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Abstract
In this talk proposal, we discuss a method based on tableau derivations that may not
terminate, for achieving decidability and upper complexity bounds for a general family of
modal logics with recursion. We show how to use this method to prove the decidability of
certain modal logics that do not have a finite model property.

1 Introduction

In this talk we will be studying a family of multi-modal logics with fixed-point operators that
are interpreted over restricted classes of Kripke models. The abstract is aimed to be a short
summary of the methods and results that the authors recently gave in [2]. One can consider
these logics as extensions of the usual multi-agent logics of knowledge and belief [10] by adding
recursion to their syntax or of the p-calculus [17] by interpreting formulas over different classes
of frames and thus giving an epistemic interpretation to the modalities. We are concerned with
the complexity of the satisfiability problem for these logics. Namely, given a formula ¢, how
much time it takes to determine whether there exists a model M = .

Modal logic comes in several variations [6]. Some of these, such as multi-modal logics of
knowledge and belief [10], are of particular interest to Epistemology and other application areas.
Semantically, the classical modal logics used in epistemic (but also other) contexts result from
imposing certain restrictions on their models. On the other hand, the modal p-calculus [17] can
be seen as an extension of the smallest normal modal logic K with greatest and least fixed-point
operators, vX and uX respectively. We explore the situation where one allows recursion (i.e.
fixed-point) operators in a multi-modal language and imposes restrictions on the models.

Satisfiability for the p-calculus is known to be EXP-complete [17]. For the modal logics
between K and S5 the problem is PSPACE-complete or NP-complete, depending on the presence
of Negative Introspection [14,18]. We discuss the two main methods that we developed in [2] for
proving complexity bounds for the satisfiability problem for different logics. Our first method is
a translation, and it follows the natural intuition where a formula in one logic is projected to a
formula in another logic, preserving its satisfiability. We demonstrate how this straightforward
method can prove the known upper complexity bounds for modal logics without recursion.

We then present tableaux for the discussed logics, based on the ones by Kozen for the p-
calculus [17], and by Fitting and Massacci for modal logic [12,21]. For some of our logics with
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X0, p] = ({5 | S 2 [, p[X = S]]} [vX.,0] = J{S | S C v, p[X = SII}

Table 1: Semantics of formulas on model M = (W, R, V'), which we omit from the notation.

axiom 5 ((@)¢ — [af{a)p), or B (¢ — [a]{a)p), the tableaux may not terminate, as these
logics have no finite-model property [8]. We give a general satisfiability-preserving translation
from each logic to the p-calculus, using our tableaux, which describes a tableau branch with an
exponentially larger p-calculus formula, establishing a 2EXP-upper bound for all our logics.

2 Modal logics with recursion

We consider formulas constructed from the following grammar:

pu=p |-p |ttt [£ff [ X [oAY |eVve [(ae [[ae [pXe [vXe,

where X comes from a countably infinite set of logical (or fixed-point) variables, LVAR, « from
a finite set of agents, AG, and p from a finite set of propositional variables, PVAR.

We interpret formulas on the states of a Kripke model. A Kripke model, or simply model, is
a triple M = (W, R, V) where W is a nonempty set of states, R C W x AG x W is a transition
relation, and V : W — 2PVAR determines the propositional variables that are true at each state.
(W, R) is called a frame. We usually write (u,v) € Ry or uRv instead of (u,a,v) € R.

Formulas are evaluated in the context of an environment p : LVAR — 2", which gives values
to the logical variables. For an environment p, variable X, and set S C W, we write p[X — 5]
for the environment that maps X to S and all Y # X to p(Y"). The semantics for our formulas
is given through a function [-] ,,, defined in Table 1.

Without further restrictions, the resulting logic is the u-calculus [17]. If |AG| = k € N* and
we allow no recursive operators and variables, we have the basic modal logic K, and further
restrictions on the frames can result in a variety of modal logics (see, for instance, [5]). We give
names to the following frame conditions, or frame constraints, for an agent o € AG:

D: R, is serial (Vs3t,sRat); B: Re is symmetric; 5: Ry is euclidean (if sR,t

. . . . and sR,r, then tR,r).
T: R, is reflexive (Vs,sRys); 4: R, is transitive;

Each frame condition x for agent « is associated with an axiom ax%, such that whenever a
model has condition x, every substitution instance of ax® is satisfied in all its states (see [5,6,10]):

axg = (a)tt; axz = [a]p — p; axf = (a)[a]p = p;
axy, = [alp = [][alp; and ax), = (a)[alp — [o]p.

