
Tutorial: Intro to Computational Complexity

Stathis Zachos

13th Panhellenic Logic Symposium

Overview

1 Complexity classes

2 Randomness

3 Interactivity, PCP

4 Counting

5 How to handle NP-complete problems

6 Approximation Algorithms

7 Search Complexity

8 Parameterized Complexity

9 Quantum Complexity

Tutorial: Intro to Computational Complexity 2 / 131

Complexity classes

Computability theory: We are interested whether a problem is
computable or not.

Complexity theory: We consider only computable problems and we are
interested for their solutions within given restricted resources, such as
time for the computation, space (only intermediate working space is
restricted and not space needed for the input and output), etc.

These restrictions and other properties of the computation define
complexity classes of computational problems.

Despite the constant and long-lasting effort of researchers, there are
several open questions in the area of complexity theory. For example,
there are problems in the class NP for which there is no polynomial-time
algorithm, but have not been proven NP-complete so far.

Tutorial: Intro to Computational Complexity 3 / 131

Complexity classes (Hartmanis, Edmonds, Cook, Karp)

1965 Hartmanis

1965 – 1968 Edmonds: Graph problems

1971 Cook: NP-completeness (CNF-SAT with Cook reductions)

1972 Karp: Most of Edmonds’ hard problems are NP-complete with
Karp reductions

Tutorial: Intro to Computational Complexity 4 / 131

Complexity classes (What Karp didn’t know in 1972)

GRAPH ISOMORPHISM (the most well-known open problem): Given two
graphs, are they isomorphic? (compare with SUBGRAPH ISOMORPHISM
which is known to be NP-complete)

LINEAR PROGRAMMING (it was open for many years): given a system of

linear equations and inequalities and a linear objective function (either

minimization or maximization), find a feasible optimum solution.

▶ Simplex method (Dantzig): In worst case, exponential time is needed.
▶ Ellipsoid method (Khachiyan): The first polynomial-time algorithm

for linear programming. It was not of great practical interest.
▶ Karmarkar algorithm: A polynomial-time algorithm that had pactical

implications better than the Simplex method.

PRIMALITY: Given an integer n, is n prime or not?
Recently (2002 by Agrawal, Kayal, Saxena — AKS) it was proved that this
problem, which was open for many years, is in the class P.

Tutorial: Intro to Computational Complexity 5 / 131

Basic definitions I I

Definition
The class TIME(t(n)) (or DTIME(t(n))) contains problems that can be solved by a
deterministic Turing machine in t(n)-time.

Definition
The class NTIME(t(n)) contains problems that can be solved by a non-deterministic
Turing machine in t(n)-time.

Definition
The class SPACE(s(n)) (or DSPACE(s(n))) contains problems that can be solved by a
deterministic Turing machine which uses additional s(n) space.

Definition
The class NSPACE(s(n)) contains problems that can be solved by a non-deterministic
Turing machine which uses additional s(n) space.

Tutorial: Intro to Computational Complexity 6 / 131

Basic definitions II
Based on the previous definitions, we define:

P = PTIME =
⋃

i≥1DTIME(ni)

NP = NPTIME =
⋃

i≥1NTIME(ni)

PSPACE =
⋃

i≥1DSPACE(n
i)

NPSPACE =
⋃

i≥1NSPACE(n
i)

L = DSPACE(log n)

NL = NSPACE(log n)

EXP =
⋃

i≥1DTIME(2n
i
)

EXPSPACE =
⋃

i≥1DSPACE(2
ni)

Remark

A function f is called constructible if there exists a TM such that
∀ input x with |x | = n, it accepts the input in O(n + f (n)) time
(time-constructible) or O(f (n)) working space (space-constructible).

Tutorial: Intro to Computational Complexity 7 / 131

Basic definitions III

If f is constructible, then:

DSPACE(f (n)) ⊆ NSPACE(f (n))

DTIME(f (n)) ⊆ NTIME(f (n))

since a deterministic Turing machine can be considered as a non-deterministic one with
only one choice at each step.

DTIME(f (n)) ⊆ DSPACE(f (n))

NTIME(f (n)) ⊆ DSPACE(f (n))

since in f (n) time, at most f (n) space (positions on the machine tape) can be examined.

If f (n) > log n then:

DSPACE(f (n)) ⊆ DTIME(c f (n))

NTIME(f (n)) ⊆ DTIME(c f (n))

NSPACE(f (n)) ⊆ DTIME(k f (n))

Tutorial: Intro to Computational Complexity 8 / 131

Basic definitions IV

The following theorem is due to Savitch (1970):

Theorem

If f (n) ≥ log n then NSPACE(f (n)) ⊆ DSPACE(f 2(n)).

By Savitch’s theorem we have that: PSPACE = NPSPACE.

By the above relations we have the following hierarchy:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE = NPSPACE

We know that L ̸= PSPACE and NL ̸= PSPACE (this is a corollary
of the hierarchy theorem for space classes that we will mention
below).

The following remain open:

L ⊇ NL ⊇ P ⊇ NP ⊇ PSPACE

Tutorial: Intro to Computational Complexity 9 / 131

Basic definitions V

The world so far is depicted in the following figure.

Figure: Complexity classes

Tutorial: Intro to Computational Complexity 10 / 131

Basic definitions VI

Notice that the aforementioned classes are classes of decision problems. We can also
define complexity classes for Turing machines that compute functions. A typical
example is the following.

Definition

FP = the set of functions that can be computed by deterministic Turing
machines in polynomial time.

The class FP will be useful for the definition of reductions, since we need to include
functions that can be computed “easily”.

Another useful complexity class of functions is the next one.

Definition

FL = the set of functions that can be computed by deterministic Turing
machines in logarithmic space.

Tutorial: Intro to Computational Complexity 11 / 131

Hierarchy theorems I

The following theorems hold for the model of the deterministic Turing machine with

three tapes (we are always considering constructible functions t1, t2, s1, s2):

Theorem (Fürer, 1982)

Let t2(n) > n. Then there is a language that is accepted in t2 time, but
not in t1 time for every t1 = o(t2(n)).

Theorem (Hartmanis, Lewis, Stearns, 1965)

Let s2(n) > log n. Then there is a language that is accepted in s2 space,
but not in s1 space for every s1 = o(s2(n)).

Technical proofs are ommited.

Analogous theorems hold for non-deterministic Turing machines as well. In fact the
proofs are easier.

Tutorial: Intro to Computational Complexity 12 / 131

Hierarchy theorems II

We insist on constructible functions, since if we allow any function in the
place of t(n), s(n), then we have pathological phenomena, such as the
following.

Blum Complexity 1967

Theorem (Gap theorem)

There is a recursive function t(n), such that TIME(t(n)) = TIME(2t(n)).

Tutorial: Intro to Computational Complexity 13 / 131

Complementary complexity classes I

definition

Let L be a language. The complement of L is denoted and defined as

L = {x | x ̸∈ L}.

For a complexity class of languages C, we define (using the complement of
a language L):

coC = {L | L ∈ C}.

Example: The class coNP consists of the languages that are
complements of languages in NP. A problem in coNP is SAT or the
closely related to it, Tautology problem, i.e. given a propositional
formula, determine whether it is a tautology.

Tutorial: Intro to Computational Complexity 14 / 131

Complementary complexity classes II

It is interesting to see which complexity classes are closed under
complement, i.e. for which classes C, it holds that C = coC.

In general, deterministic complexity classes (either time, or space) are
closed under complement, i.e. DTIME(t(n)) and DSPACE(s(n)) are
closed under complement.

If we consider non-deterministic classes, the question is open in the
case of time complexity. For example, we do not know whether
coNP ̸= NP. In fact, the last inequality is related to the P versus
NP problem, since obviously, if coNP ̸= NP, then P ̸= NP.

Tutorial: Intro to Computational Complexity 15 / 131

Complementary complexity classes III

Theorem (Immerman-Szelepcsényi)

The class NSPACE(s(n)) is closed under complement.

For s(n) = n we have the class of problems that are solved by a Turing
machine that uses linear space, also known as LBA (linearly bounded
automaton), and so the above theorem answered a long-standing question,
i.e. whether the class of LBA (or equivalently the class of context sensitive
languages, as Kuroda showed in 1964) is closed under complement.

Tutorial: Intro to Computational Complexity 16 / 131

Reductions I

A reduction of polynomial time has to connect two problems via an “easy” computation.
We are considering easy functions (and problems) that are computed in polynomial time.

We would like to have the following properties.

If functions f and g are “easy”, then their composition f ◦ g is “easy”.

If f is computable in O(n2) time, then it is considered to be easy.

Thus, we are consider easy problems (and functions), the problems (and functions) that
can be computed in polynomial time (even in O(n1000)).

For these reasons, we define the Karp reduction as follows.

Definition (Karp reduction)

A ≤P
m B : ∃f ∈ FP, ∀x(x ∈ A ⇐⇒ f (x) ∈ B)

There are other useful reductions, such as log-space reductions, that use logarithmic
space and are used for reductions between problems in “smaller” complexity classes,
like P.

Tutorial: Intro to Computational Complexity 17 / 131

Reductions II

Definition (Log-space reduction)

A ≤L
m B : ∃f ∈ FL,∀x(x ∈ A ⇐⇒ f (x) ∈ B)

It holds that A ≤L
m B =⇒ A ≤P

m B, but the converse is not true.

Another property that a reduction should have for various classes of languages, is the

following.

Definition

We say that a class of languages C is closed under a reduction ≤ if

A ≤ B ∧ B ∈ C =⇒ A ∈ C .

Some complexity classes closed under Karp reduction (≤P
m) are the following: P,

PSPACE, EXP, EXPSPACE (see above for the definitions of these classes).

Tutorial: Intro to Computational Complexity 18 / 131

Reductions III

Definition (Hardness)

We say that A is C -hard with respect to ≤, if

∀B ∈ C : B ≤ A.

The notion of hardness gives a lower bound for the complexity of a
problem, given that the problem A is at least as hard as any problem in
the class C .

Definition (Completeness)

We say that A is C -complete with respect to ≤, if

A is C -hard with respect to ≤ ∧ A ∈ C .

Tutorial: Intro to Computational Complexity 19 / 131

Reductions IV

Below we give complete problems for some of the most important
complexity classes.

NL: the problem Reachability (log-space reductions).

P: Circuit-Value and Linear Programming (again under
log-space reductions).

NP: 3SAT.

PSPACE: QBF (Quantified Boolean Formula satisfiability problem).

EXP: n × n Go.

EXPSPACE: RegExp(∪, ·, ∗, 2), which is the problem of checking
equivalence of regular expressions, that use operators ∪ (union),
· (concatenation), ∗ (Kleene star) and 2, where α2 = α · α.

Tutorial: Intro to Computational Complexity 20 / 131

Parameters for defining complexity classes I

Concrete Complexity: We consider a specific computational model, a
specific problem and a specific algorithm for this problem in this
model. In this way, we determine the exact complexity of the
algorithm (constants are not important).

Abstract or structural complexity: We consider complexity classes
with various computational parameters and we compare these classes
to each other (with respect to inclusion, separation etc). It is useful
to find reductions and complete problems for these classes under
these reductions.

Tutorial: Intro to Computational Complexity 21 / 131

Parameters for defining complexity classes II

We mention some parameters used to define complexity classes.

computational model: Turing Machine (TM), Random Access
Machine (RAM), Finite Automaton, Linearly Bounded Automaton
(LBA), Parallel RAM (PRAM), monotone circuits.

method of operation/acceptance: deterministic, non-deterministic,
probabilistic, alternating, parallel.

kind of model/operation: decider, acceptor, generator, transducer.

resources: number of steps, number of comparisons, number of
multiplications, time, storage space, number of processors, number of
alternations in the computation tree, size of circuit, depth of circuit.

other tools: randomness, oracles, interactivity, promise, operators.

bounds with respect to the size of the input: for example O(n3)
or polynomial time/space (t(n), s(n)) tradeoff, Probabilistic
Checkable Proofs: PCP(r(n), q(n)) (using r(n) random bits and q(n)
queries to the proof).

Tutorial: Intro to Computational Complexity 22 / 131

Models of computation tree for TM I

To study the behavior of Turing machines, we are going to encode the
computation of a Turing machine using a computation tree.

