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Abstract

We prove an NP upper bound on a theory of integer-indexed integer-valued arrays that
extends combinatory array logic with the ability to express sums of elements. The decision
procedure that we give is based on observations obtained from our analysis of the theory
of power structures.

1 Introduction

Many applications of computer science to operations research and software engineering require
some form of constraint solving technology. We focus in the satisfiability modulo theories
(SMT) framework which was intensively developed in the first decade of the century, leveraging
progress in the architecture of propositional satisfiability solvers [19, 21, 8].

SMT addresses the satisfiability problem of fragments of first-order theories that are
quantifier-free or have a small number of quantifier alternations. In fortunate occasions, this
restriction makes the satisfiability problem NP-complete. In such cases, it is possible to reduce
the satisfiability problem of the fragments to the satisfiability problem of propositional logic in
polynomial time. Some theories supported using such reduction include real numbers, integers,
lists, arrays, bit vectors, and strings [2, 15].

This work analyses the structure of a well-known fragment of the quantifer-free theory of
arrays. In the SMT framework, arrays are conceived as indexed homogeneous collections of
elements from some fixed domain. This is in contrast to other data-structures, like lists, which
can only be accessed with recursive operators. The popularity of arrays stems from the fact
that they can be used to model many abstractions useful in applications such as programming
[6, 30], databases [12, 9], model checkers [11], memory models [5] or quantum circuits [4].

Several theories of arrays in the literature express essentially the same concepts under dif-
ferent syntactic appearances [29, 7, 13, 1]. As a consequence, a systematic classification of these
theories is becoming increasingly difficult. This results in duplicated engineering efforts. It has
been argued [18, Lecture 19] that some of these redundancies could be avoided by adopting a
semantic perspective on the study of SMT theories.

Our results show that the semantic approach is fruitful in the area of decision procedures
for theories of arrays. We demonstrated in [26, 27] how, by fixing a model of such theories,
we are able to reconstruct and extend the celebrated combinatory array logic fragment [3]. In
this paper, we further show how these observations can be extended to support summation
constraints. Our methodology is inspired in the model theory of power structures [20, 10],
which we adapt from the first-order to the quantifier-free setting, which is the one relevant for
applications to SMT.
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2 First-order model theory

We start reviewing some notions from first-order model theory.
A first-order language is one whose logical symbols are ¬,∧,∨,∀ and ∃, whose terms are

either variables, constants or function symbols applied to terms and whose formulas are either
atomic (relation symbols applied to terms) or general (atomic formulas and inductively, from
formulas A,B, we get new formulas ¬A,A∧B and A∨B and from a formula A and a variable
symbol x we get the new formulas ∃x.A and ∀x.A).

A variable in a formula is free if there is no occurrence of a quantifier binding the variable
name on the path of the syntax tree of the formula reaching the occurrence of the variable.
A formula without free variables is a sentence. A first-order theory is a set of sentences
written in some first-order language.

A first-order structure A over a first-order language L is a tuple with four components:
a set A called the domain of A; a set of elements of A corresponding to the constant symbols
of L; for each positive integer n, a set of n-ary relations on A (i.e. subsets of An), each of
which is named by one or more n-ary relation symbols of L and for each positive integer n,
a set of n-ary operations on A (i.e maps from An to A), each of which is named by one or
more n-ary function symbols of L. The mapping assigning each first-order symbol of L to its
corresponding interpretation in A is denoted ·A. This function is extended to work on terms,
i.e. the application of function symbols to constants, variables or other terms, by requiring that
(f(s1, . . . , sn))

A = fA(sA1 , . . . , s
A
n ).

Let ϕ be a sentence in a first-order language L and let ·A be an interpretation of the symbols
of L in the structure A. The sentence ϕ is satisfied in the structure A, written A |= ϕ, if
the following conditions apply.

- If ϕ is the atomic sentence R(s1, . . . , sn) where s1, . . . , sn are terms of L then A |= ϕ if
and only if (sA1 , . . . , s

A
n ) ∈ RA.

- A |= ¬ϕ if and only if it is not true that A |= ϕ.

- A |= ϕ1 ∧ ϕ2 if and only if A |= ϕ1 and A |= ϕ2.

- A |= ϕ1 ∨ ϕ2 if and only if A |= ϕ1 or A |= ϕ2.

- If ϕ is the sentence ∀y.ψ(y) then A |= ϕ if and only if for all elements b of A, A |= ψ(b).

- If ϕ is the sentence ∃y.ψ(y) then A |= ϕ if and only if there is at least one element b of A
such that A |= ψ(b).