We consider logics interpreted over models that satisfy a combination of these constraints
for each agent. For each logic L and agent «, L(«) is the single-agent logic that includes exactly
the frame conditions that L has for a.
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3 Translations for Recursion-free formulas

Translations are functions that transform each formula to another. We require that translations
preserve satisfiability, allowing us to transfer decidability results among logics. We also require
that they only increment the size of the formula by a polynomial factor. This is because we
will use the translations to prove complexity bounds as well. Finally, we want translations to
be compositional. Compositionality ensures that we can apply a sequence of translation steps,
resulting in a composite translation that has the above good properties.

We fix an order to the frame conditions: D, T, B,4,5. We present a straightforward and
uniform translation for recursion-free logics. Let sub(y) = {1, ) | ¢ is a subformula of ¢}.

Translation 3.1 (One-step Translation). Let A C AG and let = be one of the frame conditions.
For every formula ¢, let d = md(y) if x # 4,5, and d = md(p)|¢|, if © = 4 or x = 5. We define:

Fa@) =eA N A ol A [%]( A aXii[i/f/M)-

k<d a1 €EAG arp€AG Esub(¢p)
acA

Theorem 1. Let A C AG, x be one of the frame conditions, and let Ly, Lo be logics without
recursion operators, such that Ly(a) = Lo(a) + = when o € A, and La(«) otherwise. Assume
that La(«) only includes frame conditions that precede x in the fized order of frame conditions.
Then, ¢ is Ly-satisfiable if and only if F4 () is La-satisfiable.

In the above we see that indeed, a translation preserves satisfiability and is only changing
the size of the formula by a small factor. The compositionality gives us that for a logic L with
multiple frame restrictions, one would have to apply these translations in series to acquire a
formula that is satisfiable over general frames if and only if the original was L-satisfiable.

Corollary 1. If L has no recursion operators, then L-satisfiability is in PSPACE.

4 Tableaux and General Upper Bounds

Our tableaux are based on the ones given by Kozen in [17], and are extended similarly to the
tableaux of Fitting [12] and Massacci [21] for taking into account the different conditions of
modal logic. Intuitively, a tableau attempts to build a model that satisfies the given formula.
When it needs to consider two possible cases, it branches, and thus it may generate several
branches. Each successful branch represents a corresponding model.

Our tableaux use prefized formaulas, that is, formulas of the form o ¢, where o € (AG x L)*
and ¢ € L; o is the prefix of ¢ in that case, and we say that ¢ is prefixed by o. We note
that we separate the elements of o with a dot. Furthermore, in the tableau prefixes, we write
a(1)) to mean the pair («,1)) € AG x L. Therefore, for example, (o, ¢)(8, x)(«, ) is written
ald).B(x).a{y) as a tableau prefix. We say that prefix o is a-flat when agent o has axiom 5
and o0 = ¢’.a(¢)) for some 9. Each prefix possibly represents a state in a model, and a prefixed
formula o ¢ declares that ¢ is true in that state. The tableau rules appear in Table 2.

A tableau branch is propositionally closed when o ff or both ¢ p and ¢ —p appear in the

branch for some prefix 0. We define the dependence relation X, on prefixed formulas in a
tableau branch as x; X X2, if x2 was introduced to the branch by a tableau rule with y; as

its premise, and x; is not of the form ¢ Y, where X < Y. If in a branch there is a i(%—sequence

3
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ocnX.p - o X  x o [a]p o {a)p o oy
e ) TR *) o e D aw e D oag e @
ol o.a(y) [y o [a]p o.a(p) [alp
o.a(Y) [a]e (4) oY (b) oY (t) o [a] (b4)

¥
where, for rules (B) and (4), 0.a(v) already appears in the branch; for (D), o is not a-flat.
o.a(y) [ale (B5) ( g.a(y) [efe g.a(y).a(y’) (o)

o [a]p o.a(i).alp) ¢ o.a(y’) [afe a.a{y).alp) ¢

where, for rule (B55), o.a (") already appears in the branch; for rule (D5), o is not a-flat, and
o (a)¢ does not appear in the branch; for rule (D55), o (a)¢ does not appear in the branch.

