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Abstract
We revisit the work studying homomorphism preservation in sparse classes of structures

initiated in [Atserias et al., JACM 2006] and [Dawar, JCSS 2010]. These established that
first-order logic has the homomorphism preservation property in any sparse class that is
monotone and addable. It turns out that the assumption of addability is not strong enough
for the proofs given. We demonstrate this by constructing classes of graphs of bounded
treewidth which are monotone and addable but fail to have homomorphism preservation.
We also show that homomorphism preservation fails on the class of planar graphs. On the
other hand, the proofs can be recovered by replacing addability by a stronger condition
of amalgamation over bottlenecks. This is analogous to a similar condition formulated for
extension preservation in [Atserias et al., SiCOMP 2008].

1 Introduction
Preservation theorems have played an important role in the development of finite model theory.
They provide a correspondence between the syntactic structure of first-order sentences and their
semantic behaviour. In the early development of finite model theory it was noted that many
classical preservation theorems fail when we limit ourselves to finite structures. An important
case in point is the Łoś-Tarski or extension preservation theorem, which asserts that a first-order
formula is preserved by embeddings between all structures if, and only if, it is equivalent to an
existential formula. Interestingly, this was shown to fail on finite structures [9] much before the
question attracted interest in finite model theory [6]. On the other hand, the homomorphism
preservation theorem, asserting that formulas preserved by homomorphisms are precisely those
equivalent to existential-positive ones, was remarkably shown to hold on finite structures by
Rossman [8], spurring applications in constraint satisfaction and database theory.

However, even before Rossman’s result, these preservation properties were investigated on sub-
classes of the class of finite structures. In this context, restricting to a subclass weakens both
the hypothesis and the conclusion, therefore leading to an entirely new question. Thus, while
the class of all finite structures is combinatorially wild, it contains tame classes which are both
algorithmically and model-theoretically better behaved [4]. A study of preservation properties
for such restricted classes of finite structures was initiated in [3] and [2], which looked at homo-
morphism preservation and extension preservation respectively. The focus was on tame classes
defined by wideness conditions, allowing for methods based on the locality of first-order logic.

The main result asserted in [3] is that homomorphism preservation holds in any class C which
is almost wide and is monotone and addable. From this, it is concluded that homomorphism
preservation holds for any class C whose Gaifman graphs exclude some graph G as a minor,
as long as C is monotone and addable. The result was extended from almost wide to quasi-
wide classes in [5], from which homomorphism preservation was deduced for classes that locally
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exclude minors and classes that have bounded expansion, again subject to the proviso that they
are monotone and addable. Quasi-wide classes were later identified with nowhere dense classes,
which are now central in structural and algorithmic graph theory [7].

The main technical construction in [3] is concerned with showing that classes of graphs which
exclude a minor are indeed almost wide. The fact that homomorphism preservation holds
in monotone and addable almost wide classes is deduced from a construction of Ajtai and
Gurevich [1] which shows the “density” of minimal models of a first-order sentence preserved
under homomorphisms, and the fact that in an almost wide class a collection of such dense
models must necessarily be finite. While the Ajtai and Gurevich construction is carried out
within the class of all finite structures, it is argued in [3] that it can be carried out in any
monotone and addable class because of “the fact that disjoint union and taking a substructure
are the only constructions used in the proof” [3, p. 216].

The starting point of the present paper is that this argument is flawed. The construction re-
quires us to take not just disjoint unions, but unions that identify certain elements: in other
words amalgamations over sets of points. On the other hand, we can relax the requirement of
monotonicity to just hereditariness. The conclusion is that homomorphism preservation holds
in any class C that is quasi-wide, hereditary and closed under amalgamation over bottleneck
points. The precise statement is given in Theorem 4.1 below. We also show that the require-
ments formulated in [3] are insufficient by constructing a class that is almost wide (indeed, has
bounded treewidth), is monotone and addable, but fails to have the homomorphism preserva-
tion property. The class of planar graphs is an interesting case as it is used in [2] as an example
of a hereditary, addable class with excluded minors in which extension preservation fails. We
show that homomorphism preservation also fails in this class, strengthening the result of [2].

