On the expressiveness of hyperlogics*

Antonis Achilleos!, Elli Anastasiadi?, R. Govind?, and Jana Wagemaker!

1 ICE-TCS, Department of Computer Science, Reykjavik University, Iceland
2 Department of Information Technology, Uppsala University, Sweden
antonios@ru.is, elli.anastasiadi@it.uu.se, govind.rajanbabu@it.uu.se, janaw@ru.is

Abstract

We compare the expressiveness between hyperlogics, i.e., logics interpreted over sets of
traces, defined as extensions of LTL, FO, and the p-calculus.

1 Introduction

Hyperlogics are a family of logics that started emerging 15 years ago. They were first suggested
as a formalism rich enough to capture information flow security properties [5]. At their core,
hyperproperties are extensions of properties of traces to properties of sets of traces (denoted
T). Having properties of sets of traces captures situations from computer science, where a
set of users (or executions) might exhibit some bad behavior, or might together assert some
guarantee. The most popular hyperlogic is HyperLTL [4], the extension of LTL, which uses
trace quantifiers and trace variables to refer to multiple traces. For example, the formula:

Vv G(ax = aq) (1)

expresses that all traces must either satisfy a, or all traces must satisfy —a, at each spot. This
property is trivially satisfied by any trace but can be violated when interpreted over sets.

An important question about logics of this type is whether they maintain (or somehow lift)
language-theoretic, complexity, or expressive equivalence results from their non-hyper coun-
terparts. For example, we know that every satisfiable LTL formula has a model that is an
ultimately periodic trace [12]. On an even more fundamental level, Kamp’s seminal theorem [9]
(in the formulation due to Gabbay et al. [8]) states that LTL is expressively equivalent to
first-order logic FO[<] over the natural numbers with order.

FO[<,E], i.e. FO[<], equipped with the “equal level” arrity 2 predicate E, was proposed
by [7] to capture the expressive power of HyperLTL. This logic is essentially interpreted over
multiple copies of the natural numbers with order, and thus the models of its sentences are sets
of traces, just like with hyperlogics. Variables in FO[<, E] are mapped to “places”, i.e., pairs of
a trace and an index in that trace, as opposed to a simple index in the case of FO[<]. E(z,y)
holds only when the two quantified variables x,y are mapped to the same position of possibly
different traces. For example, Property 1 is formulated as:

Vay.E(z,y) - (Pu(z) = Pu(y)) (2)

where P,(z) is a unary predicate that encodes the occurrence of symbol a at position z. It
turns out that this logic is strictly more expressive than HyperLTL [7]. Although the authors
of that work do propose a logic (called HyperFO) that is expressively equivalent to HyperLTL
by restricting FO[<, E], there is still no temporal counterpart to the full FO[<, E] logic.

*The work reported in this paper is supported by the project ‘Mode(l)s of Verification and Monitorability’
(MoVeMent) (grant no 217987) of the Icelandic Research Fund.

mailto:antonios@ru.is
mailto:elli.anastasiadi@it.uu.se
mailto:govind.rajanbabu@it.uu.se
mailto:janaw@ru.is

Expressiveness of hyperlogics A. Achilleos, E. Anastasiadi, R. Govind, J. Wagemaker

A property that is expressible in FO[<, E] but not HyperLTL, is: “there exists an n € N,
such that t(n) = a, for all ¢t € T”. This property is a consensus property (and very relevant to
the context of hyperlogics), and it is also not expressible in HyperCTL* [3]. Thus, to produce a
temporal equivalent of FO[<, E], one would have to look at more expressive logics. Such a logic
could be the extension of fgHML on hypertraces, which was recently studied by the authors and
collaborators [1]. In this work, we discuss the spectrum of expressiveness between these three
logics and prove that 1) the gap of expressivity between LTL and pHML is preserved in their
hyper extensions, and that 2) FO[<, E] does not cover the full Hyper-uyHML in expressiveness.