The computation starts at the root of the tree.

We assume that if we have a non-deterministic choice at some point
of the computation, then we have a branching in the tree.

At the leaves of the computation tree of a TM we have the answers
of the machine. Every path from the root of the tree to some leaf
encodes a possible computation.

Without loss of generality, we consider the computation tree to be
binary, complete and full. All its leaves are at the same level.

Tutorial: Intro to Computational Complexity 23 / 131

Models of computation tree for TM II

Figure: Computation tree model

An interesting case is when the length of the computation path from the root to the leaf
is polynomial with respect to the input length (every path corresponds to an “easy”, i.e.
polynomial, computation).

By considering the above model, we are going to define some of the already known
complexity classes and some new ones. More precisely, we are going to use quantifiers
(∃,∀) over paths. Since we always consider the restriction on the path length, we are
going to write e.g. ∃y instead of ∃y : |y | ≤ p(|x |), where y : a variable representing
paths, x : a variable representing the input, p: a polynomial.

Tutorial: Intro to Computational Complexity 24 / 131

Models of computation tree for TM III

For example, the class NP can also be defined as follows.

L ∈ NP ⇐⇒ ∃R ∈ P :

{
x ∈ L =⇒ ∃yR(x , y)
x ̸∈ L =⇒ ∀y¬R(x , y)

In other words, if x ∈ L there exists at least one accepting
computation, whereas if x ̸∈ L no computation is accepting.

Similarly, the class coNP is also defined as follows.

L ∈ coNP ⇐⇒ ∃R ∈ P :

{
x ∈ L =⇒ ∀yR(x , y)
x ̸∈ L =⇒ ∃y¬R(x , y)

Tutorial: Intro to Computational Complexity 25 / 131

Models of computation tree for TM IV

The class P can also be defined as follows.

L ∈ P ⇐⇒ ∃R ∈ P :

{
x ∈ L =⇒ ∀yR(x , y)
x ̸∈ L =⇒ ∀y¬R(x , y)

Note that the quantifiers that correspond to x ∈ L and x ̸∈ L completely
determine a complexity class. We introduce the following notation.

NP = (∃, ∀), coNP = (∀, ∃), P = (∀,∀).

Tutorial: Intro to Computational Complexity 26 / 131

Overview

1 Complexity classes

2 Randomness

3 Interactivity, PCP

4 Counting

5 How to handle NP-complete problems

6 Approximation Algorithms

7 Search Complexity

8 Parameterized Complexity

9 Quantum Complexity

Tutorial: Intro to Computational Complexity 27 / 131

Randomness I

Using the model of the computation tree, we are going to define complexity
classes which are based on probabilities, determined by random choices.

This approach is very useful from a practical point of view, since in many
applications, it is sufficient to have an algorithm that makes some random choices
and gives the correct result in most cases.

A probabilistic algorithm is usually simpler and more efficient in practice than a
deterministic one which solves the same problem. For example, simple probabilistic
algorithms for checking whether a number is prime exist since the 1970s and are
used in practice instead of more complex deterministic ones, like AKS.

In the context of the computation tree model, we are going to assume that at
every node of the tree, the choice is made randomly with probability 1/2 for every
child of the node. To show that the overwhelming majority of the computations
give the correct result, we introduce a new quantifier, namely ∃+.

Tutorial: Intro to Computational Complexity 28 / 131

Randomness II

Using the quantifier ∃+, we define the class BPP (Bounded error
Probabilistic Polynomial):

Definition (BPP = (∃+,∃+))

L ∈ BPP ⇐⇒ ∃R ∈ P :

{
x ∈ L =⇒ ∃+yR(x , y)
x ̸∈ L =⇒ ∃+y¬R(x , y)

Tutorial: Intro to Computational Complexity 29 / 131

Randomness III

In other words, in a computation tree for the class BPP, the
overwhelming majority of the leaves give the correct result. In the
above definition, the exact definition of the overwhelming majority
does not matter, but it has to be bounded above 1/2. The majority
percentage can be, for example, greater than 1/2 + ε, 1/2 + 1/p(|x |),
2/3, 99%, 1− 2−p(|x |) (2−p(|x |) is called a negligible amount). This
flexibility in the choice of the bound is based on the fact that by
running the algorithm polynomially many times, we can amplify the
success probability as much as we want. BPP algorithms are called
Monte Carlo or two-sided error, since, regardless of the result (yes
or no), there exists a non-zero failure probability. Obviously, BPP is
closed under complement.

Tutorial: Intro to Computational Complexity 30 / 131

Randomness IV

Now let us consider algorithms that have one sided error. In this way
we obtain the class RP (Randomized Polynomial):

Definition (RP = (∃+, ∀))

L ∈ RP ⇐⇒ ∃R ∈ P :

{
x ∈ L =⇒ ∃+yR(x , y)
x ̸∈ L =⇒ ∀y¬R(x , y)

In the case of RP the majority percentage is sufficient to be greater
than 1

p(|x |) for some polynomial p.

Tutorial: Intro to Computational Complexity 31 / 131

Randomness V

In the case of this class, if the corresponding RP algorithm answers “yes” (i.e. the
predicate R is true), we are certain that x ∈ L. On the contrary, if the algorithm answers
“no”, it might be wrong.

Obviously, it holds that RP ⊆ BPP, coRP ⊆ BPP, but we do not know whether
RP = coRP.

Another useful class is the class that is defined as the intersection of RP and
coRP, namely ZPP = RP ∩ coRP. This class derives its name from Zero error
Probabilistic Polynomial, since it is not hard to show that a problem is in ZPP if
there exists a probabilistic algorithm that runs in expected polynomial time and
always gives the correct answer. Indeed, if a problem is in ZPP, we have both an
RP and a coRP algorithm for solving it, so it suffices to run these two algorithms
repeatedly in parallel until one of them returns the value that is definitely correct.
We may need to run the algorithms for ever, but with high probability, we will
obtain a “decisive” answer after some finite number of runs (in fact, a polynomial
number of times). Alternatively, we can say that a ZPP algorithm has three
outputs: “yes”, “no” (for the “decisive” answers) and “I don’t know” (for the
“indecisive” ones). ZPP algorithms are called Las Vegas.

Tutorial: Intro to Computational Complexity 32 / 131

Randomness VI

Since probabilistic algorithms are widely used in practice, feasible problems are
usually considered to be not only problems in P, but also problems in the
probabilistic classes BPP, RP and ZPP.

We do not know whether the classes defined above (BPP, RP, ZPP) have
complete problems.

If the error percentage is not bounded away from 1/2, then we are certain that in

the computation tree model, more than half of the computation paths give the

correct answer. To express this fact we use the quantifier ∃1/2. For unbounded

two-sided error, we have the class PP (Probabilistic Polynomial):

Definition (PP = (∃1/2, ∃1/2))

L ∈ PP ⇐⇒ ∃R ∈ P :

{
x ∈ L =⇒ ∃1/2yR(x , y)
x ̸∈ L =⇒ ∃1/2y¬R(x , y)

Note that the threshold 1/2 is not important. Any other threshold would define
the same class.

Tutorial: Intro to Computational Complexity 33 / 131

Randomness VII

Due to the lack of a bound (away from 1/2) for the error probability, we cannot
use the technique of polynomial repetition to amplify the correctness of a PP
algorithm. Another indication that PP is a hard class is the following result.

Proposition
NP ⊆ PP.

Note that we have not considered the number of random bits used by a
probabilistic algorithm, as a resource of the algorithm. In practice, every “random”
bit we need, has a cost, since we obtain it by a pseudorandom bit generator.

Finally, we mention the class RL (Randomized Logspace) which contains problems
that have one-sided error algorithms which use logarithmic space and polynomial
number of random bits (with respect to the input length).

Tutorial: Intro to Computational Complexity 34 / 131

Polynomial Hierarchy I

We are going to define the polynomial hierarchy using the notion of
the computation with an oracle.

An algorithm uses an oracle for problem Π, if, during the computation,
it can ask the oracle for an instance x of Π, whether x ∈ Π, and the
oracle immediately answers either “yes” or “no”. Regardless the
hardness of Π, the algorithm does not need additional resources.

Tutorial: Intro to Computational Complexity 35 / 131

Polynomial Hierarchy II

Definition (Classes with oracles)

CΠ: the class of problems that can be solved by an algorithm that
corresponds to class C and uses an oracle for the problem Π.

CCo =
⋃

Π∈Co

CΠ

For example, the class PSAT consists of the problems that can be solved
by a deterministic polynomial-time algorithm that uses an oracle for SAT.
Another description of this class is PNP, since SAT is NP-complete.

Tutorial: Intro to Computational Complexity 36 / 131

Polynomial Hierarchy III

Definition

(k ≥ 0)

Σp
0 = Πp

0 = ∆p
0 = P

Σp
k+1 = NPΣp

k , Πp
k+1 = coΣp

k+1, ∆
p
k+1 = PΣp

k , ∆Σp
k = Σp

k ∩ Πp
k

Polynomial Hierarchy: PH =
⋃

k∈NΣp
k

The following are true:

Σp
1 = NP, Πp

1 = coNP and for all k ≥ 0: Σp
k ⊆ Σp

k+1 and Πp
k ⊆ Σp

k+1.

Although these inclusions have not been proven to be strict (as in the case of the
arithmetical hierarchy), we believe that the hierarchy is strict.

If PH is not strict, then there is some k such that PH = Σp
k , so we say that the

polynomial hierarchy collapses at the k-th level.

Tutorial: Intro to Computational Complexity 37 / 131

Polynomial Hierarchy IV

Figure: Polynomial hierarchy

Tutorial: Intro to Computational Complexity 38 / 131

Polynomial Hierarchy – Quantifier Alternation I

An alternative definition of the polynomial hierarchy can be given by using
alternation of the quantifiers (∃ and ∀). Note that the quantifiers are over
objects the size of which is bounded by a polynomial p in the input size.

Proposition

L ∈ Σp
k if there is a predicate R computable in polynomial time such that:

x ∈ L ⇐⇒ ∃y1∀y2 . . .Qyk R(x , y1, y2, . . . , yk),

where Q =

{
∃, k odd

∀, k even

and the quantifiers are over objects the size of which is bounded by p(|x |)
for some polynomial p.

Tutorial: Intro to Computational Complexity 39 / 131

Polynomial Hierarchy – Quantifier Alternation II

Similarly, we define the class Πp
k . In this case, the sequence of the

quantifiers starts with ∀:

Proposition

L ∈ Πp
k if there is a predicate R computable in polynomial time such that:

x ∈ L ⇐⇒ ∀y1∃y2 . . .Qyk R(x , y1, y2, . . . , yk),

όπου Q =

{
∀, k odd

∃, k even

and the quantifiers are over objects the size of which is bounded by p(|x |)
for some polynomial p.

Tutorial: Intro to Computational Complexity 40 / 131

Polynomial Hierarchy – Alternating TM I

The alternation of quantifiers in the polynomial hierarchy gives the motivation to
define the alternating Turing machine.

If we think of the tree representation of the computation of an NP Turing
machine, the machine returns “yes”, if there is at least one leaf that says “yes”.
We can assume that each node of the tree computes the disjunction (∨) of its
children’s results and forwards it to its parent (a leaf just forwards its result to its
parent) until the result reaches the root.

A coNP Turing machine accepts if all leaves say “yes”, so we can assume that
each node forwards to its parent the conjunction (∧) of its children’s results, until
the correct result reaches the root.

We say that the nodes in the computation tree of an NP machine are of type ∨, or
∃, or of existential type.

We say that the nodes in the computation tree of a coNP machine are of type ∧,
or ∀, or of universal type.

Tutorial: Intro to Computational Complexity 41 / 131

Polynomial Hierarchy – Alternating TM II

An alternating Turing machine is a Turing machine, the computation
tree of which has internal nodes of type either ∨ or ∧.
The number of type alternations is important. The maximum
number of alternations (on a path), which may be bounded,
determines the computation power of such a machine.

For example, the computation tree of the following figure has a number of
alternations equal to 2.

