Shelah's conjecture fails for higher cardinalities

Georgios Marangelis

Aristotle University of Thessaloniki

Abstract

The main goal of this paper is to generalize the results that where presented in [3] for \aleph_1 -Kurepa trees to $\aleph_{\alpha+1}$ -Kurepa trees.

We construct an $\mathcal{L}_{\omega_1,\omega}$ -sentence ψ_{α} , that codes $\aleph_{\alpha+1}$ -Kurepa trees, for some countable α . One of the main results for its spectrum (the spectrum of a sentence is the class of all cardinals for which there exists some model of the sentence) is the following:

It is consistent that $2^{\aleph_{\alpha}} < 2^{\aleph_{\alpha+1}}$, that $2^{\aleph_{\alpha+1}}$ is weakly inaccessible and that the spectrum of ψ_{α} is equal to $[\aleph_0, 2^{\aleph_{\alpha+1}})$.

This relates to a conjecture of Shelah, that if $\aleph_{\omega_1} < 2^{\aleph_0}$ and there is a model of some $\mathcal{L}_{\omega_1,\omega}$ -sentence of size \aleph_{ω_1} , then there is a model of size 2^{\aleph_0} . Shelah proves the consistency of this conjecture in [2]. This statement proves that it is consistent that there is no Hanf number below $2^{\aleph_{\alpha+1}}$ for every countable α .

There are some interesting results for the amalgamation Spectrum too (the amalgamation Spectrum is defined similarly to the Spectrum, but we also require that κ amalgamation holds). We prove that the κ -amalgamation for $\mathcal{L}_{\omega_1,\omega}$ - sentences is not absolute. More specifically we prove:

- for $\alpha > 0$ finite, it is consistent that $2^{\aleph_{\alpha}} < \aleph_{\omega_{\alpha+1}}$ and the Amalgamation Spectrum of ψ_{α} is equal to $[(2^{\aleph_{\alpha}})^+, \aleph_{\omega_{\alpha+1}}]$.
- for $\alpha > 0$ finite, it is consistent that $2^{\aleph_{\alpha}} < 2^{\aleph_{\alpha+1}}$, $2^{\aleph_{\alpha+1}}$ is weakly inaccessible and the Amalgamation Spectrum of ψ_{α} is equal to $[(2^{\aleph_{\alpha}})^+, 2^{\aleph_{\alpha+1}})$.

1 Kurepa trees and $\mathcal{L}_{\omega_1,\omega}$

Firstly, we need to see some useful definitions.

Definition 1.1. For an $\mathcal{L}_{\omega_1,\omega}$ sentence ϕ , the spectrum of ϕ is the class

$$Spec(\phi) = \{\kappa | \exists M \models \phi \text{ and } |M| = \kappa\}.$$

If $Spec(\phi) = [\aleph_0, \kappa]$, we say that ϕ characterizes κ . The maximal models spectrum of ϕ is the class

$$MM-Spec(\phi) = \{\kappa | \exists M \models \phi \text{ and } |M| = \kappa \text{ and } M \text{ is maximal } \}.$$

We can, also, define the **amalgamation spectrum** of ϕ , AP-Spec(ϕ) and the joint **embedding spectrum** of ϕ , JEP-Spec(ϕ) as follows:

 $AP-Spec(\phi) = \{\kappa | \phi \text{ has at least one model of size } \kappa \text{ and the models of size } \kappa \text{ satisfy the} \\ amalgamation \text{ property } \}$

 $JEP-Spec(\phi) = \{\kappa | \phi \text{ has at least one model of size } \kappa \text{ and the models of size } \kappa \text{ satisfy the joint} \\ embedding \text{ property } \}.$

Definition 1.2. Assume κ is an infinite cardinal. A κ -tree has height κ and each level has at most $< \kappa$ elements. A κ -Kurepa tree is a κ -tree with at least κ^+ many branches of height κ . If $\lambda \ge \kappa^+$, a (κ, λ) -Kurepa tree is a κ -Kurepa tree with exactly λ branches of height κ .

 $KH(\kappa, \lambda)$ is the statement that there exists a (κ, λ) -Kurepa tree.

Define $\mathcal{B}(\kappa) = \sup\{\lambda | KH(\kappa, \lambda) \text{ holds }\}.$

A weak κ -Kurepa tree is a κ -Kurepa tree, where each level has at most $\leq \kappa$ elements.