2 Preliminaries

Let AP denote the set of all atomic propositions. An atomic proposition a, where a € AP,
expresses some fact about states. Thus, all the propositional information for a state is described
by an action o € AcT = 2AP. TR stands for AcT®, the set of all traces. A hypertrace T is a
subset of TR, and we denote with HTrc = 2R the set of hypertraces. Let ¢t € TR be a trace.
We use t[i] to denote the element ¢ of ¢, where ¢ € N. Hence, ¢[0] is the first element of . We
write ¢[0,4] to denote the prefix of ¢ up to and including element ¢, and t[i, co] to denote the
infinite suffix of ¢ beginning with element i. We can also lift the suffix notation to hypertraces
T € HTrc: TTi,o00] == {t[i,o0] € TR |t € T'}. In what follows, we consider formulas with trace
variables and trace quantifiers. We will call a formula closed if a trace quantifier binds every
occurrence of a trace variable.

HyperLTL We introduce here the logic HyperLTL as it was described originally in [4].

Y ou= Amp | Ymo | e
¢ n= A | o | eVe | Xe | oUp

True and false, written tt and f£f, are respectively defined as a,V—a, and —tt. The satisfaction
judgment for HyperLTL formulas is written II =7 1), where T is a set of traces, and IT: V — TR
is a trace assignment (i.e., a valuation), which is a partial function mapping trace variables to
traces in T. Let II[r — t] denote the same function as II, except that 7 is mapped to t. One
can think of these semantics in two layers: one for 1) as it is, and one for ¢ that only depends
on II. Satisfaction is defined as follows:

ME=r3n.yp iff thereexists t € T : I[w — t] |=r ¥
II=p Vr. ¢ ifft forallteT :Ulx—t]E=ry

IErax iff a € II(m)[0]

IIEr —p iff IIfr @
H’:T<P1\/<P2 iff H':T()OlOIH):T@Q
MEr Xe iff II[1,00] =r @

I =7 piUpy iff there exists i > 0 : II[i, 00] 7 @2
and for all 0 < j < i we have II[j, oo] =1 ¢1

If Iy =1 ¢ holds for the empty assignment Iy, then T satisfies .

Hyper-uHML We present Hyper-uHML as a logic to specify hyperproperties. Hyper-uHML
extends the linear-time interpretation of pHML [10, 11, 13] by allowing quantification over
traces. We assume two disjoint and countably infinite sets II and V of trace variables and
recursion variables, ranged over by m and x, respectively.

Expressiveness of hyperlogics A. Achilleos, E. Anastasiadi, R. Govind, J. Wagemaker

Definition 1. Formulae of Hyper-uHML are constructed as follows:

pu=tt | ff | oA | V¢ | maxz.p | minz.@ | x
| 3np | Voo | m=7 | n#£ 7 | laz)e | {(ax)p

To help us simplify the definition of the semantics, we consider hypertraces of a fixed size
k, and we identify hypertraces with k-tuples 7 = (T(0),T(1),...,T(k — 1)) € HTrc;, = TR,
The semantics of a Hyper-pyHML formula ¢ is defined for each such k by exploiting two partial
functions: p: V — 21T that assigns a set of hypertraces of size k to all free recursion variables
of p, and o: IT — {0,1,...,k — 1}, that assigns a position in each tuple T to each free trace
variable of . The semantics is given by:

[tt]& = HTrey [f15 =0 [=]5 = p(x)
e ne'ls = [el5 N[5 leve'ls =115 ules
[max z.y]5 = {5 | S C []5l*1} [min 2.8 = (S| S 2 [1571)
k-1 k-1
[Br.e]f = U [[‘P]](p,—[ﬁHi] [Vm.e]f = m [[@HZ[WHi]
i=0 1=0
[r =71 ={T € HTrey, | T(co(7) =T(o(x"))} [r # 712 = HTreg \ [==']%

[az]els = {T | o(m)[0] = a implies T[1, o0] € [¢]7}
[(ax)els ={T [o(m)[0] = a A TT[1,00] € [¢]7)}