Tutorial: Intro to Computational Complexity 42 / 131

Polynomial Hierarchy – Alternating TM III

Figure: Computation tree with alternations

Tutorial: Intro to Computational Complexity 43 / 131

Polynomial Hierarchy – Alternating TM IV

We can show that the polynomial hierarchy is exactly the class of
languages that are accepted by alternating Turing machines with a
bounded number of alternations.

More precisely:

L ∈ Σp
k if L is accepted by a Turing machine that has at most k type

alternations and starts with type ∨·
L ∈ Πp

k if L is accepted by a Turing machine that has at most k type
alternations and starts with type ∧.

Tutorial: Intro to Computational Complexity 44 / 131

Parallelizable problems I

To study parallel computations, we introduce a new computational
model, the circuit.

A circuit is a directed acyclic graph, which has a set of input nodes
and an output node. We assume that the circuit takes as inputs truth
values (the values 0 and 1) and each internal node corresponds to a
logical function (or gate) with as many inputs as its incoming edges.

If a circuit C has n 1-bit inputs: x1, x2, . . ., xn, then for every
x ∈ {0, 1}n, it computes a unique value at the output, namely C (x).
If C (x) = 1, we say that the circuit C accepts the n-bit input: x .

Tutorial: Intro to Computational Complexity 45 / 131

Parallelizable problems II

Compared to the model of the Turing machine, a circuit can take only
inputs of length exactly n, whereas a Turing machine (or an algorithm in
general) takes inputs of arbitrary length.

Therefore, we consider a circuit family {C1,C2, . . . }, where every Cn has n
input nodes. The language accepted by a circuit family C is the following

L(C) = {x | C|x |(x) = 1}.

The problem here is that circuit families (unlike Turing machines) are not
countable.

Tutorial: Intro to Computational Complexity 46 / 131

Parallelizable problems III

To overcome the above difficulty, we restrict ourselves to uniform circuit families.

For such families, there is an efficient algorithm such that, given n, it constructs
the representation of circuit Cn of the family.

One option is to consider P-uniform families, that use a polynomial-time algorithm
for constructing the corresponding circuits.

However, circuits are usually used to define classes below the class P, so we are going to

consider a more restricted notion of uniformity.

Definition

A circuit family C is DLOGTIME-uniform if there is a Turing machine
(which has random access to the input tape) that answers the following
questions in O(log n) time:

Are nodes u and v connected in Cn?

What type of gate corresponds to node u?

Tutorial: Intro to Computational Complexity 47 / 131

Parallelizable problems IV

The size of a circuit is the number of nodes in the corresponding
graph.

The size measures the cost of constructing the circuit and it is usually
considered to be at most polynomial with respect to the input length.

However, the size of the circuit is not a good measure of the
computation time of a circuit, since many logical gates can be
computed in parallel.

The gates that have to wait for intermediate results are those that are
on some path connecting the input to the output.

So, a more important measure of the computation time is the depth
of a circuit, which is the length of the longest path from the input to
the output node.

Tutorial: Intro to Computational Complexity 48 / 131

Parallelizable problems V

Also, the type of the logical gates used in a circuit is important. More
precisely, we have the following types of logical gates.

1 Logical gates with bounded fan-in (bounded number of inputs), as
well as unary gates ¬. It suffices to have binary gates ∧ and ∨
(together with unary gates ¬).

2 Logical gates ∧ and ∨ with unbounded fan-in, as well as unary gates
¬.

3 Threshold gates with unbounded number of inputs, as well as unary
gates ¬. It suffices to have majority gates instead of general threshold
gates. A majority gate returns 1 iff at least r/2 out of r inputs are 1.

Tutorial: Intro to Computational Complexity 49 / 131

Parallelizable problems VI
Now we can define the following classes.

Definition

(k ≥ 0):

1 NCk: the class of languages that are accepted by
DLOGTIME-uniform circuit families of polynomial size and
οικογένειες κυκλωμάτων O(logk n) depth, using gates of bounded
fan-in.

2 ACk: the class of languages that are accepted by DLOGTIME-uniform
circuit families of polynomial size and οικογένειες κυκλωμάτων
O(logk n) depth, using gates of unbounded fan-in.

3 TCk: the class of languages that are accepted by
DLOGTIME-uniform circuit families of polynomial size and
οικογένειες κυκλωμάτων O(logk n) depth, using threshold gates.

4 SCk: the class of languages that are accepted by DTM in polynomial
time and O(logk n) space.

Tutorial: Intro to Computational Complexity 50 / 131

Parallelizable problems VII

Moreover, we define NC =
⋃

k∈NNCk. The class NC is also called
Nick’s Class for Nicholas Pippenger, who was among the first that
studied this kind of circuits. In fact, not only circuits, but also many
other models of parallel computations (e.g. PRAM), can be used to
define the class NC, which indicates that this is a robust class and
closely related to parallelizable problems.

“A” in ACk comes from alternation, since it can be proved that class
ACk, for k ≥ 1, consists of exactly the languages that are accepted by
an alternating Turing machine that uses O(log n) space and makes at
most O(logk n) alternations.

“T” in TCk comes from threshold.

SC, Steve’s Class for Steve Cook.

Tutorial: Intro to Computational Complexity 51 / 131

Parallelizable problems VIII

More precisely, the aforementioned classes are related to each other as
follows.

Theorem

For every k ≥ 0, NCk ⊆ ACk ⊆ TCk ⊆ NCk+1.

The next theorem also holds with respect to other known classes.

Theorem

Regular ⊆ NC1 ⊆ L = SC1 ⊆ NL ⊆ AC1.
Regular ⊂ CF ⊂ AC1.

This means that the problem of checking whether a string belongs to a
context free language is in the class NC2.

Tutorial: Intro to Computational Complexity 52 / 131

Overview

1 Complexity classes

2 Randomness

3 Interactivity, PCP

4 Counting

5 How to handle NP-complete problems

6 Approximation Algorithms

7 Search Complexity

8 Parameterized Complexity

9 Quantum Complexity

Tutorial: Intro to Computational Complexity 53 / 131

Interactivity I
Interactive Proofs (IP)

Let us consider a prover (P) that tries to prove to someone else, who
is called verifier (V), that a statement, like “x ∈ L”, is true.

The prover is omnipotent, in the sense that it is an algorithm with
unlimited computational resources (time, space). On the contrary, the
verifier is a probabilistic polynomial-time algorithm.

The verifier and the prover take part in a communication protocol by
exchanging messages. V either accepts or rejects the proof based on
the messages it receives from P. The prover may not be honest and
may want to convince the verifier that “x ∈ L” even for x for which
“x ̸∈ L” holds.

The verifier can use, except for polynomial-time computations, the
randomness it possess, against the omnipotent prover.

Tutorial: Intro to Computational Complexity 54 / 131

Interactivity II
Interactive Proofs (IP)

The class IP was defined by Goldwasser, Micali, Rackoff:

Definition

L ∈ IP:

x ∈ L =⇒ there exists a prover P, such that the verifier V always
accepts (i.e. we have probability of acceptance equal to 1).

x ̸∈ L =⇒ for every prover P, the verifier V does not accept with
high probability.

Let us consider the graph non-isomorphism problem: “Given two
graphs, are they not isomorphic?”.

This problem belongs to coNP.

We are going to describe a protocol for the non-isomorphism graph
problem, which shows that the problem belongs to IP.

Tutorial: Intro to Computational Complexity 55 / 131

Interactivity III
Interactive Proofs (IP)

1 At first, the verifier has the two graphs G1 and G2. He chooses at
random one of them, let’s say Gi , and computes a random graph,
which is isomorphic to Gi , let’s say graph H (this can be done by
choosing a random permutation of the n vertices of Gi). V sends
graph H to P, asking a j such that Gj is isomorphic to H.

2 The prover answers with a j ∈ {1, 2}.
3 The verifier accepts if i = j , otherwise it rejects.

In the case of G1, G2 being not isomorphic, P, since it is omnipotent, finds the
(unique) graph Gj that is isomorphic to H (sent by V), and gives the correct value
j . So V accepts.

If G1, G2 are isomorphic, P cannot conclude which graph Gj , H comes from. So, P
cannot do anything better than sending a random j ∈ {1, 2} to V . Hence, if the
two graphs are isomorphic, V does not accept with probability 1/2.

So the graph non-isomorphsm problem belongs to IP.

Tutorial: Intro to Computational Complexity 56 / 131

Interactivity IV
Interactive Proofs (IP)

In fact, every language in the polynomial hierarchy has such a protocol and
belongs to IP.

The following, even stronger result has been proved.

Theorem (Shamir)

IP = PSPACE

Tutorial: Intro to Computational Complexity 57 / 131

Interactivity V
Interactive Proofs (IP)

What happens when the verifier can interact with two or even more
provers?

If the provers communicate with each other, then we remain in the
class IP (in practice, a prover, being omnipotent, can simulate any
other prover).

However, if the provers do not communicate with each other, then we
obtain the stronger class MIP (Multi IP).

It holds that MIP = NEXP.

Tutorial: Intro to Computational Complexity 58 / 131

Interactivity I
Arthur-Merlin Classes

In the class IP the verifier keeps the random bits it uses “private”
(hidden). Recall that in the prototcol for the graph non-isomorphism
problem, this fact was crucial for the proof.

It seems that if the verifier has to reveal its bits, we obtain a class
smaller than IP.

In this class of languages, the prover is called Merlin and the verifier
Arthur (this description was given by Babai).

In fact, we can assume that the messages sent by Arthur are even
more restricted: he just sends the random bits to Merlin. Based on
Merlin’s answers, Arthur decides whether he accepts or rejects.

Tutorial: Intro to Computational Complexity 59 / 131

Interactivity II
Arthur-Merlin Classes

We say that Arthur and Merlin play a game of k moves (every move corresponds to a
message): if Arthur moves first, then the game is denoted by AM(k), whereas if Merlin
moves first, it is denoted by MA(k).

For example, AM(1) = A, AM(2) = AM, AM(3) = AMA, MA(1) = M, MA(2) = MA,
MA(3) = MAM.

Another difference with respect to the class IP is that we need to bound the
probabilities away from 1/2 (again the exact value is not important).

Formally for the class AM(k), we have the following.

Definition
L ∈ AM(k) if there is a game of k moves such that Arthur plays first and if:

x ∈ L =⇒ Arthur is convinced that x ∈ L with probability greater than 2/3.

x ̸∈ L =⇒ Arthur is convinced that x ∈ L with probability less than 1/3.

Tutorial: Intro to Computational Complexity 60 / 131

Interactivity III
Arthur-Merlin Classes

By using generalized quantifiers, the classes can be written as follows (Zachos):

AM = AM(2) = (∃+∃,∃+∀), MA = MA(2) = (∃∃+,∀∃+),

and for k even, if AM(k) = (Q1,Q2), where Q1, Q2 sequences of quantifiers:

AM(k+1) = (Q1∃+,Q2∃+), AM(k+2) = (Q1∃+∃,Q2∃+∀).

The above description can be simplified as follows (Zachos):

AM = AM(2) = (∀∃,∃+∀), MA = MA(2) = (∃∀, ∀∃+),

and for k even, if AM(k) = (Q1,Q2), where Q1, Q2 sequences of quantifiers:

AM(k+1) = (Q1∀,Q2∃+), AM(k+2) = (Q1∀∃,Q2∃+∀).

Tutorial: Intro to Computational Complexity 61 / 131

Interactivity IV
Arthur-Merlin Classes

Using properties of quantifiers, we obtain the following results:

Proposition

MA ⊆ AM.

Proposition

The hierarchy of Arthur-Merlin games collapses, i.e.

AM = AM(k) = MA(k+1), for all k ≥ 2.

Although, as already mentioned, the Arthur-Merlin class with polynomial
number of interactive messages seems to be weaker than IP (because of
the fact that the random bits are public), Goldwasser, Sipser proved that
they are equivalent.

Tutorial: Intro to Computational Complexity 62 / 131

Interactivity I
Probabilistic Checable Proofs — PCP

In the interactive proofs, if we replace the prover with a simple proof, we have the class
PCP. Let us assume that in PCP, the prover interacts with the verifier only at the
beginning: he just writes a proof and send it to the verifier. Note that these proofs are
checked probabilistically by V .