Let Ax be a set of first-order sentences. We define the relation Ax |= ϕ which holds if and
only if for every structure A, if A |= ax for each sentence ax ∈ Ax then A |= ϕ.

The axiomatic theory defined by a set of axioms Ax is Th(Ax) = {ϕ|Ax |= ϕ}.
The semantic theory of a structure A is the set Th(A) := {ϕ | A |= ϕ}.
When studying the sets Th(A) and Th(Ax) we may assume the sentences are in prenex

normal form. A prenex normal form of a first-order formula F is a first-order formula
consisting of a string of quantifiers (called the prefix of the formula) followed by a quantifier-
free formula (known as the matrix of the formula) which is equivalent to F . It is well-known
that there is a polynomial time algorithm transforming sentences of a first-order theory into to
equivalent sentences in prenex normal form.

The existential fragment of the first-order theory T , denoted Th∃∗(T ),is the subset
of sentences in T whose prefix in prenex normal form is purely existential. We write Th∃∗(Ax)
if T is axiomatically specified and Th∃∗(A) if T is semantically specified.
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3 Array theories

The theory of arrays TA is defined as a first-order theory with three sorts: A for arrays, I for
indices and E for elements of arrays. It has one “read” function symbol ·[·] : A × I → E, one
“write” function symbol ·⟨·◁·⟩ : A×I×E → A and includes the equality relation symbol · = · for
indices and elements. The theory is described axiomatically as the sets of sentences satisfying
axioms Ax of the following form [2]. = is axiomatised as a reflexive, symmetric and transitive
relation. Array read is assumed to be a congruence relation, i.e. ∀a, i, j.i = j → a[i] = a[j].
Finally, there are axioms relating the read and write operations ∀a, v, i, j.i = j → a⟨i ◁v⟩[j] = v
and ∀a, v, i, j.i ̸= j → a⟨i ◁ v⟩[j] = a[j].

The quantifier-free fragment of TA is the set of formulas that can be written without any
use of quantifiers. Our goal is to decide which quantifier-free formulas are satisfiable. The
satisfiable quantifier-free formulas correspond precisely to set of formulas in Th∃∗(Ax).

Proposition 1. The existential closure of the satisfiable formulas in the quantifier-free fragment
of TA is the set Th∃∗(Ax). Conversely, if we drop the existential prefixes in Th∃∗(Ax), we obtain
the satisfiable formulas of the quantifier-free fragment of TA.

Proof. The existential closure of a satisfiable formula in the quantifier-free fragment of TA is, by
definition, in Th∃∗(Ax). A formula in Th∃∗(Ax) is true by definition. Converting it to prenex
normal form and dropping the existential quantifier prefix leaves a formula of the quantifier-free
fragment of TA.

Many works, starting with [29], consider an extension of the theory TA with axioms of the
form R(a1, . . . , an) ↔ ∀i.R(a1(i), . . . , an(i)) which says that some relation holds on a tuple
of array variables a1, . . . , an if and only it holds at each component. One example is the
extensionality axiom ∀a, b.a = b ↔ (∀i.a[i] = b[i]). In [26], we observed that several fragments
extending combinatory array logic [7] can be described semantically as the theory of a power
structure [20]. More precisely, we showed the following results.

Definition 2. The generalised power P(M, I) of the combinatory array logic fragment is a
structure whose carrier set is the set M I of functions from the index set I to the carrier set of
the structure of the array elements M and whose relations are interpreted as sets of the form

{(a1, . . . , an) ∈ (M I)n|Φ(S1, . . . , Sk)}

where Φ is a Boolean algebra expression over P(I) using the symbols ⊆, ∪, ∩ or ·c and each set
variable S is interpreted as S = {i ∈ I|θ(a1(i), . . . , an(i))} where θ is a formula in the theory
of the elements.

Theorem 3. The quantifier-free formulas of combinatory array logic can be encoded in poly-
nomial time as sentences in the theory of the generalised power P(A, I) in a way that preserves
satisfiability of the formulas.

Theorem 4. The theory Th∃∗(P(A, I)) can be decided in NP even when the algebra of indices
P(I) includes a cardinality operator and the language includes linear arithmetic constraints on
the cardinality constraints.

Our goal in this note is to generalise this result to summation constraints over the array
(function symbols) variables. Interestingly, to preserve decidability one has to disallow constants
in the element theory specifications θ.
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4 Decision Procedure

Our first step is defining the input language to be decided.