Whenever ¢ is closed, the semantics is given by [[ga]]g, where () denotes the partial function

with empty domain, and we simply write [¢] instead of [[gp]]g We use the standard notation
T = ¢ to denote that the set of traces T satisfies ¢ (and similarly for T' & ¢). As an example,
consider the alphabet {a,b}. The property

V. max x.((br)x V (37’.(7" # 7) A (ap)x)) (3)
means that, for every trace, whenever there is an a, there is another trace that also has a.
The logic FO[<,E]

Definition 2 (From [7]). FO[<,E] is defined over the signature {E,<} U{P, | a € AP},
i.e., with atomic formulas x = y, ¢ < y, E(z,y), and Py(x) for a € AP, and disjunction,
conjunction, negation, and existential and universal quantification over elements.

The semantics of this logic is the standard semantics of FFO and comes in accordance with
the semantics of FO[<]. We interpret FO[<, E| formulas over a set of traces T C AcT® and an

interpretation I : V — T x N, which assigns a tuple (¢,n) to each variable =, with t € T, n € N.
Given a set of traces T, the operations <, E, and P,,a € AP are interpreted as:

o <T:={((t,n),(t,n)) |t €T and n <n' € N},
o ET :={((t,n),(#,n)) | t,t' € T and n € N}, and

o PI:={(t,n)|teT andn € Nand a € t(n)}.

Expressiveness of hyperlogics A. Achilleos, E. Anastasiadi, R. Govind, J. Wagemaker

3 Expressiveness comparisons

We start the comparison of expressiveness from the single-trace setting. Hyper-uHML is an
extension of the linear-time interpretation of pkHML. The logic pHML is expressive enough to
strictly include LTL, and even CTL* in its usual, branching-time interpretation [2]. Quantifica-
tion over traces and trace comparisons are allowed in any part of the formula, which means our
syntax subsumes the syntax of HyperLTL, using straightforward translations. We show that
the strictness of the inclusion of LTL in pHML is preserved for their hyper-trace extensions.

Theorem 1. Hyper-uHML is strictly more expressive than HyperLTL.

Proof. The simple inclusion follows from the embedding of LTL in gHML and the more liberal
ability to quantify over traces. To demonstrate the strictness of this inclusion, we bring forward
two arguments. First, we reference the work of Wolper in [14], which describes formulas of
p#HML that require an event a to occur at least in all even positions of a trace. The following
pHML formula describes exactly this (over the set of actions a, b):

e := maxx.([a]{a)x A [b]{a)x) (4)

Let ¢, be the formula that occurs if one adds an existential trace quantifier 37 at the beginning
of ¢, and replaces all modalities with 7-indexed ones:

n, = Ir.maxz.([ax](ar)z A [b]{ar)x), (5)

whose evaluation over singleton hypertraces coincides with the evaluation of ¢.. Assume
now that a formula ¢, _ 7, is expressively equivalent to ¢, over hypertraces. We would like
to use this to extract an LTL formula that is expressively equivalent to ¢.. We cannot trivially
claim that ¢p_pprr only contains a single quantifier 7. Instead, though, we know that over
singleton hypertraces, say for T' = {to}, T = pp_rrr if T |E ¢p,. Since T contains only a single
trace, we know that all the trace variables in ¢ _ 777, must be mapped to tg. Consequently,
all propositional variables that occur in ¢p,_p7; must be mapped to tg. Therefore, for this
variable mapping, we get an LTL formula that expresses exactly that a trace (tg) satisfies
Wolper’s property. We then replace all propositional variables with non-trace quantified ones
and, remove all quantifiers, which brings us to plain LTL, and arrive at a contradiction. O

Remark 1. In the proof above, we demonstrate that the property “there exists a trace for
which a holds on at least all even positions” is not expressible in HyperLTL but is expressible
in Hyper-uHML. The same argument can be repeated for any period k.