2 Preliminaries

We fix a finite relational vocabulary τ ; by a structure we implicitly mean a τ -structure. Given
two structures A,B, a homomorphism f ∶ A→ B is a map such that for all relation symbols R
and tuples ā from A we have ā ∈ RA Ô⇒ f(ā) ∈ RB . If moreover f(ā) ∈ RB Ô⇒ ā ∈ RA then
f is said to be strong. An injective strong homomorphism is called an embedding.

A structure B is said to be a weak substructure of a structure A if B ⊆ A and the inclusion
map ι ∶ B ↪ A is a homomorphism. Likewise, B is an induced substructure of A if the inclusion
map is an embedding. An induced substructure B of A is said to be free in A if there is some
structure C such that A is the disjoint union B +C. Finally, a substructure B of A is said to
be proper if the inclusion map is not full. We say that a class of structures is monotone if it is
closed under weak substructures, and it is hereditary if it is closed under induced substructures.
Moreover a class is called addable if it is closed under taking disjoint unions.

Given structures A,B,S and embeddings f ∶ S → A and g ∶ S → B, we write A⊕S,f,g B for the
quotient of the disjoint union A+B by the equivalence relation generated by {(f(s), g(s)) ∶ s ∈
S}. Whenever S ⊆ A∩B, we write A⊕S B for A⊕S,ιA,ιB B where ιA, ιB are the corresponding
inclusion maps, and call this the free amalgam of A and B over S.

Fixing a graph H, we say that a graph G is H-free and H-minor-free if it does not contain H
as an induced subgraph and minor respectively. By Wagner’s Theorem, a graph is planar if
and only if it is K5-minor-free and K3,3-minor-free. Finally, a class of graphs C is said to be
quasi-wide if for every r ∈ N there exist sr ∈ N and fr ∶ N → N such that for every m ∈ N and
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every G ∈ C there exist disjoint sets A,S ⊆ V (G) such that A is r-independent in G ∖ S.

We say that a formula ϕ is preserved by homomorphisms (respectively extensions) over a class of
structures C if for all A,B ∈ C such that there is a homomorphism (respectively embedding) from
A to B, A ⊧ ϕ implies that B ⊧ ϕ. We say that a class of structures C has the homomorphism
preservation property (HPP) (respectively extension preservation property, EPP) if for every
formula ϕ preserved by homomorphisms (respectively extensions) over C there is an existential-
positive (respectively existential) formula ψ such that M ⊧ ϕ ⇐⇒ M ⊧ ψ for all M ∈ C.

Given a formula ϕ and a class of structures C, we say that M ∈ C is a minimal induced model of ϕ
in C if M ⊧ ϕ and for any proper induced substructure N of M with N ∈ C we have N /⊧ ϕ. The
relationship between minimal models and preservation is highlighted by the following theorem.

Theorem 2.1. Let C be a hereditary class of finite structures. The C has the HPP (respectively
EPP) if and only if every formula preserved by homomorphisms (respectively extensions) over
C has finitely many minimal induced models in C. So, if C has the EPP then it has the HPP.

3 Preservation can fail on classes of small treewidth
Theorem 4.4 of [3] can be paraphrased in the language of this paper as saying that homomor-
phism preservation holds over any monotone and addable class of bounded treewidth. Here, we
provide a simple counterexample to this, exhibiting a monotone and addable class of graphs of
treewidth 3 where homomorphism preservation fails.

Definition 3.1. Fix k ∈ N and ni ≥ 3 for every i ∈ [k]. We define the bouquet of cycles of
type (n1, . . . , nk), denoted by Wn1,...,nk

, as the graph obtained by taking the disjoint union of
k cycles of length n1, . . . , nk respectively, and adding an apex vertex, i.e. a vertex adjacent to
every vertex in these cycles. Whenever k = 1, we refer to the graph Wn as the wheel of order n.