Definition 5. The theory of generalised powers with sums consists of formulae of the form

F (S1, . . . , Sk, σ) ∧
k∧

i=1

Si = {n ∈ I|φi(c(n))} ∧ σ =
∑

Lc(n) | φ0(c(n))M (1)

where F is a formula from Boolean algebra of sets, φ0, . . . , φk are formulae in the existential
fragment of Presburger arithmetic and c is a tuple of arrays of natural numbers. We will refer
to the first conjunct of this formula as the Boolean algebra term, to the second conjunct as the
set interpretations and to the third conjunct as the multiset interpretations.

There are some differences between Definition 5 and [23, Definition 2.1]. [23, Definition 2.1]
has a quantifier-free Presburger arithmetic formula instead of the Boolean algebra term F .
Second, the term ∀e.F corresponds to our set interpretations. Third, the term (u1, . . . , un) =∑

e∈E(t1, . . . , tn) corresponds to our multiset interpretation. It should be noted that the indices
in our setting range over the natural numbers and not over a finite set E as in [23].

An important observation is that the definition does not allow free variables to be shared
between the three conjuncts. In fact, if we allowed such shared constants, the resulting fragment
would have an undecidable satisfiability problem.

Corollary 6. The satisfiability of formulas of the form

F (S1, . . . , Sk, σ, f) ∧
k∧

i=1

Si = {n ∈ I|φi(c(n), f)} ∧ σ =
∑

Lc(n) | φ0(c(n), f)M (2)

is undecidable.

Proof. By reduction from Hilbert’s tenth problem [17]. One can encode in this theory the
addition of two natural numbers using the formula F which is in Boolean algebra of sets with
cardinalities and thus includes quantifier-free Presburger arithmetic. Multiplication z = xy can
be encoded by imposing the array c to be equal to the constant x in each position, have length
y and sum up to z.

Let us now describe the main steps of the decision procedure for the theory in Definition 5.

Elimination of terms in Boolean algebra with Cardinalities. To eliminate these
constraints, we introduce k array variables c1, . . . , ck and we rewrite the Boolean algebra ex-
pressions and cardinality constraints in terms of set interpretations and summation constraints.
See the appendix for further details.

As a result of this phase, we obtain a formula of the form:

ψ(σ) ∧
k∧

i=1

I = {n ∈ I|φi(c(n))} ∧ σ =
∑

Lc(n) | φ0(c(n))M (3)

where ψ is a quantifier-free Presburger arithmetic formula and all the Boolean algebra and
cardinality constraints has been translated into set interpretations and summation constraints.
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Elimination of the Set Interpretations. The next step in the decision procedure is to
eliminate the set interpretation term. However, in the form of Formula 3, this is particularly
simple. Formula 3 is equivalent to:

ψ(σ) ∧ σ =
∑

Lc(n) |
k∧

i=0

φi(c(n))M (4)

It thus remains to remove the summation operator.
Elimination of the Summation Operator. The next step is to rewrite sums to a star

operator introduced in [24]. Given a set A, the set A∗ is defined as:

A∗ = {u | ∃N ≥ 0, x1, . . . , xN ∈ A.u =

N∑
i=1

xi}

Proposition 7 (Multiset elimination). The formula

∃σ, c.ψ(σ) ∧ σ =
∑
n∈N

Lc(n) | φ(c(n))M (5)

and the formula
∃σ.ψ(σ) ∧ σ ∈ {k | φ(k)}∗ (6)

are equivalent.

The argument needs to be adapted from Theorem 2.4 of [25] since both our index and
element set are infinite. The details are given in the appendix.

The next step is to eliminate the star operator introduced in Proposition 7. To do so, one
could use [25, Theorem 2.23] which shows that if Formula 6 is satisfiable then it also has a
solution that can be written with a polynomial number of bits. We adapt this result to the
case where we consider explicit integer exponents in the sets. That is we consider given a set
A and an integer m ∈ N, the set Am defined as Am = {u | x1, . . . , xm ∈ A.u =

∑m
i=1 xi}. The

reason to do this is that when mixing summation and other kinds constraints such as in [27],
we need to synchronise the cardinality constraints of the combined theory with the cardinality
constraints arising from the number of addends used in the sums.

Definition 8. LIA with sum cardinalities, denoted LIAcard, is the theory consisting of formulas
of the form F0∧

∧n
i=1 u ∈ {x | Fi(x)}xi where F0 and F are quantifier-free Presburger arithmetic

formulae.

Proposition 9. LIAcard is in NP.