Formally:

Definition

L ∈ PCP:

x ∈ L =⇒ there is a proof Π such that the verifier V always accepts
(i.e. we have acceptance probability equal to 1).

x ̸∈ L =⇒ for every proof Π, the verifier V does not accept with
high probability.

This class seems much stronger than IP, since the verifier has to handle a static object
(the proof) and not to communicate with a prover that can adjust to his questions.

It can be proved that PCP = MIP(= NEXP).

Tutorial: Intro to Computational Complexity 63 / 131

Interactivity II
Probabilistic Checable Proofs — PCP

Therefore, we are going to consider restrictions of the class PCP.
We are going to consider two kinds of resources that are not limitless for
the verifier:

randomness (in the form of random bits)·
bits of the proof that can be checked (queries to the proof).

Definition

The class PCP(r(n), q(n)) consists of the languages L ∈ PCP that the
probabilistic polynomial-time verifier V uses O(r(n)) random bits and
checks O(q(n)) bits in the proof.

For example, already known complexity classes can be defined as follows.

PCP = PCP(poly(n), poly(n)), P = PCP(0,0),
NP = PCP(0, poly(n)), coRP = PCP(poly(n), 0).

Tutorial: Intro to Computational Complexity 64 / 131

Interactivity III
Probabilistic Checable Proofs — PCP

A very important result (Arora, Lund, Motwani, Sudan, Szegedy) is the
following:

Theorem (PCP)

NP = PCP(log n, 1)(log n, 1)(log n, 1).

An application of the PCP theorem is in proofs of inapproximability results.

The basic tool in the proof of the PCP theorem is a technique (PCP
encoding) that spreads a possible error that exists at some point of the
proof over all parts of the proof. In this way, the verifier can find the error
with high probability. This technique is based on error correcting codes.

Tutorial: Intro to Computational Complexity 65 / 131

Overview

1 Complexity classes

2 Randomness

3 Interactivity, PCP

4 Counting

5 How to handle NP-complete problems

6 Approximation Algorithms

7 Search Complexity

8 Parameterized Complexity

9 Quantum Complexity

Tutorial: Intro to Computational Complexity 66 / 131

Counting classes I

Classes of counting problems are defined based on the number of solutions
that a problem has. These are classes of functions (like FP).

The following classes are interesting.

Definition

#P is the class of functions f such that there is a non-deterministic
polynomial-time Turing machine (NPTM), the computation tree of which
has exactly f (x) accepting computation paths (on input x).

Definition

#L is the class of functions f such that there is a non-deterministic
logarithmic-space Turing machine, the computation tree of which has
exactly f (x) accepting computation paths (on input x).

When we consider counting classes, useful reductions are the ones that
preserve the number of solutions.

Tutorial: Intro to Computational Complexity 67 / 131

Counting classes II

A representative example of a #P-complete problem is #Sat:
”Given a formula in conjunctive normal form, how many truth assignments
are there that satisfy the formula?”.

Obviously, φ ∈ SAT iff #SAT(φ) ̸= 0.

Valiant showed that there are decision problems in P (e.g. the problem of
deciding whether there exists a perfect matching in a graph) for which the
corresponding counting problem (e.g. #Perfect Matchings) is
#P-complete.

Some results for these classes are the following.

FP ⊆ #P ⊆ FPSPACE, PPP = P#P, FL ⊆ #L ⊆ FNC2.

Tutorial: Intro to Computational Complexity 68 / 131

Counting classes III

Theorem (Toda)

PH ⊆ P#P.

The proof of Toda’s theorem consists of proving two inclusions as shown
next.

Tutorial: Intro to Computational Complexity 69 / 131

Counting classes IV

Lemma 1

PH ⊆ BPP⊕⊕⊕P.

Proof :

1 ⊕⊕⊕P⊕⊕⊕P =⊕⊕⊕P
(Papadimitriou-Zachos)

2 BPP ⊆∆∆∆P
2 ⊆ PH

(Sipser, Lautemann, Zachos)

3 NP ⊆ BPP =⇒ PH ⊆ BPP
(Zachos)

4 NP ⊆ RP⊕⊕⊕P ⊆ BPP⊕⊕⊕P

(Valiant-Vazirani) (trivial)

5 NP⊕⊕⊕P ⊆ BPP⊕⊕⊕P⊕⊕⊕P
=⇒ NP⊕⊕⊕P ⊆ BPP⊕⊕⊕P

(by 4. with oracle ⊕⊕⊕P) (by 1.)

6 NP⊕⊕⊕P ⊆ BPP⊕⊕⊕P =⇒ PH⊕⊕⊕P ⊆ BPP⊕⊕⊕P

(by 3. with oracle ⊕⊕⊕P)

7 PH ⊆ PH⊕⊕⊕P = BPP⊕⊕⊕P

(by 2. and 6.) □

Tutorial: Intro to Computational Complexity 70 / 131

Counting classes V

Lemma 2.

BPP⊕P ⊆ P#P

Proof ommited.

Tutorial: Intro to Computational Complexity 71 / 131

Overview

1 Complexity classes

2 Randomness

3 Interactivity, PCP

4 Counting

5 How to handle NP-complete problems

6 Approximation Algorithms

7 Search Complexity

8 Parameterized Complexity

9 Quantum Complexity

Tutorial: Intro to Computational Complexity 72 / 131

How to handle NP-complete problems I

We know that the NP-hard problems cannot be solved:

1 Exactly

2 For all instances

3 In polynomial time

Tutorial: Intro to Computational Complexity 73 / 131

How to handle NP-complete problems II

Exactness Universality

Efficiency

Mission impossible! (...unless P = NP)

Tutorial: Intro to Computational Complexity 74 / 131

How to handle NP-complete problems III

Exactness Universality

�����Efficiency

Better exponential-time algorithms
e.g. O(1.2738k + kn) for Vertex Cover

Tutorial: Intro to Computational Complexity 75 / 131

How to handle NP-complete problems IV

Exactness ((((((Universality

Efficiency

Efficient computation for special cases of the problem
(restricted class of instances) e.g. HornSAT

Tutorial: Intro to Computational Complexity 76 / 131

How to handle NP-complete problems V

(((((Exactness Universality

Efficiency

Approximation algorithms!!!

Tutorial: Intro to Computational Complexity 77 / 131

How to handle NP-complete problems VI

If we ignore condition (1), then we have approximation algorithms.

If we ignore condition (2), then we can find large subclasses of
instances, for which the problem can be solved in polynomial
time, and we can decide whether an input belongs to this class of
instances in polynomial time.

▶ Pseudopolynomial, Strongly Polynomial
▶ Parameterization (e.g. Vertex Cover(n, k))

Parameterized Complexity (2knc , nk etc)

If we ignore condition (3), then we classify superpolynomial-time
solutions, for example:
1.003n ≤ 1.5n ≤ 2n ≤ 5n ≤ n! ≤ nn

nlog log n ≤ nlog n ≤ nlog
13 n ≤ nn.

Tutorial: Intro to Computational Complexity 78 / 131

Overview

1 Complexity classes

2 Randomness

3 Interactivity, PCP

4 Counting

5 How to handle NP-complete problems

6 Approximation Algorithms

7 Search Complexity

8 Parameterized Complexity

9 Quantum Complexity

Tutorial: Intro to Computational Complexity 79 / 131

Approximation Algorithms I

An optimization problem is: (I ,S , v , goal).

I : instances of the problem.

S : a function that maps every instance to its feasible solutions.

v : the objective function that maps every feasible solution to a
positive integer.

goal: min or max, for minimization or maximization of the objective
function, respectively.

The value of the objective function for the optimum solution on input x is
denoted by OPT(x) and it is equal to goal{v(y) | y ∈ S(x)}.

Tutorial: Intro to Computational Complexity 80 / 131

Approximation Algorithms II

Also, we define for every optimization problem, the underlying decision
problem as follows:

Input: x (the input to the optimization problem) and a bound k.
Question: is OPT(x) ≥ k;
(for a maximization problem – analogously “is OPT(x) ≤ k?” for a
minimization problem.)

Example

For the problem Max-Clique, the instance is a graph x , feasible
solutions are all complete subgraphs of x (cliques), the objective function
is the number of nodes in a clique and goal = max.
The underlying decision problem is the well-known Clique.

Tutorial: Intro to Computational Complexity 81 / 131

Approximation Algorithms III

We define the following complexity classes of optimization problems.

Definition

NPO: The class of optimization problems, such that the underlying
decision problem is in NP (under the condition that there are feasible
solutions for every instance).

Definition

PO: The class of optimization problems, such that the underlying decision
problem is in P.

Tutorial: Intro to Computational Complexity 82 / 131

Approximation Algorithms IV

Many optimization problems are NP-hard. Therefore, we look for
approximation polynomial-time algorithms that solve such problems.

Definition

A polynomial-time algorithm M is ρ-approximation for a maximization
problem if for every x ∈ I returns a solution M(x) ∈ S(x) such that:

v(M(x))

OPT(x)
≤ ρ.

Analogously, we define a ρ-approximation algorithm for minimization
problems.

Tutorial: Intro to Computational Complexity 83 / 131

Approximation Algorithms V

The most known subclasses of NPO, except for PO, are the following:

poly-APX: contains problems for which there is a p(n)-approximation
algorithm for some polynomial p (where n is the length of the input:
n = |x |).
log-APX: contains problems for which there is a log n-approximation
algorithm (where n is the length of the input: n = |x |).
APX: contains problems for which there is a ρ-approximation
algorithm for some constant ρ > 0.

Tutorial: Intro to Computational Complexity 84 / 131

Approximation Algorithms VI

PTAS: contains problems for which there is a polynomial-time
approximation scheme, i.e. (1+ε)-approximation algorithm for every
constant ε > 0.

FPTAS: contains problems for which there is a fully polynomial-time
approximation scheme, i.e. (1+ε)-approximation algorithm for every
constant ε > 0, where the running time is also polynomial with
respect to 1/ε.

FPRAS: contains problems for which there is a fully polynomial-time
randomized approximation scheme, i.e. (1+ε)-approximation
algorithm for every constant ε > 0 with high probability, where the
running time is also polynomial with respect to 1/ε.

Tutorial: Intro to Computational Complexity 85 / 131

Classes of Optimization Problems

Tutorial: Intro to Computational Complexity 86 / 131

Overview

1 Complexity classes

2 Randomness

3 Interactivity, PCP

4 Counting

5 How to handle NP-complete problems

6 Approximation Algorithms

7 Search Complexity

8 Parameterized Complexity

9 Quantum Complexity

Tutorial: Intro to Computational Complexity 87 / 131

Search Complexity I
Papadimitriou, . . .

Definition

FNP is the class of partial multi-valued functions that are computable by
a non-deterministic polynomial-time Turing machine, such that the
computation tree, on input x , has on its leaves either ? or the certificate y
of the path that satisfies the corresponding predicate R(x , y).

However, the non-deterministic model yields problems in the definition of
function classes, because for a given input x ∈ Σ∗, there is no unique
output string. The attempt to address these problems has led to the
definition of the following classes.

NPMV: The class of partial multi-valued functions computable by a
non-deterministic polynomial-time Turing machine, such that the
computation tree, on input x, has on its leaves either ? or some of the
possible answers of the Turing machine.

NPSV: The class that includes single-valued NPMV functions.

Tutorial: Intro to Computational Complexity 88 / 131

Search Complexity II

All the classes we are going to see in the rest of this section are subclasses
of the class TFNP, where “T” declares that these functions are total, i.e.
there always exists a solution. The existence of a solution for every such
class is shown by existential proofs of some properties (usually
graph-theoretic properties).

Definition

A search problem Π consists of a set of instances, and every instance I
has a set Sol(I) of solutions. Given an instance, the computation of a
solution is required.
A search problem is total if Sol(I) ̸= ∅, for every instance I .

Tutorial: Intro to Computational Complexity 89 / 131

Local Search Problems I

Definition

A problem Π belongs to the class PLS (Polynomial Local Search) if the
size of every solution is polynomially bounded in the size of the input, and
there are polynomial-time algorithms for the following:

1 Given a string I , check whether I is an instance of Π, and if yes,
compute an initial solution that belongs to Sol(I).

2 Given I , s, check whether s ∈ Sol(I), and if yes, compute the cost of
the solution cI (s).

3 Given I , s, check whether s is a local optimum solution, and if not,
find a “better” solution s ′ ∈ NI (s), where NI (s) are the neighbors of
the solution s for the instance I .

