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Abstract

This short paper investigates the prospects of designing semantically satisfactory fuzzy
models for the formal language of precise truth. We start by showing that this language fails
to admit fuzzy models based on Kronecker-Delta semantics for sharp truth-predications,
and then we explore some alternative semantic possibilities.

1 Species of Truth Predicates

In his work on the topic of vagueness, Smith [Smi08] made an important logico-philosophical
distinction between two kinds of truth predicates:

1. The global truth-predicate T with the property that the semantic value of any truth
predication T(⌜φ⌝) matches the semantic value of the underlying sentence φ, i.e.

JT(⌜φ⌝)K = JφK.

2. The family {Ti ∣ i ∈ [0,1] } of indexed truth-predicates that we use in order to say that
a sentence has a specific degree of truth—e.g. that it is true to degree 0.54, written as
T0.54(⌜φ⌝).

The formal semantics literature contains many non-classical ways in which one can success-
fully add the basic symbol T to the (object-)language of arithmetic, viz. LPA (e.g. [Kri75]).
We shall now add more symbols to LPA in order to enhance its expressive powers, so that
precise truth-predications can be articulated. Let L∞T ∶= LPA ∪ {Ti ∣ i ∈ [0,1] }.

1 Ideally, the
semantics for precise truth-predications should be governed by the Kronecker-Delta function
δ ∶ [0,1]2 → {0,1} given by:

δ(x, y) =

⎧⎪⎪
⎨
⎪⎪⎩

1 if x = y

0 otherwise

More explicitly, if Tr(⌜φ⌝) is an atomic precise truth-predication for some r ∈ [0,1], we want
that:

JTr(⌜φ⌝)K =
⎧⎪⎪
⎨
⎪⎪⎩

1 if r = JφK
0 otherwise

∗I would like to thank Johannes Stern for many insightful discussions. This paper is based on Section 6.5 of
my PhD thesis, and my research was supported by an ERC Starting Grant (TRUST, Grant No. 803684).

1Of course, we can avoid making our language uncountable. We can restrict our indexes to range over

Q ∩ [0,1] and use a two-place predicate T with the property that T(n, ⌜φ⌝) is (perfectly) true iff φ has the
nth rational number—in the canonical enumeration of the countable set Q—as its truth-degree. In other words,

when we’re writing Ti(⌜φ⌝), this can be seen as shorthand for T(#i, ⌜φ⌝), where #i ∈ N is i’s code. For simplicity,
in this paper we’ll carry out our formal investigation as if everything were real-valued.
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2 δ-Semantics for L∞T
Under this picture, there are prima facie no obvious obstacles in providing semantic values

for some sentences of interest. For example, consider the following lemma, that we shall prove,
which concerns the semantic value of the sentence that denies its bivalence:

Lemma 2.1 (The Bivalence Denier). The L∞T -sentence which says about itself that it is a
counterexample to the principle of bivalence can only be perfectly false (regardless of the truth-
structure underpinning the fuzzy semantics).

Proof. The bivalence denier, τ , asserts that its semantic value is neither 0 nor 1. Let τ be a
fixed point of the open formula ¬(T0(x) ∨T1(x)). By the semantic definition of a fixed point, it

follows that JτK = J¬(T0(⌜τ⌝) ∨T1(⌜τ⌝))K. Suppose JτK ∈ (0,1). Then J¬(T0(⌜τ⌝) ∨T1(⌜τ⌝))K =
f¬(f∨(δ(JτK,0), δ(JτK,1))) = f¬(f∨(0,0)) = f¬(0) = 1. Hence we cannot assign a truth de-
gree strictly between 0 and 1 to τ . Now suppose that JτK ∈ {0,1}. In this case we have

that J¬(T0(⌜τ⌝) ∨T1(⌜τ⌝))K = f¬(f∨(δ(JτK,0), δ(JτK,1))) = f¬(1) = 0. Thus, truth-value 1 is
discounted and 0 is the only possibility.