<u>Comment:</u>For this paper we will assume that κ -Kurepa trees are pruned, i.e. every node is contained in a maximal branch of order type κ .

Definition 1.3. Let $\kappa \leq \lambda$ be infinite cardinals. A sentence σ in a language with a unary predicate P admits (λ, κ) , if σ has a model M such that $|M| = \lambda$ and $|P^M| = \kappa$. In this case, we will say that M is of type (λ, κ) .

Our goal, now, is to construct an $\mathcal{L}_{\omega_1,\omega}$ sentence such that every $\aleph_{\alpha+1}$ -Kurepa tree (where α is countable) belongs to its spectrum.

From [1], we know the following theorem.

Theorem 1.4. There is a first order sentence σ such that for all infinite cardinals κ , σ admits (κ^{++}, κ) iff $KH(\kappa^{+}, \kappa^{++})$.

We will not present the proof for this theorem, but we are going to use some parts of the construction for σ , in order to construct the desired $\mathcal{L}_{\omega_1,\omega}$ sentence, ψ_{α} .

Assume that α is a countable ordinal. The vocabulary τ consists of the constants 0, $(c_n)_{n \in \omega}$, the unary symbols $L_0, L_1, \ldots, L_{\alpha}, L_{\alpha+1}$, the binary symbols $S, V, T, <_1, <_2, \ldots, <_{\alpha}, <_{\alpha+1}$ and the ternary symbols $F_0, F_1, \ldots, F_{\alpha}, G$. The idea is to build an $\aleph_{\alpha+1}$ -Kurepa tree. $L_{\alpha+1}$ is a set that corresponds to the "levels" of the tree. $L_{\alpha+1}$ is linearly ordered by $<_{\alpha+1}$ and 0 is its minimum element. $L_{\alpha+1}$ may or may not have a maximum element. Every element $a \in L_{\alpha+1}$ that is not a maximum element has a successor b that satisfies S(a, b). We will denote the successor of a by S(a). The maximum element (which we will call m) is not a successor. For every $a \in L, V(a, \cdot)$ is the set of nodes at level a and we assume that $V(a, \cdot)$ is disjoint from all the $L_0, L_1, \ldots, L_{\alpha+1}$. If V(a, x), we will say that x is at the level a and we may write $x \in V(a)$.

T is a tree ordering on $V = \bigcup_{a \in L_{\alpha+1}} V(a)$. If T(x, y), then x is at some level strictly less than the level of y. If $y \in V(a)$ and b < a, there is some x so that $x \in V(b)$ and T(x, y). If a is a limit, that is neither a successor nor 0, then two distinct elements in V(a) cannot have the same predecessors. If m is the maximum element of $L_{\alpha+1}, V(m)$ is the set of maximal branches through the tree. Both "the height of T" and "the height of $L_{\alpha+1}$ " refer to the order type of $(L_{\alpha+1}, <_{\alpha+1})$. We can also stipulate that the $\aleph_{\alpha+1}$ -Kurepa tree is pruned.

Our goal, now is to bound the size of each L_{β} by \aleph_{β} . For the first level, we require that $\forall x(L_0(x) \leftrightarrow \bigvee_n x = c_n)$. That gives us that $|L_0| = \aleph_0$.

Each $L_{\beta}, \beta = 1, 2, ..., \alpha$ is linearly ordered by $<_{\beta}$.

In order to bound the size of $L_{\beta+1}$ by $\aleph_{\beta+1}$, we bound the size of each initial segment by \aleph_{β} . Our treatment is slightly different for $\beta < \alpha$ than for $\beta = \alpha$.

Let $\beta < \alpha$. For every $x \in L_{\beta+1}$ there is a surjection $F_{\beta}(x, \cdot, \cdot)$ from L_{β} to $(L_{\beta+1})_{\leq (\beta+1)x} = \{b \in L_{\beta+1} | b \leq_{(\beta+1)} x\}$. This bounds the size of each initial segment $(L_{\beta+1})_{\leq (\beta+1)x}, \beta < \alpha$ by $|L_{\beta}|$.

At limit stages we take L_{β} as the union of the previous L_{γ} . The linear order on limit stages is not relevant to the linear orders in the previous stages.