Furthermore, we demonstrate that Hyper-uHML is more expressive than FO[<,E]. In-
tuitively, one factor that gives Hyper-pHML significant expressive power is its ability to use
quantifiers at any part of the syntax. This is also allowed in other temporal logics, such as,
for example, HyperCTL*. A key difference is that Hyper-yuHML can nest quantifiers within
a fixed-point operator. For example, we see that the property from Example 3 will poten-
tially spawn an unbounded number of quantifiers due to the recursion unfolding caused by
encountering a events. We argue that due to the ability to nest quantifiers at any point of our
syntax, Hyper-uHML is more expressive than HyperLTL, and it can express properties that
HyperCTL* and FO[<, E| cannot.

Theorem 2. Hyper-uHML contains properties not expressible in HyperCTL* and FO[<,E].

4

Expressiveness of hyperlogics A. Achilleos, E. Anastasiadi, R. Govind, J. Wagemaker

Proof. For the first part, we refer the reader to the work of Bozzelli, Maubert, and Pinchinat [3],
who show that the property “there is an m > 0 such that a # t(n) for every t € T” is
not expressible in HyperCTL*. In Hyper-pHML, this property is expressible (over the set of
actions {a,b}) with the formula:

min z.((Vm (b)tt) V (V7' ([ar]z A [bar]))) - (6)

In this formula, either all traces have b, or all traces take a step. Since this happens within the
scope of a minimal fix-point, we get that to satisfy the formula, this process needs to terminate,
and thus, we get exactly the property we wanted.

For the second part, we use Wolper’s property ¢, (Property 5). Due to the expressive
equivalence of LTL and FO[<] (from [8]), we can use a similar proof as for Theorem 1. The
key is after projecting an FO[<, E] formula over uniset hypertraces to replace all occurrences
of E(z,y) with = y, as the two predicates coincide over such models. This leads us again
to a property in FO[<] which expresses ¢ (Property 4, and we get a contradiction from the
expressive equivalence of FO[<] and LTL (from [8]). O

4 Conclusion and future work

We have shown that the expressive power of Hyper-uHML is above HyperLTL, and possibly
above (or at least incomparable with) FO[<, E]. We would like to extend Theorem 1 to fully
characterize whether FO[<, E] is contained in Hyper-pHML. In case they are incomparable,
it would suffice to produce a property in FO[<,E] that is not expressible in Hyper-yHML.
Any properties we tried to that end, however, were not able to distinguish the two logics.
Thus, we are left with the conjecture that Hyper-uyHML subsumes FO[<, E]. At this point, we
have partially produced an embedding of FO[<, E] into Hyper-pHML, and we believe one does
exist. Finishing such an embedding would also imply that to produce a temporal equivalent
of FO[<,E], one would need to find a middle ground between the syntax of Hyper-pHML
and HyperLTL. On the other hand, a non-temporal equivalent of Hyper-pHML in the style of
FO[<, E] could be MSO over hypertraces (and possibly with the equality predicate E).

In the future, we aim to answer the following questions. The first is to fully produce such
an encoding and prove its correctness. The second is to find a temporal equivalent of FO[<, E].
We believe this is not a trivial question at all. For instance, increasing the quantification power
of HyperLTL to allow non-normalized formulae would not be enough since HyperCTL*, which
allows this, cannot express the consensus property. Moreover, we are interested in finding a
classical logic characterization of Hyper-pHML. As we discussed, HyperLTL is expressively
equivalent to a fragment of FO[<, E], as proven in [7], and as we have shown Hyper-pHML
is not the temporal counterpart of FO[<, E]. We would like to fill this expressiveness gap. A
good candidate for this could be some version of MSO over sets of traces. Indeed, there is
work already done in this direction (see [6]), although so far, there seems to be no logic that
can capture the properties 5, or 6. Finally, just like it is known that yHML corresponds to w-
regular languages, it would be interesting to find language-theoretic counterparts of HyperLTL,
Hyper-pHML, and FO[<, E].