Every problem in PLS admits an algorithm of local search: We use the first algorithm to
obtain an initial solution, and then we apply the third algorithm repeatedly, until we
reach a local optimum solution. Since the feasible solutions are exponentially many, this
process is not necessarily completed in polynomial time.

Tutorial: Intro to Computational Complexity 90 / 131

Local Search Problems II

Example

Let the problem MAXCUT, where an undirected graph G(V ,E) and a weight we ≥ 0
for every edge is given. The feasible solutions correspond to partitions (S , S) of
the set of vertices, and the objective function to the maximization of the total
weight of the edges that belong to the partition.

Two solutions are neighboring if we can transition from one to the other by
moving one vertex from the partition to its complement.

We start from an arbitrary partition (S , S), and as long as there is a better
neighboring solution, we transition to it.

The algorithm terminates when there is no better neighboring solution, i.e. when
we reach a local optimum solution.

Note that the number of feasible solutions for MAXCUT is exponential in the size of the
input.

The structure of the problem induces a graph G , where the vertices are feasible
solutions, and two vertices are connected through an edge, if we can transition from one
to the other by a simple change.

Tutorial: Intro to Computational Complexity 91 / 131

Local Search Problems III
Note that every problem in the class PLS belongs to TFNP, because every directed

acyclic graph (DAG) has a sink, or equivalently, every finite set of numbers has a

minimal element.

Definition

A reduction from a search problem Π1 to a problem Π2 consists of two
polynomial-time algorithms:

1 An algorithm A that maps instances x ∈ Π1 to instances A(x) ∈ Π2.

2 An algorithm B that maps solutions y of Π2 on input A(x) to
solutions B(y) of Π1 on input x .

In the case of PLS, the solutions that are mapped by B are the local optima.

The next problems are PLS-complete:

MAXCUT

TSP

MAXSAT

PURE NASH EQUILIBRIUM in congestion games.

Tutorial: Intro to Computational Complexity 92 / 131

Nash equilibrium I
Let (S , f) be a game of n players, where Si is the set of strategies of palyer i ,
S = S1 × S2 × · · · × Sn the set of strategy profiles of the players, and
f (x) = (f1(x), . . . , fn(x)) the utility function computed on x ∈ S .

Let xi be the strategy profile of player i and x−i the strategy profiles of all the
other players except for i .

Given that every player i ∈ {1, . . . , n} chooses strategy xi , the strategy profiles
chosen are described by the vector x = (x1, . . . , xn) and the utility of each player is
computed by the utility function fi (x).

Definition (Nash equilibrium)

A strategy profile x∗ ∈ S is a Nash equilibrium, if no player can do better by deviating
from his strategy, if the strategies of the others remain unchanged. In other words:

∀i , xi ∈ Si : fi (x
∗
i , x

∗
−i) ≥ fi (xi , x

∗
−i)

Note that in the case that the above inequality is strict for all players and their
strategies, we have the definition of a strict Nash equilibrium. Analogously, if a player
can change his strategy and preserve (but not necessarily increase) his utility, we say
that we have a weak Nash equilibrium.

Tutorial: Intro to Computational Complexity 93 / 131

Nash equilibrium II

The following topological theorem played an important role in the proof of
Nash that there is a (mixed) Nash equilibrium in every finite game.

Definition

Let S ⊂ Rn be a convex and compact (closed and bounded) space. For
every continuous function f : S → S , there is an element x0 such that
f (x0) = x0 (fixed point).

Figure: Fixed Point Theorem

Tutorial: Intro to Computational Complexity 94 / 131

Nash equilibrium III

Now, we are going to discuss Sperner’s Lemma, which is the combinatorial
analogue of the Fixed Point Theorem. For simplicity, we are going to
present its version in the case of two dimensions. Let’s assume we have
the rectangle ABCD and a triangulation on it, as shown in the next figure.
In addition, we assume that the vertices are colored according to the
following rules:

1 The vertices on the side AB must have color 1 (yellow), those on
sides BC and CD color 2 (blue) and those on side DA color 3 (red).

2 The vertices that are not on the borders of ABCD can have any color.

Tutorial: Intro to Computational Complexity 95 / 131

Nash equilibrium IV

Figure: A valid coloring of an arbitrary triangulation.

Tutorial: Intro to Computational Complexity 96 / 131

Nash equilibrium V

Lemma (2D-Sperner)

In every triangulation with a valid coloring (as described above), there is a
tri-chromatic triangle, i.e. a triangle, every vertex of which has a different
color. It holds, also, that the number of tri-chromatic triangles is odd.

Proof: Given a valid coloring, we can always construct an “artificial”
tri-chromatic triangle, outside the rectangle, on its bottom left side.
Starting from this triangle, we are going to define a walk through the
triangles, that will have a tri-chromatic triangle as its final destination. Let
KL be the edge of the artificial triangle (the starting point) from which we
can enter the surface ABC. Let k and l the colors of the vertices that
define this edge, yellow and red, respectively. The rule according to which
we walk through the triangles is the following: Whenever we find edge
with colors 1 and 3 in the current triangle, we traverse it, only if the color
1 is on our left. We can easily verify that this walk ends when we reach a
tri-chromatic triangle.

Tutorial: Intro to Computational Complexity 97 / 131

Nash equilibrium VI

Since the number of triangles is finite, our walk has to stop, i.e. has to
find a tri-chromatic triangle. Otherwise, the walk has to go into an infinite
loop, which cannot happen because of the rule we defined.

Since we have proved that tri-chromatic triangles exist in ABCD, we can
show that their number is odd in a similar way. More precisely, starting
from a tri-chromatic triangle and following the reverse walk with respect
the one that we described above, we can show that we will find another
tri-chromatic triangle. We conclude that tri-chromatic triangles come in
pairs. Since one of them is the artificial triangle, we conclude that their
number is odd.

Tutorial: Intro to Computational Complexity 98 / 131

Nash equilibrium VII

Brouwer’s Fixed Point Theorem can be proven by using the above lemma.
More precisely, we consider a weak version of the Fixed Point Theorem, i.e.
that there is fixed point x0 (in the weak sense) such that |f (x0)− x0| ≤ ϵ,
for ϵ > 0. In this case, if we consider a Sperner triangulation on the
domain of f , we require that the diameter of the triangles is ϵ, and we
color the vertices with three colors based on the direction of f (x)− x at
these points, then we can see (using some imagination) that every
tri-chromatic triangle corresponds to a weak fixed point. Finally, we can
pass from the weak to the strong form of the Fixed Point Theorem using
the fact that the space is compact and taking the limit when ϵ approaches
zero. Below we can see an example in the case of two dimensions:

Tutorial: Intro to Computational Complexity 99 / 131

Nash equilibrium VIII

Figure: Finding the fixed point using Sperner’s lemma in two dimensions.

Tutorial: Intro to Computational Complexity 100 / 131

Nash equilibrium IX

Definition (NASH)

The input consists of a number n of players, the sets of strategies of every
player, Si , and the utility function f (x). An approximation parameter
ϵ > 0 is also given in the input.
The NASH or ϵ− NASH problem requires the computation of an equilibrium,
where no player can increase her utility more than ϵ by changing her
strategy unilaterally.

Definition (SPERNER)

Let the input be a grid such that it consists of 2n × 2n vertices and the
vertices on its borders have a valid coloring (as the one we described
before). We consider that the color of each interior vertex is given by a
circuit C , which, on input the coordinates x and y of a vertex, returns one
of the three colors.
The SPERNER problem is the problem of finding and returning a
tri-chromatic triangle.

Tutorial: Intro to Computational Complexity 101 / 131

Nash equilibrium X

By the previous analysis about the relationship among Nash, Fixed Point
Theorem and Sperner, one can be convinced, at least intuitively, that
ϵ− NASH problem is reducible to the corresponding ϵ− BROUWER, which in
turn is reducible to SPERNER. The reductions are based on techniques that
are similar to those used to connect the existential arguments for these
notions.
In particular, we can see that NASH can be solved by solving ϵ− BROUWER.
Moreover, the (almost) fixed points of ϵ− BROUWER can be found by
finding tri-chromatic triangles of the corresponding SPERNER problem, if
we consider a grid of appropriate size depending on the approximation
parameter ϵ.

Tutorial: Intro to Computational Complexity 102 / 131

Nash equilibrium XI

Before we define the class PPAD, recall the proof of the fact that there
exist tri-chromatic triangles in the Sperner grid.
We can consider an ancillary graph, the vertices of which correspond to
triangles and an edge connects two vertices iff they represent two triangles
that we can move from one to the other using the rule we defined for the
walk.
The resulting graph depicts the complexity of the search problem and
consists of isolated nodes, simple paths and cycles as shown in the
following figure:

Tutorial: Intro to Computational Complexity 103 / 131

Nash equilibrium XII

Figure: The search graph of the SPERNER problem.

Tutorial: Intro to Computational Complexity 104 / 131

Nash equilibrium XIII

Definition

A problem Π belongs to the class PPAD if each of its solutions has
polynomial length with respect to the input length and there are
polynomial-time algorithms for the following:

1 Given a string I , check whether I is an instance of Π, and if yes,
compute an initial solution s0 ∈ Sol(I).

2 Given I , s, check whether s ∈ S(I), and if yes, return a solution
pred(s) ∈ Sol(I), such that pred(s0) = s0.

3 Given I , s, check whether s ∈ S(I), and if yes, return a solution
succ(s) ∈ Sol(I), such that succ(s0) ̸= s0 and pred(succ(s0)) = s0.

Tutorial: Intro to Computational Complexity 105 / 131

Nash equilibrium XIV

Like in the case of PLS, the definition of PPAD induces a directed graph
G (Sol(I),E), the vertices of which represent feasible solutions and
E = {(u, v) : u ̸= v , succ(u) = v , pred(v) = u}.

The process described in the definition of the class allows us to find a
solution s, except for s0, that has indegree(s) + outdegree(s) = 1, by
following the path in G starting from s0. Since it holds that
indegree(s0) + outdegree(s0) = 1, there exists at least a solution s ̸= s0,
because of the well-known lemma:

“Every graph has an even number of nodes of odd degree.”

Tutorial: Intro to Computational Complexity 106 / 131

Nash equilibrium XV

Note that the structure of the graph induced by the definition of PPAD
and the functions succ(u) and pred(u) is exactly the same as that of the
search graph of the SPERNER problem. This is not a coincidence, since
SPERNER ∈ PPAD. Furthermore, because of the reductions we described,
it holds that BROUWER ∈ PPAD and NASH ∈ PPAD.
In their recent paper “The Complexity of Computing a Nash Equilibrium”,
Daskalakis, Goldberg and Papadimitriou proved that the NASH problem
with three players is PPAD- complete.

The following problems are PPAD-complete:

END OF THE LINE

SPERNER

NASH

Tutorial: Intro to Computational Complexity 107 / 131

Other classes I

Using several lemmas, we can define other classes as well:

PPADS: Similarly to PPAD, but in this case we search for a sink,
i.e. a solution with indegree = 1 and outdegree = 0.

PPA: The analogue of PPAD, but with an undirected graph (there is
a ‘neighborhood’ function instead of functions succ and pred).

PPP: In this class, a function f is defined on the set of solutions: Our
goal is to find either a solution that is mapped to the initial solution,
or two solutions y and y ′, such that f (x , y) = f (x , y ′). Such solutions
always exist because of the Polynomial Pigeonhole Principle.

CLS: The analogue of PLS for continuous spaces and functions
(Continuous Local Search). The class CLS contains the problems of
searching an approximate local optimum of a continuous function,
using an oracle f , where f is also a continuous function.

Tutorial: Intro to Computational Complexity 108 / 131

Other classes II

Tutorial: Intro to Computational Complexity 109 / 131

Overview

1 Complexity classes

2 Randomness

3 Interactivity, PCP

4 Counting

5 How to handle NP-complete problems

6 Approximation Algorithms

7 Search Complexity

8 Parameterized Complexity

9 Quantum Complexity

Tutorial: Intro to Computational Complexity 110 / 131

Parameterized Complexity I

Definition

A parameterization of Σ∗ is a recursive function k : Σ∗ → N.
A parameterized problem is an ordered pair (L, k), where L ⊆ Σ∗ and k is
a parameterization of Σ∗.
An algorithm A is an FPT -algorithm (Fixed Parameter Tractable) with
respect to parameter k , if there is a computable function f and a
polynomial p, such that for every x ∈ Σ∗, the algorithm A decides the
problem in O(f (k(x)) · p(|x |)) time.

