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Abstract

Low treedepth decompositions are central to the structural characterizations of bounded
expansion classes and nowhere dense classes, and the core of main algorithmic properties of
these classes, including fixed-parameter (quasi) linear-time algorithms checking whether a
fixed graph F is an induced subgraph of the input graph G. These decompositions have
been extended to structurally bounded expansion classes and structurally nowhere dense
classes, where low treedepth decompositions are replaced by low shrubdepth decompositions.
In the emerging framework of a structural graph theory for hereditary classes of structures
based on tools from model theory, it is natural to ask how these decompositions behave
with the fundamental model theoretical notions of dependence (alias NIP) and stability.

Our first main result proves that the model theoretical notions of NIP and stable classes
are transported by decompositions. Precisely: Let C be a hereditary class of graphs.
Assume that for every p there is a hereditary NIP class Dp with the property that the
vertex set of every graph G ∈ C can be partitioned into Np = Np(G) parts in such a way
that the union of any p parts induce a subgraph in Dp and logNp(G) ∈ o(log ∣G∣). We prove
that then C is (monadically) NIP. Similarly, if every Dp is stable, then C is (monadically)
stable. Results of this type lead to the definition of decomposition horizons as closure
operators. We establish some of their basic properties and provide several further examples
of decomposition horizons.

Our second main result establishes that every stable hereditary graph class can be
decomposed in such a manner into the much simpler classes of bounded shrubdepth,
generalizing the initial result concerning low treedepth decompositions of nowhere dense
classes.

1 Introduction and Previous Work

In the late 90’s, Baker [2] introduced the shifting strategy, allowing a linear time approximation
scheme for independent sets on planar graphs. The idea is to start a breadth-first search at a
vertex v of a planar graph, which partitions the vertex set of the graph into layers L1, . . . , Lh

and to fix an integer D. Then, for given s ∈ [D], by deleting all the layers Li with i ≡ smodD,
one gets a graph with treewidth bounded by 3D, on which a maximum independent set can be
found in linear time. Considering all the possible values of s, we obtain a (1+ 1/D)-approximate
solution of the problem. Note that grouping the layers Li with i in a same class modulo D
yields a partition of the vertex set into D parts V0, . . . , VD−1 such that the union of any p <D
of them induces a subgraph with treewidth at most 3p + 4.
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This approach was further developed by DeVos et al. [7], who proved in particular that for
every proper minor closed class of graphs C and every integer p, there exists an integer Np

such that the vertex set of every graph G ∈ C can be partitioned into Np parts, each p of them
inducing a subgraph with treewidth at most p − 1.

This result has been further extended by two of the authors of the present paper in a
characterization of both bounded expansion classes and nowhere dense classes. Before stating
these results, recall that the treedepth of a graph G is the minimum depth of a rooted forest F ,
such that G is a subgraph of the closure of F (the graph obtained from F by adding edges
between each vertex and its ancestors). With this definition, the characterization theorems read
as follows.

Theorem 1.1 ([15]). A class C has bounded expansion if and only if, for every parameter p,
there is an integer Np such that the vertex set of each graph G ∈ C can be partitioned into at
most Np parts, each p of them inducing a subgraph with treedepth at most p.

Theorem 1.2 (see [16,17]). A class C is nowhere dense if and only if, for every parameter p
and for every graph G ∈ C there is an integer Np(G) ∈ ∣G∣o(1), such that the vertex set of G can
be partitioned into at most Np(G) parts, each p of them inducing a subgraph with treedepth at
most p.

The notions of classes with bounded expansion and of nowhere dense classes are central to
the study of classes of sparse graphs [16]. Note that the treewidth of a graph is bounded from
above by its treedepth and hence by the result of DeVos et al. [7] and Theorem 1.1 every proper
minor closed class has bounded expansion. Surprisingly, it appeared that for monotone classes
of graphs, the notion of nowhere dense class of graphs coincides with fundamental dividing lines
introduced in modern model theory [21]:

Theorem 1.3 ([1]). For a monotone class of graphs C , the following are equivalent:

(1) C is nowhere dense;
(2) C is stable;
(3) C is monadically stable;

(4) C is NIP;
(5) C is monadically NIP.

For general hereditary classes of graphs, we do not have the collapse of the notions of stability,
monadic stability, NIP, and monadic NIP stated in Theorem 1.3 for monotone classes. However,
we still have the following collapses:

Theorem 1.4 ([5]). A hereditary class of graphs is monadically NIP if and only if it is NIP. A
hereditary class of graphs is monadically stable if and only if it is stable.