References

[1] Luca Aceto, Antonis Achilleos, Elli Anastasiadi, and Adrian Francalanza. Monitoring hyperprop-
erties with circuits. In Mohammad Reza Mousavi and Anna Philippou, editors, Formal Techniques
for Distributed Objects, Components, and Systems - 42nd IFIP WG 6.1 International Conference,

Expressiveness of hyperlogics A. Achilleos, E. Anastasiadi, R. Govind, J. Wagemaker

2l

8l

(7l

(8]

(9]
(10]

(11]

(12]

(13]

(14]

FORTE 2022, Held as Part of the 17th International Federated Conference on Distributed Com-
puting Techniques, DisCoTec 2022, Lucca, Italy, June 13-17, 2022, Proceedings, volume 13273 of
Lecture Notes in Computer Science, pages 1-10. Springer, 2022.

Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingélfsdéttir, and Karoliina Lehtinen.
Adventures in monitorability: From branching to linear time and back again. Proceedings of the
ACM on Programming Languages, 3(POPL):52:1-52:29, 2019.

Laura Bozzelli, Bastien Maubert, and Sophie Pinchinat. Unifying hyper and epistemic temporal
logics. In Andrew M. Pitts, editor, Foundations of Software Science and Computation Structures
- 18th International Conference, FoSSaCS 2015, Held as Part of the Furopean Joint Conferences
on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings,
volume 9034 of Lecture Notes in Computer Science, pages 167-182. Springer, 2015.

Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N.
Rabe, and César Sanchez. Temporal logics for hyperproperties. In Martin Abadi and Steve
Kremer, editors, Principles of Security and Trust - Third International Conference, POST 2014,
Held as Part of the Furopean Joint Conferences on Theory and Practice of Software, ETAPS
2014, Grenoble, France, April 5-13, 2014, Proceedings, volume 8414 of Lecture Notes in Computer
Science, pages 265—284. Springer, 2014.

Michael R. Clarkson and Fred B. Schneider. Hyperproperties. volume 18, pages 1157-1210, 2010.
Norine Coenen, Bernd Finkbeiner, Christopher Hahn, and Jana Hofmann. The hierarchy of hy-
perlogics. In 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),
pages 1-13, 2019.

Bernd Finkbeiner and Martin Zimmermann. The first-order logic of hyperproperties. In Heribert
Vollmer and Brigitte Vallée, editors, 84th Symposium on Theoretical Aspects of Computer Science,
STACS 2017, March 8-11, 2017, Hannover, Germany, volume 66 of LIPIcs, pages 30:1-30:14.
Schloss Dagstuhl - Leibniz-Zentrum fir Informatik, 2017.

Dov M. Gabbay, Amir Pnueli, Saharon Shelah, and Jonathan Stavi. On the temporal analysis of
fairness. In Paul W. Abrahams, Richard J. Lipton, and Stephen R. Bourne, editors, Conference
Record of the Seventh Annual ACM Symposium on Principles of Programming Languages, Las
Vegas, Nevada, USA, January 1980, pages 163—173. ACM Press, 1980.

Hans Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, Ucla, 1968.

Dexter C. Kozen. Results on the propositional p-calculus. Theoretical Computer Science, 27:333—
354, 1983.

Kim G. Larsen. Proof Systems for Satisfiability in Hennessy-Milner Logic with recursion. Theo-
retical Computer Science, 72(2):265 — 288, 1990.

D.E. Muller, A. Saoudi, and P.E. Schupp. Weak alternating automata give a simple explanation of
why most temporal and dynamic logics are decidable in exponential time. In [1988] Proceedings.
Third Annual Symposium on Logic in Computer Science, pages 422-427, 1988.

Moshe Y. Vardi. A Temporal Fixpoint Calculus. In POPL, pages 250-259, New York, NY, USA,
1988. ACM.

Pierre Wolper. Temporal logic can be more expressive. In FOCS, pages 340-348. IEEE Computer
Society, 1981.

	Introduction
	Preliminaries
	Expressiveness comparisons
	Conclusion and future work