Figure 1: The bouquet of cycles of type (6,9,10) and the wheel of order 9 respectively.

First, observe that each bouquet has treewidth 3. Indeed, taking a tree decomposition of each
cycle of width 2, and adding the apex to every bag in the decomposition gives the required tree
decomposition. The advantage of working with bouquets of cycles is that, unlike single cycles,
there is a formula that defines their existence as free induced subgraphs. To see this, we let

ψ(x, z) ∶= ∃u∃v[u ≠ v ∧ u ≠ x ∧ v ≠ x ∧E(z, u) ∧E(z, v) ∧ ∀w(E(w, z)→ w = u ∨w = v ∨w = x)],

and ϕ ∶= ∃x∃y[E(x, y) ∧ ∀z(z ≠ x ∧ dist(x, z) ≤ 2→ E(x, z) ∧ ψ(x, z)].

Intuitively, ϕ asserts the following: “there is a vertex x of degree at least one such that every
other vertex reachable from x by a path of length two is adjacent to x and has exactly two
distinct neighbours which are not x”.
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Lemma 3.2. Let G be an arbitrary finite graph. Then G ⊧ ϕ if, and only if, it contains a
bouquet of cycles as a free induced subgraph.

It is evident that ϕ is not preserved by homomorphisms over the class of all undirected graphs.
However, when restricting to subgraphs of disjoint unions of wheels we no longer have non-free-
occurring bouquets of cycles in the class. This is precisely the core of the following theorem.

Theorem 3.3. The monotone and addable closure of {W2n+1 ∶ n ∈ N} does not have the HPP.

4 Preservation under bottleneck amalgamation

The main result of this section is the corrected version of Theorem 4.4 in [3] and its generalisa-
tion, Theorem 9 in [5]. More precisely, we establish homomorphism preservation on hereditary
quasi-wide classes which are closed under certain free amalgams. While the existence of ar-
bitrary amalgams certainly suffices, it prohibits any sort of sparsity in the class. Indeed, any
hereditary class of undirected graphs with the free amalgamation property contains arbitrarily
large 1-subdivided cliques, and hence, cannot be quasi-wide.

The proof proceeds by obtaining a concrete bound on the size of minimal models of ϕ in C,
and concluding by Theorem 2.1. The existence of this bound is guaranteed by quasi-wideness,
as any large enough structure contains a large scattered set after removing a small number
of bottleneck points. To isolate the bottleneck points p̄ of M we consider a structure p̄M
in an expanded language which is bi-interpretable with M , and work with the corresponding
interpretation ϕk of ϕ; in particular p̄M contains a large scattered set itself and it models ϕk.
Then, by removing a carefully chosen point from the scattered set of p̄M , we obtain a proper
induced substructure p̄N of p̄M such that N ∈ C by hereditariness. To argue that this still
models ϕk, we use a relativisation of the locality argument of Ajtai and Gurevich from [1].
While in its original version the argument only considers disjoint copies of M , working with the
interpretation p̄M of M corresponds to taking free amalgams of M over the set of bottleneck
points; this is precisely the subtlety that was missed in [3] and [5].

Theorem 4.1. Let C be a hereditary class such that for every r ∈ N there exist kr ∈ N and
fr ∶ N → N satisfying that for every m ∈ N and M ∈ C of size at least fr(m) there exist disjoint
sets A,S ⊆M such that ∣A∣ ≥m, ∣S∣ ≤ kr, A is r-independent in M ∖S, and ⊕n

SM ∈ C for every
n ∈ N. Then homomorphism preservation holds over C.

Obtaining homomorphism preservation for quasi-wide classes therefore amounts to verifying
closure under amalgams over bottleneck points. This is precisely the case for K4-minor-free
and outerplanar graphs. Another class with this property is already known to exist by [2], that
is, the class Tk of all graphs of treewidth bounded by k, for any k ∈ N.