The study of monadic stability and monadic NIP and their relations with first-order trans-
ductions [3] opened the way to the study of structurally sparse classes of graphs, that is of
classes of graphs that are first-order transductions of classes of sparse graphs [6, 9, 10, 18–20].
Intuitively, a (first-order) transduction is a way to construct a set of target graphs from the
vertex-colorings of a source graph by fixed first-order formulas, and, by extension, a new class of
graphs from a given class of graphs.

Extending Theorem 1.1, first-order transductions of bounded expansion classes have been
characterized in terms of low shrubdepth colorings. Recall the following high level characteriza-
tion of classes with bounded shrubdepth [11, 12]: A class D has bounded shrubdepth if it is a
transduction of a class of bounded depth rooted forests.
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Theorem 1.5 ([10]). A class C is a first-order transduction of a class with bounded expansion if
and only if, for every parameter p, there is an integer Np and a class Dp with bounded shrubdepth,
such that the vertex set of each graph G ∈ C can be partitioned into at most Np parts, each p of
them inducing a subgraph in Dp.

Theorem 1.5 can be seen as a generalization of Theorem 1.1 as shrubdepth is a dense analogue
of treedepth. On the other hand, only one direction of Theorem 1.2 has been extended to
transductions of nowhere dense classes.

Theorem 1.6 ([8]). Let C be a first-order transduction of a nowhere dense class. Then, for
every parameter p there is a class Dp with bounded shrubdepth, such that for every graph G ∈ C
there is an integer Np(G) ∈ ∣G∣o(1), with the property that the vertex set of G can be partitioned
into at most Np(G) parts, each p of them inducing a subgraph in Dp.

Similar decompositions, where p parts induce a subgraph with bounded rankwidth were
introduced in [13], while classes having such decompositions where p parts induce a subgraph
with bounded linear rankwidth were discussed in [20]. However, it was not known whether such
classes are monadically NIP. This question, which appears for instance in [20, Figure 3] and
again in [19], will get a positive answer as a direct consequence of Theorem 2.1, which is our
first main result.

The theoretical significance of first-order transductions of nowhere dense classes is witnessed
by the following conjecture.

Conjecture 1.7 ([9]). A class of graphs is monadically stable if and only if it is a first-order
transduction of a nowhere dense class of graphs.

Conjecture 1.7 can be refined as follows.

Conjecture 1.8. For a hereditary class of graphs C , the following properties are equivalent:

(1) C is a first-order transduction of a nowhere dense class;
(2) C admits low shrubdepth decompositions with no(1) parts;
(3) C is monadically stable;
(4) C is stable.

By Theorem 1.6, property (1) implies property (2). That property (2) implies property
(3) will follow from our main result (Theorem 2.1). By Theorem 1.4, properties (3) and (4)
are equivalent. Closing the chain of implications corresponds to Conjecture 1.7, which we now
can decompose into two weaker statements: that property (3) implies property (2), and that
property (2) implies property (1). Our second main result (Theorem 2.2) is that (3) implies (2).

2 Statement of the results

Our first main result show that NIP and stability are fixed under taking decompositions as in
Theorems 1.1, 1.2, 1.5 and 1.6.

Theorem 2.1. Let C be a hereditary graph class. Suppose that for every parameter p there is an
NIP (resp. stable) class Dp such that for every graph G ∈ C there is an integer Np(G) ∈ ∣G∣o(1),
with the property that the vertex set of G can be partitioned into at most Np(G) parts, each p of
them inducing a subgraph in Dp. Then C is NIP(resp. stable).



4

In particular, this proves that property (2) implies property (4) in Conjecture 1.8, and so it
follows that Conjectures 1.7 and 1.8 are equivalent. As mentioned after Theorem 1.6, this also
proves that classes admitting low (linear) rankwidth decompositions are monadically NIP.

To place this theorem in a broader context, we introduce the notion of decomposition horizons.
These seem to be of significant independent interest, and we prove some general properties.
Theorem 2.1 can then be stated as “NIP and stability are decomposition horizons”.

We define a hereditary class property to be a downset Π of hereditary graph classes, that is, a
set of hereditary classes such that if C ∈ Π and D is a hereditary class with D ⊆ C , then D ∈ Π.

Definition 1. Let Π be a hereditary class property, let f ∶ N→ N be a non-decreasing function
and let p be a positive integer. We say that a class C has an f -bounded Π-decomposition with
parameter p if there exists Dp ∈ Π such that, for every graph G ∈ C , there exists an integer
N ≤ f(∣G∣) and a partition V1, . . . , VN of the vertex set of G with G[Vi1 ∪ ⋅ ⋅ ⋅ ∪ Vip] ∈ Dp for all
i1, . . . , ip ∈ [N].