A detailed proof is given in the appendix.

5 Conclusion

Despite the numerous works that are dedicated to the theory of arrays and its variations, it
remains a challenge to provide a comprehensive classification of array theories according to
the computational complexity of their satisfiability problem and their expressive power. This
paper shows that even classical theories such as the combinatory array logic fragment can be
optimised with respect to both metrics. An interesting extension that we leave open is to
support combinatory array logic with sums and different element sorts.
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Appendix

A Elimination of Boolean algebra with Cardinalities terms

• For every newly introduced array variable cj , we introduce the set interpretation:

I = {n ∈ I|cj(n) = 0 ∨ cj(n) = 1}

this constraint is added to the set interpretation term.

• For every newly introduced array variable cj , we rewrite the set variable Sj into the
following set interpretation:

Sj := {i ∈ I|cj(n) = 1}

which says that the indices in Sj corresponds to the positions where cj is equal to one.

• We then substitute each Boolean algebra expression appearing in the Boolean algebra
with cardinalities term of Formula 1, by repeatedly applying the following rewrite rules:

Sc
j := {n ∈ I|cj(n) = 0}

Sj ∪ Sk := {n ∈ I|cj(n) = 1 ∨ ck(n) = 1}
Sj ∩ Sk := {n ∈ I|cj(n) = 1 ∧ ck(n) = 1}

• By the above rewriting process, each cardinality constraint |S| = k is rewritten as

|{n ∈ I|φ(c(n))}| = k

where the variable c lists the newly introduced array variables c1, . . . , ck. We then intro-
duce a new array variable x = ite(φ(c), 1, 0), that is, x(n) is equal to one if φ(c(n)) holds
and it is equal to 0 otherwise. This can be encoded with the set interpretation

I = {n ∈ I|x(n) = ite(φ(c(n)), 1, 0)}

One then rewrites the expression |S| = k into k =
∑

i∈I x(n).
1

B Elimination of the multiset comprehension

Proof. ⇒) If (1) is satisfied, there are σ, c such that ψ(σ) ∧ σ =
∑
n∈N

Lc(n) | φ(c(n))M. We claim

that the same σ satisfies ψ(σ) ∧
∧k

i=1 σ ∈ {k | φ(k)}∗. By hypothesis, ψ(σ) is true. Moreover,
σ = Lc(n) | φ(c(n))M and either

• Lc(n) | φ(c(n))M is finite in which case σ ∈ {k | φ(k)}∗.

• or Lc(n) |φ(c(n))M is infinite, in which case c(n) is equal to 0 in all but a finite set of indices
I since by hypothesis the sum σ is finite. Then σ =

∑
n∈I

c(n) and σ ∈ {k | φ(k)}∗.

1It is remarkable than being closed under the if-then-else operator (ite) also appears in modern presentations
of Feferman-Vaught theorem, see for instance [14, Theorem 9.6.2], as the property of ”being closed under gluing
over a Boolean algebra”. Such theoretical generalisations are also used in practice, see for instance [28].
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⇐) If (2) is satisfied, then there is σ such that ψ(σ)∧ σ ∈ {k |φ(k)}∗. It follows that there is a
finite list of elements ki such that σ =

∑p
i=1 ki. We define

c(n) =

{
kn if 1 ≤ n ≤ p

0 otherwise

It is immediate that σ and c satisfy ψ(σ) ∧ σ =
∑
n∈N

Lc(n) | φ(c(n))M.

C NP membership of LIAcard

Proof. Let VPA be a polynomial time verifier for LIAcard. Figure 1 gives a verifier V for LIAcard.
We show that x ∈ LIAcard if and only if there exists a polynomial-size certificate w such that
V accepts ⟨x,w⟩.

On input ⟨x,w⟩:

1. Interpret w as:

(a) lists of vectors al, bs generating some element in each semilinear set given by Fi.

(b) matrices Ai and vectors bi such that Aix ≤ bi is in the disjunctive normal form
of each Fi.

(c) a certificate C for VPA on input y.

where

y =


Ag1 0
. . . 0
Agn 0

0 A0





. . .
λij
. . .
. . .
µi

. . .
x
u
v


=


bg1
. . .
bgn
b0

 ∧
∧
il

Aial ≤ bi ∧
∧
is

Aibs ≤ 0

2. Accept iff VPA accepts ⟨y, C⟩.

Figure 1: Verifier for LIAcard.

⇒) If x = F0 ∧
∧n

i=1 u ∈ {x | Fi(x)}xi ∈ LIAcard then we show that there is a solution that uses
a polynomial number of bits in the size of F0 and F1.