Definition

We define FPT to be the class of parameterized problems that can be
solved by an FPT -algorithm.

Tutorial: Intro to Computational Complexity 111 / 131

Parameterized Complexity II
The next step, analogously to classical Complexity Theory, is to connect
these problems using reductions.

Definition

Let (L, k), (L′, k ′) be parameterized problems. (L, k) reduces to (L′, k ′)
with an FPT -reduction (symb. L ≤FPT L′) if there is algorithm R such
that:

1 For every x ∈ Σ∗, x ∈ L ⇔ R(x) ∈ L′

2 R is computable by an FPT -algorithm.

3 k ′ = g(k), where g : N → N is a computable function.

If A ≤FPT B and B ≤FPT A, then we say that A,B are FPT -equivalent
(symb. A ≡FPT B).

Example

Let the problem pSAT, where we are given a propositional formula ϕ, and a
parameter k , that represents the number of variables in ϕ. Is ϕ satisfiable?

Tutorial: Intro to Computational Complexity 112 / 131

Parameterized Complexity III
We are going to define the parameterized analogue of the class NP:

Definition

Let (L, k) be a parameterized problem. (L, k) belongs to the class paraNP
if there exists a computable function f : N → N, a polynomial p and a
non-deterministic algorithm, which, for every x ∈ Σ∗, decides the problem
in O(f (k(x)) · p(|x |)) time.

We say that a parameterized problem is trivial, if L = ∅ or L = Σ∗, and we
define the i-th slice of the problem (L, k) as the problem:

(L, k)i = {x ∈ L|k(x) = i}

The following characterization of the class paraNP holds:

Theorem

Let (L, k) ∈ paraNP be a non-trivial parameterized problem. Then the
finite union of slices of (L, k) is NP-complete iff (L, k) is
paraNP-complete.

Tutorial: Intro to Computational Complexity 113 / 131

Parameterized Complexity IV

We are going to define the parameterized analogue of the class EXP:

Definition
Let (L, k) be a parameterized problem. (L, k) belongs to the class XP if there exists a
computable function f , and an algorithm A, such that, for every x ∈ Σ∗,decides the
problem in O(|x |f (k(x))) time.

It holds that FPT ⊂ XP, whereas the relationship of paraNP with XP is unknown.

Definition
A non-deterministic Turing machine M is called k-restricted if there is a computable
function g : N → N and a polynomial p such that M needs f (k(x)) · p(|x |)
computational steps, and at most g(k(x)) · log |x | of them are non-deterministic.

Definition
We define the class W[P] as the class that contains all the parameterized problems
(L, k), which are decidable by k-restricted Turing machines.

Tutorial: Intro to Computational Complexity 114 / 131

Parameterized Complexity V

Most NP-complete problems parameterized so that they do not belong to
FPT, are in W[P].
The following inclusions hold: FPT ⊆ W[P] ⊆ XP ∩ paraNP.

Tutorial: Intro to Computational Complexity 115 / 131

Overview

1 Complexity classes

2 Randomness

3 Interactivity, PCP

4 Counting

5 How to handle NP-complete problems

6 Approximation Algorithms

7 Search Complexity

8 Parameterized Complexity

9 Quantum Complexity

Tutorial: Intro to Computational Complexity 116 / 131

Quantum Complexity — Computational Models I

The most widely used model for quantum computations and quantum
algorithms is the quantum circuit and specifically, uniform families of
quantum circuits (in the sense that there is a polynomial-time algorithm
that returns their description). These circuits are similar to logic circuits,
which implement Boolean functions (recall that every Boolean function
can be computed by a logic circuit that uses only the logic gates not and
and).

The gates of a quantum circuit can be constructed as combinations of the
quantum gates cnot, H, T.

Tutorial: Intro to Computational Complexity 117 / 131

Quantum Complexity — Computational Models II

These gates are linear unitary transformations: A linear transformation T ,
on a complex vector space, is unitary if T−1 = T ∗, i.e. if its inverse is
equal to its adjoint or conjugate transpose. Unitary transformations
preserve the Euclidean Norm, i.e. they are isometries.

cnot =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ,

H =
1√
2
·
(

1 1
1 −1

)
,

T =

(
1 0

0 e i ·
π
4

)
,

where i2 = −1.

Tutorial: Intro to Computational Complexity 118 / 131

Quantum Complexity — Computational Models III

The inputs and outputs of quantum algorithms are vectors.

Every logic circuit can be transformed into a quantum circuit: the
latter are a generalization of the former.

Apart from the quantum circuit, other models have been proposed,
such as quantum Turing machines.

Quantum circuits are mostly used in the definitions of time quantum
complexity classes, whereas quantum Turing machines are mostly
used in the definitions of space quantum complexity classes.

Regarding computability, conventional computers are equivalent to
quantum ones (Church-Turing). However, we have strong evidence
that quantum computers are more efficient.

Tutorial: Intro to Computational Complexity 119 / 131

Quantum Complexity Classes I
First, we will define classes that are quantum analogues of classical classes: BQP
corresponds to BPP ⊇ P, and QMA to MA ⊇ NP.

The main difference between quantum and classical classes is the following:

▶ To describe a quantum state we need exponentially large classical
information with respect to the size of the quantum system it describes.

▶ To describe a classical state we need linearly large classical information
with respect to the size of the classical state it describes.

This means that a quantum state is a superposition of classical states. For
example, a quantum state of size n requires 2n complex numbers to be described,
whereas a classical state of size n just requires n bits.

Definition (BQP)

For a language L, it holds that L ∈ BQP if there is a family of quantum
circuits {Qi} of polynomial time in i , such that for every x ∈ Σ∗:

x ∈ L ⇒ Pr
[
το Q|x | αποδέχεται το x

]
≥ 2

3

x /∈ L ⇒ Pr
[
το Q|x | αποδέχεται το x

]
≤ 1

3

Tutorial: Intro to Computational Complexity 120 / 131

Quantum Complexity Classes II

The class BQP represents the problems that can be efficiently solved by
using quantum computations.

Tutorial: Intro to Computational Complexity 121 / 131

Quantum Complexity Classes III

Definition (QMA)

For a language L, it holds that L ∈ QMA if there is a family of quantum
circuits {Qi} of polynomial time in i , such that for every x ∈ Σ∗:
• x ∈ L ⇒ ∃ a quantum state K of polynomial length in |x |:

Pr
[
Q|x | accepts (x ,K)

]
≥ 2

3

• x /∈ L ⇒ ∀ quantum state K of polynomial length in |x |:
Pr

[
Q|x | accepts (x ,K)

]
≤ 1

3

The class QMA represents the problems that can be efficiently verified by
using quantum computations. It holds that BQP ⊆ QMA.

Tutorial: Intro to Computational Complexity 122 / 131

Quantum Complexity Classes IV

Definition (QCMA)

For a language L, it holds that L ∈ QCMA if there is a family of quantum
circuits {Qi} of polynomial time in i , such that for every x ∈ Σ∗:
• x ∈ L ⇒ ∃ a classical state C of polynomial length in |x |:

Pr
[
Q|x | accepts (x ,C)

]
≥ 2

3

• x /∈ L ⇒ ∀ classical state C of polynomial length in |x |:
Pr

[
Q|x | accepts (x ,C)

]
≤ 1

3

The class QCMA can be seen also as CMQA, or MQA.

Tutorial: Intro to Computational Complexity 123 / 131

Quantum Complexity Classes V

Definition (QCMA1)

For a language L, it holds that L ∈ QCMA1 if there is a family of quantum
circuits {Qi} of polynomial time in i , such that for every x ∈ Σ∗:
• x ∈ L ⇒ ∃ a classical state C of polynomial length in |x |:

Pr
[
Q|x | accepts (x ,C)

]
= 1

• x /∈ L ⇒ ∀ classical state C of polynomial length in |x |:
Pr

[
Q|x | accepts (x ,C)

]
≤ 1

3

It can be proven that QCMA1 = QCMA.

Tutorial: Intro to Computational Complexity 124 / 131

Quantum Complexity Classes VI

Definition (PQP)

For a language L, it holds that L ∈ PQP if there is a family of quantum
circuits {Qi} of polynomial time in i , such that for every x ∈ Σ∗:

x ∈ L ⇒ Pr
[
Q|x | accepts x

]
> 1

2

x /∈ L ⇒ Pr
[
Q|x | accepts x

]
≤ 1

2

It holds that PP ⊆ PQP.

Definition (QIP)

For a language L, it holds that L ∈ QIP if there is a family of quantum
circuits {Qi} of polynomial time in i , such that for every x ∈ Σ∗:

x ∈ L ⇒ (∃P) Pr
[
P convinces V|x | to accept x

]
≥ 2

3

x /∈ L ⇒ (∀P) Pr
[
P convinces V|x | to accept x

]
≤ 1

3

It holds that IP ⊆ QIP.
Tutorial: Intro to Computational Complexity 125 / 131

Quantum Complexity Classes VII

Definition (BQPSPACE)

For a language L, it holds that L ∈ BQPSPACE if there is a polynomial
space quantum Turing machine M, such that for every x ∈ Σ∗:

x ∈ L ⇒ Pr [M accepts x] ≥ 2
3

x /∈ L ⇒ Pr [M accepts x] ≤ 1
3

Definition (PQPSPACE)

For a language L, it holds that L ∈ PQPSPACE if there is a polynomial
space quantum Turing machine M, such that for every x ∈ Σ∗:

x ∈ L ⇒ Pr [M accepts x] > 1
2

x /∈ L ⇒ Pr [M accepts x] ≤ 1
2

It holds that PSPACE = BPPSPACE ⊆ BQPSPACE ⊆ PQPSPACE.

Tutorial: Intro to Computational Complexity 126 / 131

Quantum Complexity Classes VII

Inclusions are depicted in the following diagram.

Tutorial: Intro to Computational Complexity 127 / 131

Quantum Complexity Classes – Fundamental Results I

Theorem

BQPBQP = BQP

There exists an oracle A, such that BQPA ⊈ BPPA.

There exists an oracle A, such that NPA ⊈ BQPA.

QMA ⊆ PP = PQP

PSPACE = QIP = BQPSPACE = PQPSPACE

Theorem (Grover)

There is a quantum algorithm that computes the position of (let’s say a
unique) object s, that belongs to a list of size N ∈ N, in O(

√
N) steps.

The efficiency of this algorithm can be proven to be optimal.

Definition (FACTORING)

Input: A natural number n.
Output: The factorization of n into a product of powers of prime numbers.

Tutorial: Intro to Computational Complexity 128 / 131

Quantum Complexity Classes – Fundamental Results II

Definition (DISCRETE LOGARITHM)

Input: Two elements a, b of a group (G , ·). Recall that a0 = e, where e is

the identity element of (G , ·), and am = am−1a, ∀m ∈ N≥1.
Output: A natural number c such that ac = b, if such a number exists,
otherwise an indication that such a c does not exist.

Theorem

FACTORING ∈ BQP, DISCRETE LOGARITHM ∈ BQP (for the
corresponding decision problems).

Both problems belong to NP, but we do not know whether they lie in P.

Tutorial: Intro to Computational Complexity 129 / 131

Quantum Complexity Classes – Fundamental Results III

Definition (GROUP NON-MEMBERSHIP)

Input: A subgroup (H, ·) of a group (G , ·), and an element g ∈ G (the
subgroup H is known by its generators).
Question: Does it hold that g /∈ H?

Theorem

GROUP NON-MEMBERSHIP ∈ QMA.

We do not know whether GROUP NON-MEMBERSHIP ∈ NP.

Analogously, the problem 2-LOCAL HAMILTONIAN is QMA-complete.
There are other problems that have been characterized as QMA-complete.

Tutorial: Intro to Computational Complexity 130 / 131

Quantum Complexity Classes – Open Problems I

NP
?
⊆ BQP, BQP

?
⊆ NP.