When f is a constant function, we say that C has a bounded-size Π-decomposition with
parameter p; when f is a function with f(n) = no(1), we say that C has a quasi-bounded-size
Π-decomposition with parameter p. If a class C has a bounded-size (resp. a quasi-bounded-size)
Π-decomposition with parameter p for each positive integer p, we say that C has bounded-size
Π-decompositions (resp. quasi-bounded-size Π-decompositions).

For instance, by Theorem 1.1 and Theorem 1.2, considering the hereditary class property
“bounded treedepth”, we have that a class C has bounded-size bounded treedepth decompositions
if and only if it has bounded expansion, and it has quasi-bounded-size bounded treedepth
decompositions if and only if it is nowhere dense. With these definition in hand, it is natural to
consider the following constructions of graph class properties:

Definition 2. For a hereditary class property Π we define the properties Π+ (resp. Π∗) as
follows:

• C ∈ Π+ if C has bounded-size Π-decompositions;
• C ∈ Π∗ if C has quasi-bounded-size Π-decompositions.

For every hereditary class property Π, we show that (Π+)+ = Π+ and (Π∗)+ = Π∗ (but we
are not aware of any hereditary (NIP) class property Π, such that Π∗ ≠ (Π∗)∗). Also, for
every two hereditary class properties Π1 and Π2, we show that (Π1 ∩ Π2)+ = Π+1 ∩ Π+2 and
(Π1 ∩Π2)∗ = Π∗1 ∩Π∗2, which suggests that, for every hereditary class property Π, there might
exist an inclusion-minimum class Λ with Λ+ = Π+. On the other hand, if (Πi)i∈I is a family of
hereditary class properties indexed by a set I, then (⋃i∈I Πi)+ = ⋃i∈I Π

+

i and (⋃i∈I Πi)∗ = ⋃i∈I Π
∗

i .
In particular, the inclusion order of decomposition horizons is a distributive lattice.

Definition 3. We say that a hereditary class property Π is a decomposition horizon if Π∗ = Π.
If Λ is a hereditary class property, the decomposition horizon of Λ is the smallest decomposition
horizon including Λ.

For example, the hereditary class property of all hereditary classes excluding a fixed graph H
is a decomposition horizon. We show that several hereditary class properties are decomposition
horizons, including

• the class properties “bounded maximum degree after deletion of at most k vertices”,
• the class property “transduction of a class with bounded maximum degree” (this property
is equivalent to the model-theoretic property “mutually algebraic” [6], hence to the
model-theoretic property “monadic NFCP” [14]),
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• the class property “weakly sparse” (i.e. “biclique-free”) of classes excluding a fixed biclique
as a subgraph,

• the class property “nowhere dense”.

Our examples include an infinite countable chain of decomposition horizons (the class
properties“bounded maximum degree after deletion of at most k vertices”), witnessing some
richness of the inclusion order on decomposition horizons.

Our second main result confirms (3) implies (2) from Conjecture 1.8.

Theorem 2.2. Monadic stability is the decomposition horizon of the class property “bounded
shrubdepth”.

From this, we obtain some combinatorial consequences for monadically stable graph classes.
For example, we get the following very strong version of the Erdös-Hajnal property.

Corollary 1. Every graph G in a hereditary stable class C has a clique or an independent set
of size ΩC ,ϵ(∣G∣1/2−ϵ) for every ϵ > 0. Furthermore, this cannot be improved to ΩC (∣G∣1/2).

While Theorem 2.2 provides an analogue of Theorem 1.2 for monadically stable classes,
monadically NIP hereditary classes seem to be more elusive. It was proved in [4] that for
hereditary classes of ordered graphs, being NIP is equivalent to having bounded twin-width.
On the other hand, classes with quasi-bounded-size bounded twin-width decompositions are
NIP (as classes with bounded twin-width are NIP) and include transductions of nowhere dense
classes (thus, conjecturally, all stable hereditary classes). Hence, it is a natural question whether
every NIP hereditary class has quasi-bounded-size bounded twin-width decompositions.
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transductions of sparse graphs. In Proceedings of the 37th Annual ACM/IEEE Symposium on Logic
in Computer Science, pages 1–14, 2022.
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S. Toruńczyk. First-order interpretations of bounded expansion classes. In 45th International
Colloquium on Automata, Languages, and Programming (ICALP 2018), volume 107 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 126:1–126:14, 2018.
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[17] J. Nešetřil and P. Ossona de Mendez. On low tree-depth decompositions. Graphs and Combinatorics,
31(6):1941–1963, 2015. doi:10.1007/s00373-015-1569-7.
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[19] J. Nešetřil, P. Ossona de Mendez, M. Pilipczuk, R. Rabinovich, and S. Siebertz. Rankwidth meets
stability. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 2014–2033, 2021. doi:10.1137/1.9781611976465.120.
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