
The complexity of deciding characteristic formulae ∗

Luca Aceto, Antonis Achilleos, Aggeliki Chalki, and Anna Ingólfsdóttir

Department of Computer Science, Reykjavik University, Reykjavik, Iceland
luca@ru.is, antonios@ru.is, angelikic@ru.is. annai@ru.is

1 Introduction
In concurrency theory, characteristic formulae serve as a bridge between model checking and
preorder or equivalence checking. At an intuitive level, a characteristic formula provides a
complete logical characterization of the behaviour of a process with respect to some notion
of behavioural equivalence or preorder. For example, consider the widely used bisimulation
equivalence relation [1]; Hennessy and Milner have shown in [2] that, under a mild finiteness
condition, two processes are bisimilar if and only if they satisfy the same Hennessy-Milner logic
(HML) formulae. Apart from its intrinsic theoretical interest, this seminal logical character-
ization of bisimilarity means that, when two processes are not bisimilar, there is always an
HML formula that distinguishes between them. However, using the Hennessy-Milner theorem
to show that two processes are bisimilar would involve verifying that they satisfy the same
HML formulae and there are infinitely many of those. This is where characteristic formulae
come into play. An HML formula φ is characteristic for process p, if every process q satisfies φ
iff p and q are bisimilar. As a consequence, one can decide bisimulation equivalence between p
and q by finding the characteristic formula χ(p) for p and checking whether q |= χ(p), that is a
model-checking problem. Thus characteristic formulae allow one to reduce bisimilarity checking
to model checking.

Conversely, Boudol and Larsen studied in [3] the problem of characterizing the collection
of modal formulae for which model checking can be reduced to equivalence checking. See [4,
5, 6] for other contributions in that line of research. The aforementioned articles showed that
characteristic formulae coincide with those that are consistent and prime. (A formula is prime if
whenever it entails a disjunction φ1∨φ2, then it must entail φ1 or φ2.) Moreover, characteristic
formulae with respect to the bisimulation relation coincide with the formulae that are consistent
and complete, where a modal formula φ is complete, when for every modal formula ψ on the
same propositional variables as φ, we can derive from φ either ψ or its negation. Note that
in the case of bisimulation, a formula is prime iff it is complete. When one wants to reduce
model checking to equivalence checking, the study of the complexity of identifying characteristic
formulae modulo bisimilarity within (extensions of) HML is of relevance and has been addressed
in [7, 8]. Typically, checking whether a formula is characteristic modulo bisimilarity has the
same complexity as validity.

We described characteristic formulae using the example of bisimilarity, as it is the relation
between processes that underlies the seminal Hennessy-Milner theorem and was used in much
of the above-mentioned work. However there are a plethora of other preorder and equivalence
relations that classify processes according to other possible behaviours; these and their logical
characterizations have been extensively studied in concurrency theory—see e.g. [9, 10]. In this

∗This work has been funded by the projects “Open Problems in the Equational Logic of Processes (OPEL)”
(grant no 196050), “Mode(l)s of Verification and Monitorability” (MoVeMent) (grant no 217987), and “Learning
and Applying Probabilistic Systems” (grant no. 206574-051) of the Icelandic Research Fund.of the Icelandic
Research Fund.

The complexity of deciding characteristic formulae Aceto et al.

work, we address the complexity of deciding and finding characteristic formulae with respect to
four different preorders in van Glabbeek’s branching-time spectrum, namely simulation (≲S),
complete simulation (≲CS), ready simulation (≲RS), and trace simulation (≲TS) [9].

Our goal in this work is to study the complexity of determining whether a formula φ ∈ LX

is characteristic for some process pφ modulo ≲X , where X ∈ {S,CS,RS, TS}, or equivalently
whether it is consistent and prime. For example, note that all consistent formulae in LS that
do not contain disjunctions are also prime. Thus, in this case deciding characteristic formulae
reduces to deciding consistent formulae. However, when disjunctions are added to the language,
the situation gets more complicated. For instance, formula ⟨a⟩tt ∨ ⟨b⟩tt is not prime, since
⟨a⟩tt∨ ⟨b⟩tt ̸|= ⟨a⟩tt and ⟨a⟩tt∨ ⟨b⟩tt ̸|= ⟨b⟩tt, whereas formula (⟨a⟩tt∨ ⟨b⟩tt)∧ ⟨b⟩tt is prime.