We convert each formula Fi to semilinear normal form [25, Theorem 2.13].

Lemma 10. Let F be a linear arithmetic formula of size s. Then there exist numbers
m, q1, . . . , qm ∈ N and vectors ai, bij ∈ Nn for 1 ≤ j ≤ qi, 1 ≤ i ≤ m with ∥ai∥1, ∥bij∥1 ≤ 2p(s)

9
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with p polynomial such that F (x) is equivalent to the formula:

∃α11, . . . , αmqm .

m∨
i=1

(
x = ai +

qi∑
j=1

αijbij

)
(7)

Next, we eliminate the star operator, as in [16, Proposition 2] and [25, Theorem 2.14].

Lemma 11. Let F be a quantifier-free linear integer arithmetic formula whose semilinear
normal form is formula 7. Then u ∈ {y | F (y)}x is equivalent to

∃µ, λ.u =

q∑
i=1

(
µiai +

qi∑
j=1

λijbij

)
∧

q∧
i=1

(
µi = 0 =⇒

qi∑
j=1

λij = 0

)
∧ x =

q∑
i=1

µi

We express the resulting vector u with polynomially many generators [25, Theorem 2.20].

Lemma 12 (Polynomially many generators for sums). Let F be a quantifier-free linear integer
arithmetic formula of size s whose semilinear normal form is formula 7. Then u ∈ {y | F (y)}x
is equisatisfiable with

∃λij , µi.u =
∑
i∈I0

(
ai +

∑
(i,j)∈J

λijbij

)
+
∑
i∈I1

µiai ∧ x = |I0|+
∑
i∈I1

µi

for some I0, I1 ⊆ {1, . . . , q}, J ⊆ ∪q
i=1{(i, 1), . . . , (i, qi)}, |I0| ≤ |J | ≤ q(s), |I1| ≤ q(s) and q is

a polynomial.

We write the equation

u =
∑
i∈I0

(
ai +

∑
(i,j)∈J

λijbij

)
+
∑
i∈I1

µiai ∧ x = |I0|+
∑
i∈I1

µi

as a system Agxg = bg of the form

(
. . . ai . . . . . . bij . . . . . . ai . . . 0 −Ik
0 . . . . . . . . . . . . 0 1 . . . 1 −1 0

)


. . .
λij
. . .
. . .
µi

. . .
x
u


=



. . .
−ai
. . .
0
. . .
0

−|I0|


Since u is also a solution of F0 it will further satisfy some system A0w = b0 corresponding
to one of the terms of the disjunctive normal form of F0 and where we can assume that the
unknown u appears in the first rows of w = (u, v). As a result, we obtain a combined system.


Ag1 0
. . . . . .
Agn 0

0 A0





. . .
λij
. . .
. . .
µi

. . .
x
u
v


=


bg1
. . .
bgn
b0


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This system has a polynomial number of rows, columns and uses polynomially many bits for
its maximum absolute value. Thus, it is guaranteed to have a solution that uses polynomially
many bits by the following theorem from [22, page 767].

Lemma 13. Let A be an m×n integer matrix and b a m-vector, both with entries from [−a..a].
Then the system Ax = b has a solution in Nn if and only if it has a solution in [0..M ]n where
M = n(ma)2m+1.

Moreover, since all the generators chosen for Fi lie in the same linear subset they satisfy
Aial ≤ bi and Aibs ≤ 0 for some system Aix ≤ bi in the disjunctive normal form of each Fi.

The resulting formula has polynomial-size in the size of F0 and F1, thus there exists a
polynomial-size certificate C such that VPA accepts ⟨y, C⟩. It follows that VLIAcard accepts
⟨x, ⟨{al}, {bs}, {Ai}, {bi}, C⟩⟩.
⇐) If VLIAcard accepts ⟨x,w⟩ then there exists a polynomial-size certificate C such that VPA

accepts ⟨y, C⟩ and thus y is satisfiable. This means that for some vectors al satisfying Fi and
some vectors bs satisfying the homogeneous part of Fi it holds that

u =
∑
l∈I0

(
al +

∑
(l,s)∈J

λlsbls

)
+
∑
l∈I1

µlal ∧ xi = |I0|+
∑
l∈I1

µl

and furthermore (u, v) satisfies F0. It follows that F0 ∧
∧n

i=1 u ∈ {x | Fi(x)}xi is satisfied by

such u and v. Thus, x ∈ LIAcard.
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