Finally, for every $x \in L_{\alpha+1}$, that is not the maximum element, there is a surjection $F_{\alpha}(x, \cdot, \cdot)$ from L_{α} to $(L_{\alpha+1})_{\leq (\alpha+1)x}$ and another surjection $G(x, \cdot, \cdot)$ from L_{α} to V(x). This bounds the size of $(L_{\alpha+1})_{\leq (\alpha+1)x}$ and the size of every V(x), which is not maximal level, by $|L_{\alpha}|$. \aleph_{α} -Kurepa trees

<u>Observation</u>: Defining the $F_{\alpha}(x, \cdot, \cdot)$, we demand that x is not the maximum element of $L_{\alpha+1}$. We don't have the same restriction for the rest of the F_{β} 's. That difference plays an important role throughout the rest of the paper.

This construction gives us that for all $\beta = 1, 2, ..., \alpha + 1, |L_{\beta}| \leq \aleph_{\beta}$ and for all non maximal levels $|V(x)| \leq \aleph_{\alpha}$.

So, our desired $\mathcal{L}_{\omega_1,\omega}$ sentence, ψ_{α} is the conjuction of all the above requirements.

Definition 1.5. A $(\kappa - \lambda)$ -Kurepa tree, where $\lambda \geq \kappa$, is a tree of height κ , each level has at most $\leq \lambda$ elements with at least λ^+ branches of height κ . A $(\kappa - \kappa)$ -Kurepa tree is a weak κ -Kurepa tree.

The dividing line for models of ψ to code $\aleph_{\alpha+1}$ -Kurepa trees is the size of $L_{\alpha+1}$. By definition, every initial segment of $L_{\alpha+1}$ has size at most \aleph_{α} . If in addition $|L_{\alpha+1}| = \aleph_{\alpha+1}$, then we can embed $\omega_{\alpha+1}$ cofinally into $L_{\alpha+1}$. Hence, every model of ψ of size $\geq \aleph_{\alpha+2}$ and for which $|L_{\alpha+1}| = \aleph_{\alpha+1}$, codes an $\aleph_{\alpha+1}$ -Kurepa tree.

Let **K** be the collection of all models of ψ , equipped with the substructure relation. I.e. for $M, N \in \mathbf{K}, M \prec_{\mathbf{K}} N$ if $M \subset N$.

Now, I present some interesting results and theorems, without their proofs.

Lemma 1.6. If $M \prec_{\mathbf{K}} N$, then

1.
$$L_0^M = L_0^N$$

- 2. L_1^M is initial segment of L_1^N
- 3. For $1 \leq \beta \leq \alpha$, if $|L_{\gamma}^{M}| = \aleph_{\gamma}$, for every $\gamma \leq \beta$, then $L_{\beta}^{M} = L_{\beta}^{N}$
- 4. For $1 \leq \beta \leq \alpha$, if $|L_{\gamma}^{M}| = \aleph_{\gamma}$, for every $\gamma \leq \beta$, then $L_{\beta+1}^{M}$ is an initial segment of $L_{\beta+1}^{N}$
- 5. If $|L_{\beta}^{M}| = \aleph_{\beta}$, for every $\beta \leq \alpha$, then $V^{M}(x) = V^{N}(x)$, for every non maximal $x \in L_{\alpha+1}^{M}$
- 6. the tree ordering is preserved

Corollary 1.7. If $M \prec_{\mathbf{K}} N$, then

- 1. If $|L_{\beta}^{M}| = \aleph_{\beta}$ for every $\beta \leq \alpha$ and $L_{\alpha+1}^{M} = L_{\alpha+1}^{N}$, then N differs from M only in the maximal branches it contains.
- 2. If $|L_{\beta}^{M}| = \aleph_{\beta}$ for every $\beta \leq \alpha + 1$ and $L_{\alpha+1}^{N}$ is a strict end extension of $L_{\alpha+1}^{M}$, then $L_{\alpha+1}^{M}$ does not have a maximum element and $L_{\alpha+1}^{N}$ is one point end extension of $L_{\alpha+1}^{M}$.
- 3. If $|L_{\beta}^{M}| = \aleph_{\beta}$ for every $\beta \leq \alpha$, $L_{\alpha+1}^{M}$ has a maximum element and $L_{\alpha+1}^{N}$ is a strict end extension of $L_{\alpha+1}^{M}$, then $|M| = \aleph_{\alpha}$.