In the sequel, we first give the necessary definitions and then we mention known complexity
results on deciding preorders ≲S , ≲CS , and ≲RS respectively. We present our results on the
complexity of deciding ≲TS and then, we state propositions and theorems establishing the
complexity of identifying and finding characteristic formulae for the aforementioned preorders.

2 Definitions
Our semantic model is that of labelled transition systems (LTS) S = (P,A,−→), where P is a
set of states (or processes), A is a set of actions and −→⊆ P × A × P is a transition relation
on processes. We write p a−→ q instead of (p, a, q) ∈−→. We say that a state p is deadlocked iff
it has no outgoing transition. In this work, we consider finite LTSs.

For X ∈ {S,CS,RS, TS}, the preorder ≲X is the largest relation over the set of processes
satisfying the following conditions for every p, q.

1. Simulation (S): p ≲S q ⇔ for all p a−→ p′ there exists some q a−→ q′ such that p′ ≲S q
′.

2. Complete simulation (CS): p ≲CS q ⇔

(a) for all p a−→ p′ there exists some q a−→ q′ such that p′ ≲CS q
′, and

(b) p is deadlocked iff q is deadlocked.

3. Ready simulation (RS): p ≲RS q ⇔

(a) for all p a−→ p′ there exists some q a−→ q′ such that p′ ≲RS q
′, and

(b) the initial sets of actions of p and q coincide. (The set of initial actions of a state is
the collection of actions that label its outgoing transitions.)

4. Trace simulation (TS): p ≲TS q ⇔

(a) for all p a−→ p′ there exists some q a−→ q′ such that p′ ≲TS q
′, and

(b) the sets of traces of p and q coincide. (The set of traces of p is the set of all possible
sequences of actions that can be observed by executing p.)

It is well-known that ≲TS⊊≲RS⊊≲CS⊊≲S . We denote by LS , LCS , LRS , and LTS respectively,
the fragments of HML that characterize these four preorders [9, 6]. For X ∈ {S,CS,RS, TS},
LX is defined to be the set of formulae given by the corresponding grammar as follows:

1. LS : φS ::= tt | ff | φS ∧ φS | φS ∨ φS | ⟨a⟩φS .

2. LCS : φCS ::= tt | ff | φCS ∧φCS | φCS ∨φCS | ⟨a⟩φCS | 0, where 0 =
∧

a∈A[a]ff .

2

The complexity of deciding characteristic formulae Aceto et al.

3. LRS : φRS ::= tt | ff | φRS ∧ φRS | φRS ∨ φRS | ⟨a⟩φRS | [a]ff .

4. LTS :
φTS ::= tt | ff | φTS ∧ φTS | φTS ∨ φTS | ⟨a⟩φTS | ψTS ,

ψTS ::= ff | [a]ψTS

Truth in an LTS S = (P,A,−→) is defined through relation |= in the standard way. In
particular,

• p |= ⟨a⟩φ iff there is some p a−→ q such that q |= φ and

• p |= [a]φ iff for all p a−→ q it is the case that q |= φ.

We say that φ is true or satisfied in p if p |= φ. An HML formula is consistent or satisfiable if
it is satisfied in a process p.

LX characterizes ≲X , whereX ∈ {S,CS,RS, TS}, in the following sense: for all p, q, p ≲X q
iff for every φ ∈ LX , p |= φ =⇒ q |= φ.

3 Deciding preorders
Let ≲∈ {≲S , ≲CS ,≲RS}. Given two finite processes p and q, deciding whether p ≲ q can be
done in polynomial time [9]. To the best of our knowledge, the complexity of deciding the trace
simulation preorder has not been examined yet. The following propositions state that deciding
trace simulation is hard.