QMA
?
⊆ QCMA. Is there an oracle A, such that QMAA⊈QCMAA?

BQP
?
⊆ BPP, BQP

?
⊆ P.

BQP
?
⊆ PH. Recall that BPP⊆PH. Is there an oracle A, such that

BQPA⊈PHA?

Are there #P-complete problem of quantum nature?

GRAPH ISOMORPHISM
?
∈ BQP? Recall that

GRAPH ISOMORPHISM ∈ NP, but we do not know whether
GRAPH ISOMORPHISM ∈ P.

GRAPH NON-ISOMORPHISM
?
∈ QMA? We know that GRAPH

ISOMORPHISM ∈ coNP ∩ AM.

Tutorial: Intro to Computational Complexity 131 / 131

Counting Complexity

Stathis Zachos

Overview

1 Counting problems: The class #P

2 Approximation of counting problems

3 Counting problems with easy decision version: the class #PE

4 Counting problems with easy decision and self-reducibility: the class
TotP

Counting Complexity 2 / 38

Overview

1 Counting problems: The class #P

2 Approximation of counting problems

3 Counting problems with easy decision version: the class #PE

4 Counting problems with easy decision and self-reducibility: the class
TotP

Counting Complexity 3 / 38

The class NP

NP: L ∈ NP iff there is a non-deterministic polynomial-time Turing
machine (NPTM) M s.t. for every x ∈ Σ∗:

x ∈ L ⇔ M(x) has an accepting computation path

Counting Complexity 4 / 38

Why counting?

Why not? But also many interesting problems from different areas can be
expressed as counting problems:

Computing the partition function in statistical physics.

Computing the volume of a convex body in computational
geometry.

Computing the permanent in linear algebra.

Computing the social cost of a given mixed Nash equilibrium in selfish
games in algorithmic game theory.

There is a framework for optimization under uncertainty which
requires counting approximate solutions for the corresponding decision
problem.

Counting Complexity 5 / 38

The class #P (Valiant 1979)
An NPTM outputs ‘yes’ or ‘no’ and we want to compute the number
of accepting computation paths.

#P: f ∈ #P iff there is an NPTM M s.t. for every x ∈ Σ∗:

f (x) = #(accepting paths of M on input x).

Counting Complexity 6 / 38

Every decision problem in NP has a counting version in #P.

Counting the number of accepting paths is at least as hard as
deciding if an accepting path exists.

Accepting paths correspond to solutions of computational problems.

Counting Complexity 7 / 38

Example (1)

Sat
Input: A propositional formula ϕ in conjunctive normal form.
Output: Accept if ϕ is satisfiable. Otherwise, reject.

#Sat
Input: A propositional formula ϕ in conjunctive normal form.
Output: The number of satisfying assignments of ϕ.

Counting Complexity 8 / 38

Example (1)

Let ϕ = (x1 ∨ ¬x2 ∨ x3) ∧ (x1 ∨ ¬x3) ∧ (¬x1 ∨ x2) be the input.

The output of Sat is “accept”, or ϕ ∈ Sat.

The output of #Sat is 3, or #Sat(ϕ) = 3.

Sat ∈ NP and #Sat ∈ #P.

Counting Complexity 9 / 38

Example (1)

Cook’s Theorem 1971: Sat is NP-complete.

#Sat is #P-complete (under Karp reductions).

Counting Complexity 10 / 38

Example (2)

2-Coloring: Is a graph 2-colorable?

⋆ Equivalently, is the graph bipartite?

1

2

3

4

5

6

7

8

#2-Colorings: How many 2-colorings does a graph have?

⋆ Every connected bipartite graph has exactly two 2-colorings (swap the
colors).

Counting Complexity 11 / 38

Example (2)

2-Coloring is in P.

#2-Colorings is in FP.

Counting Complexity 12 / 38

Example (3)
Bipartite Perfect Matching: Does a bipartite graph G have a
perfect matching?

⋆ It is reducible to the Max-Flow problem.

#Bipartite Perfect Matchings: How many perfect matchings does
a bipartite graph have?

⋆ We write the biadjacency matrix A of G , i.e. the left vertices
correspond to rows and the right vertices correspond to columns.

1

2

3

4

5

6 =⇒ A =

4 5 6()1 1 1 0
2 0 1 1
3 1 0 1

Counting Complexity 13 / 38

Example (3)
Every perfect matching in G corresponds to a combination of 1’s in A such
that exactly one 1 appears in every row and every column. For example,

1

2

3

4

5

6ww�

A =

4 5 6()1 1 1 0
2 0 1 1
3 1 0 1

Counting Complexity 14 / 38

Example (3)

1

2

3

4

5

6ww�

A =

4 5 6()1 1 1 0
2 0 1 1
3 1 0 1

Counting Complexity 15 / 38

Example (3)

#Bipartite Perfect Matchings or Permanent: How many
perfect matchings does a bipartite graph have?

⋆ Equivalently, compute the permanent of A =

1 1 0
0 1 1
1 0 1

:
Permanent(A) =

∑
σ∈Sn

n∏
i=1

ai ,σ(i).

Note that

det(A) =
∑
σ∈Sn

(
sgn(σ)

n∏
i=1

ai ,σ(i)

)
.

Counting Complexity 16 / 38

Example (3)

Bipartite Perfect Matching is in P.

Valiant 1979: Permanent is #P-complete (under Cook reductions).

Counting Complexity 17 / 38

Example (4)

Independent Set: Is there an independent set (of any size) in a graph?

#Independent Sets: How many independent sets (of any size) are
there in a graph?

Counting Complexity 18 / 38

Example (4)

Independent Set is trivial.

#Independent Sets is #P-complete (under Cook reductions).

Counting Complexity 19 / 38

ProblemProblemProblem Decision versionDecision versionDecision version Counting versionCounting versionCounting version

Sat NP-complete #P-complete
(under Karp)

2-Coloring P FP

Bipartite Perfect
Matching

P #P-complete
(under Cook)

Independent Set trivial #P-complete
(under Cook)

Counting Complexity 20 / 38

Reductions between counting functions

Cook (poly-time Turing)

f ⩽p
T g : f ∈ FPg

Karp / parsimonious (poly-time many one)

f ⩽p
m g : ∃h ∈ FP, ∀x f (x) = g(h(x))

Permanent is #P-complete under Cook reductions.
▶ If Permanent were #P-complete under Karp reductions, then

P = NP.

#Sat is #P-complete under Karp reductions (thus also Cook
reductions).

Counting Complexity 21 / 38

Reductions between counting functions

Cook (poly-time Turing)

f ⩽p
T g : f ∈ FPg

Karp / parsimonious (poly-time many one)

f ⩽p
m g : ∃h ∈ FP, ∀x f (x) = g(h(x))

Permanent is #P-complete under Cook reductions.
▶ If Permanent were #P-complete under Karp reductions, then

P = NP.

#Sat is #P-complete under Karp reductions (thus also Cook
reductions).

Counting Complexity 21 / 38

NP-completeness versus #P-completeness

Is a decision problem corresponding to a #P-complete problem under
Cook reductions, NP-complete?

▶ We just answered NOT ALWAYS!
▶ Thus #P-completeness (under Cook reductions) ̸⇒ NP-completeness.
▶ Under Karp reductions: Every #P-complete has an NP-complete

decision version.

What about the converse?

Conjecture: Every NP-complete problem has a #P-complete counting
version under Cook reductions.

▶ We believe that NP-completeness ⇒ #P-completeness (under Cook
reductions).

▶ Under Karp reductions: It has been proven that there is an
NP-complete problem that its counting version is not #P-complete
unless P = NP.

Counting Complexity 22 / 38

NP-completeness versus #P-completeness

Is a decision problem corresponding to a #P-complete problem under
Cook reductions, NP-complete?

▶ We just answered NOT ALWAYS!
▶ Thus #P-completeness (under Cook reductions) ̸⇒ NP-completeness.
▶ Under Karp reductions: Every #P-complete has an NP-complete

decision version.

What about the converse?

Conjecture: Every NP-complete problem has a #P-complete counting
version under Cook reductions.

▶ We believe that NP-completeness ⇒ #P-completeness (under Cook
reductions).

▶ Under Karp reductions: It has been proven that there is an
NP-complete problem that its counting version is not #P-complete
unless P = NP.

Counting Complexity 22 / 38

NP-completeness versus #P-completeness

Is a decision problem corresponding to a #P-complete problem under
Cook reductions, NP-complete?

▶ We just answered NOT ALWAYS!
▶ Thus #P-completeness (under Cook reductions) ̸⇒ NP-completeness.
▶ Under Karp reductions: Every #P-complete has an NP-complete

decision version.

What about the converse?

Conjecture: Every NP-complete problem has a #P-complete counting
version under Cook reductions.

▶ We believe that NP-completeness ⇒ #P-completeness (under Cook
reductions).

▶ Under Karp reductions: It has been proven that there is an
NP-complete problem that its counting version is not #P-complete
unless P = NP.

Counting Complexity 22 / 38

Some basic inclusions

FP ⊆ #P ⊆ FPSPACE.

NP ⊆ P#P[1].

If FP = #P, then P = NP.

Toda’s Theorem: PH ⊆ P#P[1].

Counting Complexity 23 / 38

Overview

1 Counting problems: The class #P

2 Approximation of counting problems

3 Counting problems with easy decision version: the class #PE

4 Counting problems with easy decision and self-reducibility: the class
TotP

Counting Complexity 24 / 38

Exact and efficient counting

Exact and efficient counting is rare:

#2-Colorings.

#Perfect Matchings in planar graphs.

#Spanning trees in general graphs.

The last two problems are reducible to the computation of the
determinant.

Of course, all these problems have a decision version in P!

Counting Complexity 25 / 38

Approximate counting

Definition

A fully polynomial randomized approximation scheme (fpras) for a
counting problem f : Σ∗ → N is a randomized algorithm that takes as
input an instance x ∈ Σ∗, an error tolerance 0 < ε < 1, and 0 < δ < 1,

and outputs a number f̂ (x) ∈ N such that

Pr[(1− ε)f (x) ≤ f̂ (x) ≤ (1 + ε)f (x)] ≥ 1− δ.

The algorithm must run in time polynomial in |x |, 1/ε and log(1/δ).

Counting Complexity 26 / 38

For example, given ε = 0.1, we would have

0.9 ≤ f̂ (x)

f (x)
≤ 1.1

with high probability.

Given |x |, ε can be an inverse polynomial of |x |, and δ can be
inversely exponential in |x | (negligibly small).

Counting Complexity 27 / 38

All or nothing theorem

Theorem

For any self-reducible counting problem, if there exists a polynomial-time
randomized algorithm that solves the problem within a polynomial factor,
then there exists an fpras for it.

For self-reducible counting problems,

1 the distinction between polynomial, logarithmic, constant and
(1± ε)-approximation is irrelevant,

2 “approximability” means “there is an fpras”.

Counting Complexity 28 / 38

All or nothing theorem

Theorem

For any self-reducible counting problem, if there exists a polynomial-time
randomized algorithm that solves the problem within a polynomial factor,
then there exists an fpras for it.

For self-reducible counting problems,

1 the distinction between polynomial, logarithmic, constant and
(1± ε)-approximation is irrelevant,

2 “approximability” means “there is an fpras”.

Counting Complexity 28 / 38

Approximable counting problems

Some examples of counting problems that admit an fpras are the
following:

#DNF: count the satisfying assignments of a formula in disjunctive
normal form.

#Bipartite Perfect Matchings: count the perfect matchings
in a bipartite graph.

#NFA: count the strings of length n that are accepted by an NFA
M, where the input is 1n and an encoding of M.

Most known approximable counting problems have a decision version in P.

There are approximable counting problems with decision version in RP.

Counting Complexity 29 / 38

Approximable counting problems

Some examples of counting problems that admit an fpras are the
following:

#DNF: count the satisfying assignments of a formula in disjunctive
normal form.

#Bipartite Perfect Matchings: count the perfect matchings
in a bipartite graph.

#NFA: count the strings of length n that are accepted by an NFA
M, where the input is 1n and an encoding of M.

Most known approximable counting problems have a decision version in P.

There are approximable counting problems with decision version in RP.