Proposition 1.8. ($\mathbf{K}, \prec_{\mathbf{K}}$) is an Abstract Elementary Class (AEC) with countable Lowenheim-Skolem number.

Theorem 1.9. The spectrum of ψ is characterized by the following properties:

- 1. $[\aleph_0, \aleph_{\alpha}^{\aleph_0}] \subseteq Spec(\psi)$ and $\aleph_{\alpha+1} \in Spec(\psi)$.
- 2. if there exists a $(\mu \lambda)$ -Kurepa tree, where $\aleph_1 \leq \mu \leq \lambda \leq \aleph_{\alpha}$, with κ cofinal branches, then $[\aleph_0, \kappa] \subseteq Spec(\psi)$.
- 3. if there exists an $\aleph_{\alpha+1}$ -Kurepa tree with κ cofinal branches, then $[\aleph_0, \kappa] \subseteq Spec(\psi)$.

 \aleph_{α} -Kurepa trees

4. no cardinal belongs to $Spec(\psi)$ except those required by (1)-(2)-(3). I.e. if ψ has a model of size κ , then $\kappa \in [\aleph_0, max\{\aleph_{\alpha}^{\aleph_0}, \aleph_{\alpha+1}\}]$ or there exists a $(\mu - \lambda)$ -Kurepa tree with κ cofinal branches or there exists an $\aleph_{\alpha+1}$ -Kurepa tree with κ cofinal branches.

Theorem 1.10. The maximal models Spectrum of ψ is characterized by the following:

- 1. ψ has maximal model of size $\aleph_{\alpha+1}$
- 2. If $\lambda^{\aleph_0} \geq \aleph_{\alpha+1}$, for some $\aleph_0 \leq \lambda \leq \aleph_{\alpha}$, then ψ has maximal model of size λ^{\aleph_0}
- 3. If there exists an $(\mu \aleph_{\alpha})$ -Kurepa tree, $\mu \geq \aleph_1$, with exactly κ cofinal branches, then ψ has maximal model in κ
- 4. If there exists an $\aleph_{\alpha+1}$ -Kurepa tree with exactly κ cofinal braches, then ψ has maximal model in κ
- 5. ψ has maximal models only on those cardinalities required by (1)-(4).
- **Corollary 1.11.** 1. If there are no $(\mu \lambda)$ -Kurepa trees and no $\aleph_{\alpha+1}$ -Kurepa trees, then $Spec(\psi) = [\aleph_0, max\{\aleph_{\alpha}^{\aleph_0}, \aleph_{\alpha+1}\}]$ and $MM - Spec(\psi) = \{\lambda^{\aleph_0} | \aleph_0 \le \lambda \le \aleph_{\alpha} \text{ and } \lambda^{\aleph_0} \ge \aleph_{\alpha+1}\} \cup \{\aleph_{\alpha+1}\}.$
 - 2. If $\mathcal{B}(\aleph_{\alpha+1})$ is a maximum, i.e. there is an $\aleph_{\alpha+1}$ -Kurepa tree of size $\mathcal{B}(\aleph_{\alpha+1})$ and there are no $(\mu - \lambda)$ -Kurepa trees for $\aleph_1 \leq \mu \leq \lambda \leq \aleph_{\alpha}$, then ψ characterizes $max\{\aleph_{\alpha}^{\aleph_0}, \aleph_{\alpha+1}, \mathcal{B}(\aleph_{\alpha+1})\}.$
 - 3. If $\mathcal{B}(\aleph_{\alpha+1})$ is not a maximum and there are no $(\mu \lambda)$ -Kurepa trees for $\aleph_1 \leq \mu \leq \lambda \leq \aleph_{\alpha}$, then $Spec(\psi)$ equals $[\aleph_0, max\{\aleph_{\alpha}^{\aleph_0}, \aleph_{\alpha+1}\}]$ or $[\aleph_0, \mathcal{B}(\aleph_{\alpha+1}))$, whichever is greater. Moreover, ψ has maximal models in $\aleph_{\alpha+1}, \lambda^{\aleph_0}$, if it is $\geq \aleph_{\alpha+1}$ and in cofinally many cardinalities below $\mathcal{B}(\aleph_{\alpha+1})$.