That being said, some unfortunate news are due. Even though the Kronecker-Delta seman-
tics for L∞T seems promising with respect to a multitude of sentences, we can mathematically
prove the negative result that L∞T has no models at all. The result resembles in many respects
Tarski’s [Tar56] classical argument:

Theorem 2.2 (The Undefinability of Precise Truth). There are no fuzzy modelsM of language
L∞T .2

Proof. Suppose there is a modelM of our language, where the semantics of the indexed truth-
predicates is guided by the Kronecker-Delta proposal. For any y ∈ [0,1], let λy be ¬Ty(x)’s liar
sentence. To show thatM cannot exist, we just need to show that there is at least one number
r in the unit interval such that there’s no truth-degree that can be assigned to λr.

Let’s start by checking what happens to λ1. Given the semantics of the indexed truth-
predicates (and the workings of the generalised negation function), it follows that J¬T1(⌜λ1⌝)K ∈
{0,1}, which means that λ1 itself can only be interpreted as 0 or 1. Now, if Jλ1K = 1, then

δ(Jλ1K,1) = 1, so JT1(⌜λ1⌝)K = 1, which in turn means that J¬T1(⌜λ1⌝)K = 0. Since ¬T1(⌜λ1⌝)

and λ1 must have matching semantic values, this is impossible.
On the other hand, if Jλ1K = 0, then δ(Jλ1K,1) = 0, so JT1(⌜λ1⌝)K = 0, which means that

J¬T1(⌜λ1⌝)K = 1. Just as in the last case, this cannot obtain. In conclusion, there cannot be any
fuzzy models of the entire language L∞T because there is at least one uninterpretable symbol of
L∞T —and T1 serves as an explicit example.

3 Alternative Fuzzy Semantics for L∞T
Perhaps the Kronecker-Delta semantics that we relied on is overly punishing of close mis-

matches of values. Under this brand of semantics, if some sentence φ has semantic value r,

2Hájek, Paris and Shepherdson [HPS00] prove a result in this vicinity, but theirs is slightly different than
ours. In their paper, they show that the standard model of arithmetic, N , cannot be extended to a model of
PAT L∀. There are no indexed truths in their framework—it’s only about a global, disquotational truth-predicate
T. They have also shown that theory PAT L∀ is actually consistent, but it immediately becomes inconsistent if
one attempts to extend it with truth-theoretic axioms which say that T commutes with connectives.

2
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then for any small ε > 0 and s ∈ (r − ε, r + ε) ∖ { r }, the precise truth-predication Ts(⌜φ⌝) will
have semantic value 0. This seems too harsh. For a concrete example, suppose that:

JφK = 0.67583 for some φ ∈ SentL∞
T

Then, using our semantics, the following assignment will obtain:

JT0.67584(⌜φ⌝)K = 0

even though, roughly speaking, the indexed-predicate T0.67584 “got it right”—the error is
just 0.00001. It seems reasonable to suggest that the proper semantic value of T0.67584(⌜φ⌝)
ought to be some number s ∈ (1 − ε,1) for some very small ε > 0. One way of accomplishing
this might be to suggest that, if φr ∈ SentL∞

T
is a sentence with semantic value r ∈ [0,1], then:

JTs(⌜φr⌝)K = γd(s,r)

where γ > 0 is some tiny, epsilonic number, e.g. Liouville’s constant (or any other small
quantity), and d ∶ R2 → R≥0 is the ordinary distance function on the reals, defined as follows:

d(x, y) =

⎧⎪⎪
⎨
⎪⎪⎩

y − x if x ≤ y

x − y otherwise

This semantic framework has the following upshots:

• When s = r, then JTs(⌜φr⌝)K = γ0 = 1.

• When s ≈ r, then JTs(⌜φr⌝)K ≈ 1.

Thus, unlike the Kronecker-Delta semantics, where indexed truth predications can only take
Boolean values, we now allow for fuzzy semantic values for precise statements such as Ts(⌜φr⌝).
That being said, this fuzzified framework makes some odd predictions of its own. For instance,
this framework makes it impossible for any precise truth-predication to be perfectly false, since
0 is not in the range of function f(x, y) ∶= γd(x,y). This means that even statements that

attribute perfect truth to outright falsities, e.g. T1(⌜2 + 2 = 5⌝), will turn out partially true.
This seems seriously problematic.