Proposition 1. Deciding ≲TS on finite processes is PSPACE-complete under polynomial-time
Turing reductions.

Proposition 2. Deciding ≲TS on finite loop-free processes is coNP-complete under polynomial-
time Turing reductions.

Note that we use polynomial-time oracle reductions instead of the more standard Karp re-
ductions between decision problems. This means that deciding ≲TS on finite loop-free processes
is also NP-hard under polynomial-time Turing reductions. Moreover, Proposition 2 implies that
if p ≲TS q can be solved in polynomial time for some finite loop-free p, q, then P = NP.

In Propositions 1 and 2, hardness is established by showing that the trace equivalence of
two processes can be decided by making two oracle calls to the problem of deciding the trace
simulation preorder. Since deciding trace equivalence is PSPACE- and coNP-hard under Karp
reductions on finite and finite loop-free processes respectively [11, 12], we obtain our hardness
results. Membership in PSPACE can be easily proven for Proposition 1, whereas membership
in coNP for Proposition 2 is based on an NP algorithm for deciding ̸≲TS on finite loop-free
processes.

4 Deciding characteristic formulae modulo some preorder
Recall that a formula is characteristic iff it is consistent and prime. We determine the complexity
of deciding whether a formula is characteristic modulo one of the preorders ≲S , ≲CS , and ≲RS ,
by providing results about the satisfiability and primality problems for the respective logics.

Theorem 3. Let Λ be one of the modal logics LS and LCS. Given φ ∈ Λ, deciding whether φ
is satisfiable and prime is in P.

3

The complexity of deciding characteristic formulae Aceto et al.

Theorem 4.

(a) Let |Act| = k, where k is a constant. Given φ ∈ LRS, deciding whether φ is satisfiable and
prime is in P.

(b) Let |Act| be unbounded. Satisfiability in LRS is NP-complete, whereas primality in LRS is
coNP-complete.

Polynomial-time complexity of the satisfiability problem in Theorems 3 and 4(a) is proven
by a uniform algorithm that can be appropriately adjusted in each case. For primality in LS ,
there are rules that allow us to check whether a given formula φ is prime by checking the
relationship between polynomially many subformulae of φ. In conclusion, the problem can be
reduced to the reachability problem in an alternating graph, the nodes of which represent tuples
of φ’s subformulae. This algorithm can be extended to solve primality in LCS and LRS with a
bounded action set. We also obtain the following corollary.

Corollary 5. Let Λ be either LS, LCS, or LRS with a bounded action set.

(a) Given a characteristic formula φ ∈ Λ, there is a polynomial-time algorithm that outputs a
process p, for which φ is characteristic within Λ.

(b) Given φ ∈ Λ and process p, verifying whether φ is characteristic within Λ for p is in P.

5 Finding characteristic formulae modulo some preorder

Given a process p, the problem of constructing the characteristic formula for p has been studied
for a variety of preorders and equivalences [13, 4, 14, 15]. To resolve the complexity of the
problem we consider two different ways of representing formulae and measuring their size.
Given a formula φ, the first approach is to write φ explicitly and define its size to be equal
to the number of symbols that appear in φ as above; the second one involves representing φ
using recursive equations called declarations, and defining its declaration-size as the number of
required declarations. We denote the former by |φ| and the latter by decl(φ). For example,
formula φ2 = ⟨a⟩(⟨a⟩tt ∧ ⟨b⟩tt) ∧ ⟨b⟩(⟨a⟩tt ∧ ⟨b⟩tt) has size |φ2| = 13 and declaration-size
decl(φ2) = 3, as it can be represented by the equations φ2 = ⟨a⟩φ1 ∧ ⟨b⟩φ1, φ1 = ⟨a⟩φ0 ∧ ⟨b⟩φ0,
and φ0 = tt. The following propositions hold.