Counting Complexity 29 / 38

Inaproximable counting problems

If any of the following counting problems has an fpras then RP = NP.

#Sat.

#2Sat.

#Monotone Sat.

#Independent Sets.

NP-complete problems have inapproximable counting versions (unless
RP = NP).

But there are also problems in P with inapproximable counting versions
(unless RP = NP).

Counting Complexity 30 / 38

Inaproximable counting problems

If any of the following counting problems has an fpras then RP = NP.

#Sat.

#2Sat.

#Monotone Sat.

#Independent Sets.

NP-complete problems have inapproximable counting versions (unless
RP = NP).

But there are also problems in P with inapproximable counting versions
(unless RP = NP).

Counting Complexity 30 / 38

Overview

1 Counting problems: The class #P

2 Approximation of counting problems

3 Counting problems with easy decision version: the class #PE

4 Counting problems with easy decision and self-reducibility: the class
TotP

Counting Complexity 31 / 38

Decision version of a counting problem

Given a counting problem, what is its decision version?

Given #Sat, its decision version is the problem of deciding “Is
#Sat(ϕ) > 0?”, where ϕ is some CNF formula.
In other words, this is the NP problem Sat.

Given f ∈ #P, its decision version is the problem of deciding whether
f (x) > 0 on any input x ∈ Σ∗.

For any f ∈ #P, its decision version is in NP.

Counting Complexity 32 / 38

The class #PE (#PEasy)

Definition (Pagourtzis 2001)

A function f : Σ∗ → N belongs to #PE if it is in #P and has a decision
version in P.

Counting Complexity 33 / 38

Overview

1 Counting problems: The class #P

2 Approximation of counting problems

3 Counting problems with easy decision version: the class #PE

4 Counting problems with easy decision and self-reducibility: the class
TotP

Counting Complexity 34 / 38

The class TotP (1)

We are interested in a subclass of #PE, which is called TotP.

Definition (Kiayias, Pagourtzis, Sharma & Zachos 2001)

f ∈ TotP iff there is an NPTM M s.t. for every x ∈ Σ∗:

f (x) = #(all paths of M on input x)− 1.

Note: We can consider
that M has a binary computation tree. Then

f (x) = # (all branchings of M on input x).

Counting Complexity 35 / 38

The class TotP (1)

We are interested in a subclass of #PE, which is called TotP.

Definition (Kiayias, Pagourtzis, Sharma & Zachos 2001)

f ∈ TotP iff there is an NPTM M s.t. for every x ∈ Σ∗:

f (x) = #(all paths of M on input x)− 1.

Note: We can consider
that M has a binary computation tree. Then

f (x) = # (all branchings of M on input x).

Counting Complexity 35 / 38

The class TotP (2)

Proposition (Pagourtzis & Zachos 2006)

TotP is the Karp closure of self-reducible #P functions with decision
version in P.

Counting Complexity 36 / 38

self-reducibility & easy decision ⇒ membership in TotP (1)

(x1 ∧ x3) ∨ (¬x2 ∧ x3)(x1 ∧ x3) ∨ (¬x2 ∧ x3)(x1 ∧ x3) ∨ (¬x2 ∧ x3)

(¬x2 ∧ x3)(¬x2 ∧ x3)(¬x2 ∧ x3)

x3x3x3

stopstopstop

x3 = true

x2 = false

x1 = false

x3 ∨ (¬x2 ∧ x3)x3 ∨ (¬x2 ∧ x3)x3 ∨ (¬x2 ∧ x3)

x3 ∨ x3x3 ∨ x3x3 ∨ x3

stopstopstop

x3 = true

x2 = false

x3x3x3

stopstopstop

x3 = true

x2 = true

x1 = true

stopstopstop

Counting Complexity 37 / 38

self-reducibility & easy decision ⇒ membership in TotP (2)

stop

stop

stop stop

Counting Complexity 38 / 38

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Non-Uniform Circuit Families

Non-Uniform Complexity

Stathis Zachos

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Non-Uniform Circuit Families

Non-Uniform Circuit Families

Non-Uniform Circuit Families

We can define non-uniform circuit families, without requiring the
existence of an algorithm contructing Cn given n.

Definition
Let T : N → N a constructible complexity function. A language L is in
the class P/poly if it can be decided by a family of circuits of
polynomial size.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Non-Uniform Circuit Families

Non-Uniform Circuit Families

Non-Uniform Circuit Families

The computation of a TM deciding a language in P, on an input x,
can be encoded as a circuit of polynomial size, hence P is a subset
of P/poly.

But, every unary language belongs to P/poly (exercise). Let’s
consider this language, which is closely related to Halting Problem:

UH = {1n | n encodes a pair (M, x) such that M(x) ↓}

UH is a unary language, so it belongs to P/poly, but it is not
decidable (we can reduce Halting Problem to it). So, the inclusion
is proper:

Theorem
P ⫋ P/poly

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Non-Uniform Circuit Families

Non-Uniform Circuit Families

Non-Uniform Circuit Families

The computation of a TM deciding a language in P, on an input x,
can be encoded as a circuit of polynomial size, hence P is a subset
of P/poly.
But, every unary language belongs to P/poly (exercise). Let’s
consider this language, which is closely related to Halting Problem:

UH = {1n | n encodes a pair (M, x) such that M(x) ↓}

UH is a unary language, so it belongs to P/poly, but it is not
decidable (we can reduce Halting Problem to it). So, the inclusion
is proper:

Theorem
P ⫋ P/poly

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Non-Uniform Circuit Families

Non-Uniform Circuit Families

Non-Uniform Circuit Families

The computation of a TM deciding a language in P, on an input x,
can be encoded as a circuit of polynomial size, hence P is a subset
of P/poly.
But, every unary language belongs to P/poly (exercise). Let’s
consider this language, which is closely related to Halting Problem:

UH = {1n | n encodes a pair (M, x) such that M(x) ↓}

UH is a unary language, so it belongs to P/poly, but it is not
decidable (we can reduce Halting Problem to it). So, the inclusion
is proper:

Theorem
P ⫋ P/poly

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Non-Uniform Circuit Families

Non-Uniform Circuit Families

Other Properties of P/poly

Theorem (Karp-Lipton)
If NP ⊆ P/poly, then PH = Σp

2

Theorem (Meyer)
If EXP ⊆ P/poly, then EXP = Σp

2

Theorem
BPP ⫋ P/poly

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Non-Uniform Circuit Families

Non-Uniform Circuit Families

Lower Bounds

P/poly is closely related to the P vs NP problem, since if one can
find a language in NP which is not in P/poly, then P ̸= NP.

This point of view commenced a research program during the 80s,
trying to construct explicitely such a language, and since P/poly is a
wide class, researchers also studied the bounded-depth subclasses
of P/poly, such as (non-uniform) NC,AC,ACC variants.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Non-Uniform Circuit Families

Non-Uniform Circuit Families

Lower Bounds

Such an example is ACC0[m], the non-uniform analogue of AC0,
with the extra use of MOD-counting gates (gates that output 0 iff
the modulo sum of all inputs xi equals to 0 (

∑
xi mod m = 0).

The most developed techniques for proving lower bounds for these
subclasses were the Random restriction method and the
Polynomial method.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Non-Uniform Circuit Families

Non-Uniform Circuit Families

Random restriction method

By using the Random restriction method, Furst, Saxe, Sipser, Ajtai
proved the following:

Theorem
PARITY /∈ AC0.

Håstad improved the aforementioned result by showing that
circuits of depth d need 2Ω(n1/(d−1)) size to compute PARITY.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Non-Uniform Circuit Families

Non-Uniform Circuit Families

Polynomial Method

Razborov and Smolensky showed that every circuit of bounded
depth that computes a language in ACC0[m] can be
probabilistically represented by a low-degree polynomial in F2.

On the other side, they proved the existence of functions that
cannot be represented by low-degree polynomials, even with high
probability, hence they cannot by computed by ACC0[m] circuits.

Theorem (Razborov-Smolensky)
For distinct primes p and q, MODp function is not in ACC0[q].

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Non-Uniform Circuit Families

Non-Uniform Circuit Families

Monotone Circuits

Another line of research was the restricion of circuit families to
monotone circuits, that is circuits without NOT gates (inverters).
For monotone circuit families, we have the following lower bound
for the Clique problem:

Theorem (Razborov-Andreev-Alon-Boppana)
There is an ε > 0, such that for all k ≤ n1/4 the k-clique problem cannot
be computed by monotone circuits of size 2ε

√
k.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Non-Uniform Circuit Families

Non-Uniform Circuit Families

Lower Bounds

Recently, new significant circuit lower bounds for NEXP were
proven. The proof techniques are related to the Circuit
Satisfiability problem:

Given a circuit Cn, is there an x ∈ {0, 1}n such that Cn(x) = 1?

The obvious algorithm is to (brute-force) check all 2n possible
inputs of length n, and in most cases is the best algorithm we
know.

Any improvement to such algoriths will lead to new lower bounds
for NEXP. Such an example is the following theorem:

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Non-Uniform Circuit Families

Non-Uniform Circuit Families

Lower Bounds

Theorem
Let s(n) be a superpolynomial function. If Circuit Satisfiability problem
for circuits of n inputs and poly(n) size can be solved in time
2n · poly(n)/s(n), then NEXP ⊈ P/poly.

The above theorem holds for any “natural” subclass of P/poly, eg
ACC0.
Recent advances in ACC0-SAT algorithms combined with the
ACC0-version of the above theorem, proved new (and
unconditional) lower bounds for ACC0:

Theorem

NEXP ⊈ ACC0

where ACC0 =
∪

(m1,...,ml)
ACC0[m1, ...,ml]

Descriptive Complexity

Stathis Zachos

Descriptive Complexity

What is the type of logic that is needed to express the problems of a
complexity class?

Descriptive Complexity 2 / 8

Instances are encoded by finite relational structures

The input to any computational problem can be seen as a finite relational
structure.

Let τ = ⟨Pa1 ,Ra2 ,Qa3 , . . .⟩. A structure over τ looks like:

A = ⟨A,PA,RA,QA, . . .⟩.

Descriptive Complexity 3 / 8

Graphs as finite relational structures

Graph G

0 1

23

Vocabulary τ = ⟨E 2⟩

G = ⟨V ,E ⟩, where

V = {0, 1, 2, 3},E = {(0, 1), (1, 0), . . .}

Then G |= (∀x , y)
[
¬E (x , x) ∧

(
E (x , y) ↔ E (y , x)

)]
says that graph G is

irreflexive and symmetric.

Descriptive Complexity 4 / 8

Fagin’s theorem

Theorem (Fagin 1973)

∃SO= NP over finite structures∃SO= NP over finite structures∃SO= NP over finite structures: For any language L, L ∈ NP iff it is
definable by an existential second-order sentence.

Descriptive Complexity 5 / 8

Examples

Does G have a 3-coloring?

G ∈ 3-Coloring iff

G |= (∃R)(∃B)(∃G)(∀x)
[(
R(x) ∨ B(x) ∨ G(x)

)
∧

(∀y)
(
E(x , y) → ¬

(
R(x) ∧ R(y)

)
∧ ¬

(
B(x) ∧ B(y)

)
∧ ¬

(
G(x) ∧ G(y)

))]

Does G contain a clique (of any size)?

G ∈ Clique iff G |= ∃X∀x∀y
(
X (x) ∧ X (y) ∧ x ̸= y) → E(x , y).

Descriptive Complexity 6 / 8

An overview

Over all finite structures:

∃SO= NP: Existential second-order logic captures NP. (Fagin 1974)

Over finite ordered structures:

FO(LFP) = P: First-order logic with least fixed point captures P.
(Immerman – Vardi 1982)

FO(PFP) = PSPACE: First-order logic with partial fixed point
captures PSPACE. (Vardi 1982)

FO(TC) = NL: First-order logic with the transitive closure operator
captures NL. (Immerman 1986)

Descriptive Complexity 7 / 8

P versus NP

Conjecture (Gurevich)

There is no logic that captures P over the class of all finite structures.

This a very strong conjecture, since there is such a logic for NP (by
Fagin’s theorem).

So proving this comjecture would imply that P ̸= NP.

Descriptive Complexity 8 / 8