What if, instead of imposing JTs(⌜φr⌝)K = γd(s,r), we designed our semantics to assign the

product s × r as the semantic value of Ts(⌜φr⌝)? This sounds like a natural suggestion, but it

comes with some other problematic predictions. For example, the sentence Tr(⌜φr⌝) should be
a paradigmatic example of a perfectly true sentence, since it says that sentence φr has semantic
value r, which it does.3 However, the product-semantics gets this wrong, since for any r ∈ (0,1),

we have that JTr(⌜φr⌝)K = r2, which is strictly less than 1. Another problem arises when we

consider positive truth-predications of perfectly false sentences, e.g. Tr(⌜φ0⌝), or perfectly false

predications of partially true sentences, e.g. T0(⌜φr⌝). With respect to the former case: if r ≈ 0,

the product-semantics makes the wrong assignment JTr(⌜φ0⌝)K = 0, when in fact it should be

the case that JTr(⌜φ0⌝)K ≈ 1.4

3In particular, JT 1
2
(⌜λ⌝)K should arguably be 1, where λ is the liar sentence with JλK = 1

2
.

4The truth-predication correctly states that the perfectly false sentence φ0 has a truth-value that is extremely

3
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4 Modulus Semantics for L∞T
Hence, we must look for a new binary function f to underpin our semantics. In light of the

discussion above, it seems reasonable to impose that the function f ∶ [0,1]2 → [0,1] such that

JTx(⌜φy⌝)K = f(x, y) should obey the following desiderata:

• f ought to be a continuous function.

• f(1,0) = f(0,1) = 0.

• f(x,x) = 1 for all x ∈ [0,1].

• If x ≈ y, then f(x, y) ≈ 1.

• If d(x, y) ≈ 1, then f(x, y) ≈ 0.

We will denote the distance between x and y, viz. d(x, y) via the usual modulus notation,
i.e. ∣x − y∣. The cleanest function f ∶ [0,1]2 → [0,1] which obeys all of these properties is:

f(x, y) = 1 − ∣x − y∣

Under the modulus semantics for L∞T , we do not have the same obstacle with respect to the
truth-value of the fixed point of ¬T1.

Theorem 4.1 (Perfect Truth and Modulus Semantics). The L∞T sentence which says about
itself that it is not perfectly true can only have fuzzy equilibriums as semantic values, i.e. fixed
points of the truth-function for negation.

Proof. Let λ1 be the fixed point of ¬T1. Then Jλ1K = J¬T1(⌜λ1⌝)K = f¬(JT1(⌜λ1⌝)K) = f¬(1 −
∣1 − Jλ1K∣) = f¬(Jλ1K). Thus, depending on the negation truth-function that one chooses, the
semantic value of λ1 will need to be a fuzzy equilibrium.

There are a handful of choices for the truth-functions of our usual connectives. With respect
to the foregoing theorem, the choice of the negation function will directly impact the fuzzy
equilibriums that can serve as the semantic value of λ1, which should be a value in [0,1] such
that f¬(Jλ1K) = Jλ1K.

This immediately discounts the Gödel and Product semantics for L∞T , because it is impossi-
ble for λ1 to have a semantic value in [0,1] such that Jλ1K = fG

¬
(Jλ1K) or Jλ1K = fP

¬
(Jλ1K). The

proof is straightforward. Both fG
¬

and fP
¬

are identical to the function g which returns 1 on
argument 0 and returns 0 on any other positive argument in the unit interval. There’s no value
in [0,1] that Jλ1K can have such that g(Jλ1K) = Jλ1K, because if Jλ1K = 0, then g(Jλ1K) = 1 and
if 1 ≥ Jλ1K > 0, then g(Jλ1K) = 0.

The only contender left amongst the canonical fuzzy systems is  Lℵ1 semantics, because the

function f  L
¬
∶ [0,1] → [0,1] demonstrably admits a unique fixed point, since it is a decreasing

continuous function from a real interval to itself. This fixed point happens to be 1
2

and our
semantics for L∞T ought to be designed such that Jλ1K gets assigned this value.

close to 0. Thus, its overall value should be extremely close to 1, and yet it actually happens to be as far as
possible from 1.
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