Proposition 6. Let Λ be one of the modal logics LS, LCS, LRS with a bounded action set.
Given a finite loop-free process p, finding the characteristic formula χ(p) for p within Λ is
NP-hard under polynomial-time Turing reductions, if χ(p) is explicitly written.

Proposition 7. Let Λ be one of the modal logics LS, LCS, LRS. Given a finite loop-free
process p, finding the characteristic formula χ(p) for p within Λ is in P, if χ(p) is given as a
set of declarations.

For example, consider process p2 of Figure 1. Formula φ2 = ⟨a⟩(⟨a⟩tt ∧ ⟨b⟩tt) ∧ ⟨b⟩(⟨a⟩tt ∧
⟨b⟩tt) is characteristic for p2 within LS . As we already mentioned, φ2 can be given much
more efficiently in declarative form than in explicit form. In general, the characteristic formula
(within LS) φn for process pn, where pn has the form of p2 and length n, is of exponential size
in |pn|, when φn is given in explicit form.

4

The complexity of deciding characteristic formulae Aceto et al.

p2

p1

p0

ba

ba

Figure 1: Process p2 for which φ2 is characteristic within LS .

Proposition 8. Assume that for every finite loop-free process p, there is a characteristic for-
mula within LTS for p, denoted by φp, such that decl(φp) is polynomial in |p| and every decla-
ration is of polynomial size in |p|. Given a finite loop-free process p, if φp can be computed in
polynomial time, then P = NP.

Proposition 9. Assume that the following two conditions are true:

1. For every finite loop-free process p, there is a characteristic formula within LTS for p,
denoted by φp, such that decl(φp) and every declaration are of polynomial size in |p|.

2. Given a finite loop-free process p and a formula φ in declarative form, deciding whether
φ is characteristic within LTS for p is in NP.

Then NP = coNP.

Thus, when χ(p) is given as a set of declarations, we isolate a sharp difference between the
complexity of finding χ(p) within any Λ ∈ {LS ,LCS ,LRS}, and finding χ(p) within LTS .

6 Conclusions
Finally, we mention some problems that still remain open and whose solutions we are currently
pursuing. First, we conjecture that for the trace simulation, deciding whether a formula is sat-
isfiable is NP-complete, deciding primality of formulae is coNP-complete, whereas if we assume
that |A| = 1, deciding both satisfiability and primality is in P. Yet another relevant problem is
the complexity of deciding whether an HML formula φ is logically equivalent to a formula φ′

in Λ, where Λ is one of LS , LCS , LRS , and LTS . Moreover, we want to address all the afore-
mentioned problems for other relations in van Glabbeek’s spectrum and over finite processes
with loops.

References
[1] R. Milner, Communication and Concurrency. Prentice Hall, 1989.
[2] M. Hennessy and R. Milner, “Algebraic laws for nondeterminism and concurrency,” J. ACM,

vol. 32, no. 1, pp. 137–161, 1985. [Online]. Available: https://doi.org/10.1145/2455.2460
[3] G. Boudol and K. G. Larsen, “Graphical versus logical specifications,” Theor. Comput. Sci., vol.

106, no. 1, pp. 3–20, 1992. [Online]. Available: https://doi.org/10.1016/0304-3975(92)90276-L

5

https://doi.org/10.1145/2455.2460
https://doi.org/10.1016/0304-3975(92)90276-L

The complexity of deciding characteristic formulae Aceto et al.

[4] B. Steffen and A. Ingólfsdóttir, “Characteristic formulae for processes with divergence,” Inf.
Comput., vol. 110, no. 1, pp. 149–163, 1994. [Online]. Available: https://doi.org/10.1006/inco.
1994.1028

[5] L. Aceto, I. Fábregas, D. de Frutos-Escrig, A. Ingólfsdóttir, and M. Palomino, “Graphical
representation of covariant-contravariant modal formulae,” in Proc. of EXPRESS 2011, ser.
EPTCS, vol. 64, 2011, pp. 1–15. [Online]. Available: https://doi.org/10.4204/EPTCS.64.1