(D5) (B55)

(D55)

Table 2: The tableau rules for L = L#. The propositional cases are omitted.

where X is a least fixed-point and appears infinitely often, then the branch is called fixed-point-
closed. A branch is closed when it is either fixed-point-closed or propositionally closed; if it is
not closed, then it is called open.

Theorem 2 (Soundness and Completeness of Li-Tableaux, [1]). For every formula ¢ and logic
L, ¢ has a mazimal L-tableau with an open branch if and only if ¢ is L-satisfiable.

Although for many of our logics, we can give sound, complete, and terminating tableaux, in
general it is possible for a tableau to be non-terminating. Moreover, some of our logics do not
have a finite model property. To give a general upper bound for the satisfiability problem for
our family of modal logics with recursion, we devised the following strategy. From the above,
we have, possibly non-terminating, sound and complete tableaux for all our logics. Moreover,
we know that p-calculus satisfiability can be decided in exponential time. Therefore, our idea
is to encode the tableaux themselves as p-calculus formulas, interpreted over arbitrary frames.
These formulas assert that a satisfying model encodes an open branch. The total overhead of
this construction was that the initial tableaux constructed from a formula is exponential larger
from it, and the final satisfiability checking for the formula that represented this tableaux costs
exponential time. Therefore the resulting complexity upper bound is a double exponential.

We avoid presenting the full extensive construction of the formula that describes the tableau
branch. We present the idea in Figure 1. The reader can read [2] for more details. A summary
of our results from [2] can be seen in Table 3. The highlighted result is the ones that occurred
due to the final idea of translating tableaux into formulas.

Theorem 3. L-satisfiability is in 2EXP.

5 Conclusion and future work

We presented a simple translation method to prove the known PSPACE upper bound for the
complexity of satisfiability for all logics without recursion. For the ones with recursion, we
presented sound and complete tableaux, which in turn we encoded as p-calculus formulas, thus
proving that satisfiability is in 2EXP for all our logics.

4
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Figure 1: A finite i>—pauth from o 11 to o ¥y may visit other tableau prefixes, and an infinite

i>—p8uth from o 7 may include finite segments that visit other prefixes, before continuing
with an infinite path from a formula 5. Each square area represents a tableau prefix and the

part of an infinite L—path that visits this prefix. We can describe this local behavior with

exponentially many propositional variables, and the infinite path with a p-calculus formula.

# agents | Restrictions on syntax/frames | Upper Bound | Lower Bound
frames with B or 5 2EXP EXP-hard

>2 not B, 5 EXP EXP-hard
not 5, not pu. X EXP EXP-hard
with 5 (or B4) NP NP-hard

1 with 4 PSPACE PSPACE-hard
Any other restrictions EXP EXP-hard

Table 3: The updated summary of the complexity of satisfiability checking for various modal
logics with recursion. Our additional contributions from [2] are highlighted.

As Table 3 indicates, we currently do not have a tight complexity bound for the case of
the multi-agent p-calculus over symmetric or euclidean frames. The complexity of the model
checking problem for the p-calculus is an important open problem, known to have a quasi-
polynomial time solution, but not known whether it is in P [7,11,16,19,20]. The problem does
not depend on the frame restrictions of the particular logic, though one may wonder whether
additional frame restrictions would help solve the problem more efficiently. Currently we are
not aware of a way to use our translations to obtain such an improvement.

As, to the best of our knowledge, most of the logics described in this chapter have not
been explicitly defined before, with notable exceptions such as [3,8, 9], they also lack any
axiomatizations and completeness theorems. We do expect the classical methods from [13,17,18]
and others to work in these cases as well. However, it would be interesting and desirable to
flesh out the details and see if there are any unexpected situations that arise.

Finally, given the importance of common knowledge for epistemic logic and the fact that it
has been known that common knowledge can be thought of as a greatest fixed point already
from [4,15], we consider the logics we presented to be natural extensions of modal logic. We are
interested in exploring what other natural concepts we can define with this enlarged language.
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