Theorem 4.2. The classes of K4-minor-free graphs and outerplanar graphs have the HPP.

5 Preservation fails on planar graphs

In this section we witness that homomorphism preservation fails on the class of planar graphs.
Previously, it was established [2] that the extension preservation property fails on planar graphs.
Since extension preservation implies homomorphism preservation on hereditary classes by The-
orem 2.1, our result strengthens the above. Our construction will in fact also reveal that
homomorphism preservation fails on the class of K5-minor-free graphs.

4



Preservation on sparse classes Dawar and Eleftheriadis

Definition 5.1. Fix n ∈ N. Define Dn as the undirected graph on vertex set

V (Dn) = {v1, v2} ∪ {ai ∶ i ∈ [n]} ∪ {bi ∶ i ∈ [n]}, and edge set

E(Dn) = {(v1, ai) ∶ i ∈ [n]} ∪ {(v2, bi) ∶ i ∈ [n]} ∪ {(ai, bi) ∶ i ∈ [n]} ∪ {(ai, ai+1) ∶ i ∈ [n − 1]}
∪{(bi, bi+1) ∶ i ∈ [n − 1]} ∪ {(ai+1, bi) ∶ i ∈ [n − 1]} ∪ {(a1, an), (b1, bn), (a1, bn)}.

Figure 2: A planar embedding of D9.

We proceed to characterise the K5-minor-free homomorphic images of Dn.

Theorem 5.2. Fix n ≥ 4. Then any K4-free and K5-minor-free homomorphic image of Dn

contains an induced copy of Dm for some m ≥ 4 such that m ∣ n.
We then show that the existence of the graphs Dn as induced subgraphs is definable among
K4-free K5-minor-free graphs by a simple first-order formula. Indeed, consider the formula

χ(x1, x2, y1, z1, y2, z2) = E(x1, y2) ∧E(y1, y2) ∧E(z1, y2) ∧E(z1, z2) ∧E(y2, z2) ∧E(z2, x2),
and ϕ = ∃x1, x2, y, z[E(x1, y) ∧E(y, z) ∧E(z, x2) ∧ ∀a, b(E(x1, a) ∧E(a, b) ∧E(b, x2))

→ ∃c, d χ(x1, x2, a, b, c, d))]

Proposition 5.3. Let H be a finite K4-free and K5-minor free graph. Then H ⊧ ϕ if and only
if, there is some n ≥ 4 such that H contains Dn as an induced subgraph.

Putting the above together, we deduce the main theorem of this section.

Theorem 5.4. The class of planar graphs does not have the HPP.

Proof. Let ϕ̂ be the disjunction of ϕ with the formula that induces a copy of K4, i.e. ϕ̂ ∶=
ϕ∨∃x1, x2, x3, x4⋀i≠j E(xi, xj). We argue that ϕ̂ is preserved by homomorphisms over the class
of planar graphs. Indeed, let f ∶ G→H be a homomorphism with G,H planar such that G ⊧ ϕ̂.
Clearly, if H contains a copy of K4 then H ⊧ ϕ̂. Without loss of generality we may assume that
G ⊧ ϕ and G,H are K4-free. It follows by Proposition 5.3 that there exists some n ≥ 4 such that
G contains Dn as a subgraph. Theorem 5.2 thus implies that H that there is some m ≥ 4 such
that H contains Dm as a subgraph. Proposition 5.3 then implies that that H ⊧ ϕ, and thus
H ⊧ ϕ̂ as required. To conclude, observe that the minimal models of ϕ̂ over the class of planar
graphs are K4 and the graphs Dn for n ≥ 4; since these are infinitely many Theorem 2.1 implies
that ϕ̂ is not equivalent to an existential-positive formula over the class of planar graphs.

Since we only use exclusion of K5-minors, the same proof relativises to the following theorem.

Theorem 5.5. The class of all K5-minor-free graphs does not have the HPP.
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