[6] L. Aceto, D. D. Monica, I. Fábregas, and A. Ingólfsdóttir, “When are prime formulae
characteristic?” Theor. Comput. Sci., vol. 777, pp. 3–31, 2019. [Online]. Available:
https://doi.org/10.1016/j.tcs.2018.12.004

[7] A. Achilleos, “The completeness problem for modal logic,” in Proc. of LFCS 2018, ser.
Lecture Notes in Computer Science, vol. 10703. Springer, 2018, pp. 1–21. [Online]. Available:
https://doi.org/10.1007/978-3-319-72056-2_1

[8] L. Aceto, A. Achilleos, A. Francalanza, and A. Ingólfsdóttir, “The complexity of identifying
characteristic formulae,” J. Log. Algebraic Methods Program., vol. 112, p. 100529, 2020. [Online].
Available: https://doi.org/10.1016/j.jlamp.2020.100529

[9] R. J. van Glabbeek, “The linear time - branching time spectrum I,” in Handbook
of Process Algebra. North-Holland / Elsevier, 2001, pp. 3–99. [Online]. Available:
https://doi.org/10.1016/b978-044482830-9/50019-9

[10] D. de Frutos-Escrig, C. Gregorio-Rodríguez, M. Palomino, and D. Romero-Hernández, “Unifying
the linear time-branching time spectrum of process semantics,” Log. Methods Comput. Sci., vol. 9,
no. 2, 2013. [Online]. Available: https://doi.org/10.2168/LMCS-9(2:11)2013

[11] P. C. Kanellakis and S. A. Smolka, “CCS expressions, finite state processes, and three
problems of equivalence,” Inf. Comput., vol. 86, no. 1, pp. 43–68, 1990. [Online]. Available:
https://doi.org/10.1016/0890-5401(90)90025-D

[12] H. B. Hunt III, D. J. Rosenkrantz, and T. G. Szymanski, “On the equivalence, containment, and
covering problems for the regular and context-free languages,” J. Comput. Syst. Sci., vol. 12,
no. 2, pp. 222–268, 1976. [Online]. Available: https://doi.org/10.1016/S0022-0000(76)80038-4

[13] S. Graf and J. Sifakis, “A modal characterization of observational congruence on finite terms
of CCS,” Information and Control, vol. 68, no. 1-3, pp. 125–145, 1986. [Online]. Available:
https://doi.org/10.1016/S0019-9958(86)80031-6

[14] L. Aceto, A. Ingólfsdóttir, M. L. Pedersen, and J. Poulsen, “Characteristic formulae for timed
automata,” RAIRO Theor. Informatics Appl., vol. 34, no. 6, pp. 565–584, 2000. [Online].
Available: https://doi.org/10.1051/ita:2000131

[15] L. Aceto, A. Ingólfsdóttir, P. B. Levy, and J. Sack, “Characteristic formulae for fixed-point
semantics: a general framework,” Math. Struct. Comput. Sci., vol. 22, no. 2, pp. 125–173, 2012.
[Online]. Available: https://doi.org/10.1017/S0960129511000375

6

https://doi.org/10.1006/inco.1994.1028
https://doi.org/10.1006/inco.1994.1028
https://doi.org/10.4204/EPTCS.64.1
https://doi.org/10.1016/j.tcs.2018.12.004
https://doi.org/10.1007/978-3-319-72056-2_1
https://doi.org/10.1016/j.jlamp.2020.100529
https://doi.org/10.1016/b978-044482830-9/50019-9
https://doi.org/10.2168/LMCS-9(2:11)2013
https://doi.org/10.1016/0890-5401(90)90025-D
https://doi.org/10.1016/S0022-0000(76)80038-4
https://doi.org/10.1016/S0019-9958(86)80031-6
https://doi.org/10.1051/ita:2000131
https://doi.org/10.1017/S0960129511000375

	1 Introduction
	2 Definitions
	3 Deciding preorders
	4 Deciding characteristic formulae modulo some preorder
	5 Finding characteristic formulae modulo some preorder
	6 Conclusions
	References

