ VS, the greatest lower bound glb
of X and the least upper bound lub of X exist (�S corresponds to a complete lattice);

• DS is a nonempty subset of VS (the designated values);

• tolS is a function from VS into the powerset pow of VS (the tolerance function);

• OS is a nonempty set of operations on VS with, in particular, {negS, impS} ⊆ OS.

Without going into details, we assume a standard first-order language so that T -structures
can be used to evaluate its sentences via a model - and assignment-relative valuation function
val (where conjunction and universal generalisation are interpreted as glb, disjunction and
particular generalisation are interpreted as lub, negation as neg and implication as imp).

Now, given the richness of T -structures, and in particular given tol, we can use D to generate
another set T of interesting values (the tolerated values), by setting, for every T -structure S,
TS =

⋃
d∈DS

tolS(d). Following in particular Zardini [2008a]; [2008b]; [2015]; [2019], we can
interpret designated values to be those values that, when possessed by a sentence, model the fact
that that sentence can safely be used as a premise in further reasoning, while we can interpret
tolerated values to be those values that, when possessed by a sentence, model the fact that,
although that sentence can safely be accepted (possibly as a conclusion of previous reasoning), it
might not be the case that it can safely be used as a premise in further reasoning. In a slogan,
while designated values are “very good” values, tolerated values are “good enough” values. With
designated and tolerated values in place, and given the interpretation just sketched of what they
amount to, it is very natural to extract from T -structures of kind X the corresponding, typically
nontransitive, consequence relation:

(TCX) ∆ is an X-consequence of Γ (Γ `X ∆) iff, for every T -structure S of kind X, for every
model M and assignment ass on S, if, for every ϕ ∈ Γ, valM,ass(ϕ) ∈ DS, then, for some
ψ ∈ ∆, valM,ass(ψ) ∈ TS.

Obviously, given the extreme liberality of T -structures, we need to restrict to fairly spe-
cific kinds in order for (TCX) to deliver interesting enough logics. Here is a particularly nice
restriction. Let a T -structure S be of kind C iff:

3
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• VS is representable as: {X : X ∈ pow({i : i ≤ 7}) and, if X 6= {i : i ≤ 7}, either, [[for
every i ∈ X, i is even] and, [for every i and j, if i ∈ X and ≤ 4, and j is even and < i,
j ∈ X] and, [for every i and j ∈ X, |i − j| < 6]] or, [[for every i ∈ X, i is odd] and, [for
every i and j, if i ∈ X and ≤ 5, and j is odd and < i, j ∈ X] and, [for every i and j ∈ X,
|i− j| < 6]]};

• �S is representable as: {〈X,Y 〉 : X ⊆ Y }. Thus, VS and �S jointly constitute the lattice
depicted by the following Hasse diagram:

{0, 1, 2, 3, 4, 5, 6, 7}

{0, 2, 4} {1, 3, 5}

{6} {0, 2} {1, 3} {7}

{0} {1}

∅

• DS and tolS determine that, indicating designated values with doubly circular nodes,
tolerated but not designated values with simply circular nodes and not tolerated values
with square nodes, such values can be depicted as:

• negS is such that, indicating it with pointed edges, it can be depicted as:

4
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• impS is such that, for every v, w ∈ VS, impS(v, w) = negS(glb(v, negS(w))).

It’s easy to check that transitivity of logical consequence does not hold in the tolerant
logic C resulting from (TCC) (for example, ϕ,ϕ → ψ `C ψ—and so ψ,ψ → χ `C χ—holds,
but ϕ,ϕ → ψ,ψ → χ `C χ does not) and that, indeed, lack of a sharp boundary of e.g. a
property is consistent in C with the property’s having both positive and negative cases on
the same soritical series (for example, letting Bi be short for ‘A man with i hairs is bald’,
B0,¬B100, 000,¬∃i(Bi& ¬Bi + 1) `C ∅ does not hold: for instance, consider a C-model
M such that, for every i [i : 1 ≤ i ≤ 35, 000], valM(Bi) = {0, 1, 2, 3, 4, 5, 6, 7}; for every
i [i : 35, 001 ≤ i ≤ 45, 000], valM(Bi) = {0, 2, 4}; for every i [i : 45, 001 ≤ i ≤ 55, 000],
valM(Bi) = {6}; for every i [i : 55, 001 ≤ i ≤ 65, 000], valM(Bi) = {1}; for every i [i : 65, 001 ≤
i ≤ 100, 000], valM(Bi) = ∅). The construction can naturally be generalised to model the lack
of a sharp boundary for other entities such as objects, propositions, connectives etc.

4 Conclusion: A Single Nonprimitive Notion of Vague-
ness Irreducibly Realised across the Type Hierarchy

In conclusion, on this view, there is one single nonprimitive notion of vagueness—(seeming)
possible lack of a sharp boundary—that gets realised in different irreducible ways among and
within different types, as opposed to the Rolf-style characterisation, on which there are primitive
separate notions of vagueness for certain types to which vagueness of all other types is reduced
(plus, as indicated, the proposed characterisation can be turned into a much more satisfying
definition than the Rolf-style one).
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