Theorem 1.12. 1. $(\mathbf{K}, \prec_{\mathbf{K}})$ fails JEP in all cardinals.

- 2. If $\alpha < \omega$, then $(\mathbf{K}, \prec_{\mathbf{K}})$ satisfies AP for all cardinals $> 2^{\aleph_{\alpha}}$ that belong to $Spec(\psi)$, but fails AP in every cardinal $\leq 2^{\aleph_{\alpha}}$.
 - If $\alpha \geq \omega$, then $(\mathbf{K}, \prec_{\mathbf{K}})$ fails AP in all cardinalities.

2 Consistency results

Theorem 2.1. It is consistent with ZFC that $2^{\aleph_{\alpha}} < \aleph_{\omega_{\alpha+1}} = \mathcal{B}(\aleph_{\alpha+1}) < 2^{\aleph_{\alpha+1}}$ and there exists an $\aleph_{\alpha+1}$ -Kurepa tree with $\aleph_{\omega_{\alpha+1}}$ -many cofinal branches.

Theorem 2.2. From a Mahlo cardinal, it is consistent with ZFC that $2^{\aleph_{\alpha}} < \mathcal{B}(\aleph_{\alpha+1}) = 2^{\aleph_{\alpha+1}}$, for every $\kappa < 2^{\aleph_{\alpha+1}}$ there is an $\aleph_{\alpha+1}$ -Kurepa tree with at least κ -many maximal branches, but no $\aleph_{\alpha+1}$ -Kurepa tree has $2^{\aleph_{\alpha+1}}$ -many maximal branches.

Corollary 2.3. For every α countable ordinal, there exists an $\mathcal{L}_{\omega_1,\omega}$ -sentence ψ that it is consistent with ZFC that:

- 1. ψ characterizes max{ $\aleph_{\alpha+1}, \aleph_{\alpha}^{\aleph_0}$ }
- 2. $2^{\aleph_{\alpha}} < \aleph_{\omega_{\alpha+1}}$ and ψ characterizes $\aleph_{\omega_{\alpha+1}}$

 \aleph_{α} -Kurepa trees

Georgios Marangelis

- 3. $2^{\aleph_{\alpha}} < 2^{\aleph_{\alpha+1}}, 2^{\aleph_{\alpha+1}}$ is weakly inaccessible and $Spec(\psi) = [\aleph_0, 2^{\aleph_{\alpha+1}})$
- 4. $MM Spec(\psi) = \{\lambda^{\aleph_0} | \aleph_0 \le \lambda \le \aleph_\alpha \text{ and } \lambda^{\aleph_0} \ge \aleph_{\alpha+1}\} \cup \{\aleph_{\alpha+1}\}$
- 5. $2^{\aleph_{\alpha}} < 2^{\aleph_{\alpha+1}}$, $2^{\aleph_{\alpha+1}}$ is weakly inaccessible and $MM Spec(\psi)$ is a cofinal subset of $[\aleph_{\alpha+1}, 2^{\aleph_{\alpha+1}})$

If, in addition α is finite, then it is also consistent that

- 6. $2^{\aleph_{\alpha}} < \aleph_{\omega_{\alpha+1}}$ and $AP Spec(\psi) = (2^{\aleph_{\alpha}}, \aleph_{\omega_{\alpha+1}}]$
- 7. $2^{\aleph_{\alpha}} < 2^{\aleph_{\alpha+1}}, 2^{\aleph_{\alpha+1}}$ is weakly inaccessible and $AP Spec(\psi) = (2^{\aleph_{\alpha}}, 2^{\aleph_{\alpha+1}})$

Finally, throughout the paper there are some interesting open questions that have been risen:

Open Question 1. Is the negation of Shelah's conjecture consistent with ZFC?

Open Question 2. Is \aleph_1 -amalgamation for $\mathcal{L}_{\omega_1,\omega}$ -sentences absolute for models of ZFC?

References

- C. C. Chang and H. J. Keisler. Model theory, volume 73 of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam, third edition, 1990.
- [2] Saharon Shelah. Borel sets with large squares. Fund. Math., 159(1):1-50, 1999.
- [3] Dima Sinapova and Ioannis Souldatos. Kurepa trees and spectra of $L_{\omega_1,\omega}$ -sentences. Arch. Math. Logic, 59(7-8):939–956, 2020.