8 valued non-deterministic semantics for modal $$\log ic$$

P. Pawlowski (joint work with E. La Rosa)

Ghent University

MCMP, LMU Munich

Motivations

• Dugundji's result.

Motivations

- Dugundji's result.
- We do not like possible-world semantics.

Motivations

- Dugundji's result.
- We do not like possible-world semantics.
- Non-deterministic semantics is more natural for weak-modal logics.

Modal Logic $\mathbf{K}:$

Modal Logic $\mathbf{K}:$

• Prop. axioms

Modal Logic $\mathbf{K}:$

• Prop. axioms $MP \quad \frac{\varphi \quad \varphi \rightarrow \psi}{\psi}$

Modal Logic $\mathbf{K}:$

• Prop. axioms $MP \quad \frac{\varphi \quad \varphi \rightarrow \psi}{\psi}$ $K \quad \Box(\varphi \rightarrow \psi) \rightarrow (\Box \varphi \rightarrow \Box \psi)$

Modal Logic $\mathbf{K}:$

• Prop. axioms $MP \quad \frac{\varphi \quad \varphi \rightarrow \psi}{\psi}$ $K \quad \Box(\varphi \rightarrow \psi) \rightarrow (\Box \varphi \rightarrow \Box \psi)$ Dual1 $\Box \varphi \rightarrow \neg \Diamond \neg \varphi$

Modal Logic $\mathbf{K}:$

• Prop. axioms $\begin{array}{l} \mathsf{Dual2} \neg \Diamond \neg \varphi \rightarrow \Box \varphi \\ \mathsf{MP} \quad \frac{\varphi \quad \varphi \rightarrow \psi}{\psi} \\ \mathsf{K} \quad \Box(\varphi \rightarrow \psi) \rightarrow (\Box \varphi \rightarrow \Box \psi) \\ \mathsf{Dual1} \quad \Box \varphi \rightarrow \neg \Diamond \neg \varphi \end{array}$

Modal Logic $\mathbf{K}:$

• Prop. axioms MP $\frac{\varphi \quad \varphi \rightarrow \psi}{\psi}$ K $\Box(\varphi \rightarrow \psi) \rightarrow (\Box \varphi \rightarrow \Box \psi)$ Dual1 $\Box \varphi \rightarrow \neg \Diamond \neg \varphi$

Modal Logic \mathbf{K} :

- Prop. axioms Dual2 MP $\frac{\varphi \quad \varphi \rightarrow \psi}{\psi}$ Dual3 K $\Box(\varphi \rightarrow \psi) \rightarrow (\Box \varphi \rightarrow \Box \psi)$ Dual1 $\Box \varphi \rightarrow \neg \Diamond \neg \varphi$

Modal Logic \mathbf{K} :

• Prop. axioms MP $\frac{\varphi \quad \varphi \rightarrow \psi}{\psi}$ K $\Box(\varphi \rightarrow \psi) \rightarrow (\Box \varphi \rightarrow \Box \psi)$ Dual1 $\Box \varphi \rightarrow \neg \Diamond \neg \varphi$ Dual2 $\neg \Diamond \neg \varphi \rightarrow \Box \varphi$ Dual3 $\neg \Box \neg \varphi \rightarrow \Diamond \varphi$ Dual4 $\Diamond \varphi \rightarrow \neg \Box \neg \varphi$ NEC $\frac{\varphi}{\Box \varphi}$

Modal Logic \mathbf{K} :

• Prop. axioms MP $\frac{\varphi \quad \varphi \rightarrow \psi}{\psi}$ K $\Box(\varphi \rightarrow \psi) \rightarrow (\Box \varphi \rightarrow \Box \psi)$ Dual1 $\Box \varphi \rightarrow \neg \Diamond \neg \varphi$ Dual2 $\neg \Diamond \neg \varphi \rightarrow \Box \varphi$ Dual3 $\neg \Box \neg \varphi \rightarrow \Diamond \varphi$ Dual4 $\Diamond \varphi \rightarrow \neg \Box \neg \varphi$ NEC $\frac{\varphi}{\Box \varphi}$

$$\mathsf{D} \ \Box \varphi \to \Diamond \varphi$$

Modal Logic \mathbf{K} :

• Prop. axioms MP $\frac{\varphi \quad \varphi \rightarrow \psi}{\psi}$ K $\Box(\varphi \rightarrow \psi) \rightarrow (\Box \varphi \rightarrow \Box \psi)$ Dual1 $\Box \varphi \rightarrow \neg \Diamond \neg \varphi$ Dual2 $\neg \Diamond \neg \varphi \rightarrow \Box \varphi$ Dual3 $\neg \Box \neg \varphi \rightarrow \Diamond \varphi$ Dual4 $\Diamond \varphi \rightarrow \neg \Box \neg \varphi$ NEC $\frac{\varphi}{\Box \varphi}$

$$\begin{array}{c} \mathsf{D} \quad \Box \varphi \to \Diamond \varphi \\ \mathsf{T} \quad \Box \varphi \to \varphi \end{array}$$

Modal Logic \mathbf{K} :

• Prop. axioms MP $\frac{\varphi \quad \varphi \rightarrow \psi}{\psi}$ K $\Box(\varphi \rightarrow \psi) \rightarrow (\Box \varphi \rightarrow \Box \psi)$ Dual1 $\Box \varphi \rightarrow \neg \Diamond \neg \varphi$ Dual2 $\neg \Diamond \neg \varphi \rightarrow \Box \varphi$ Dual3 $\neg \Box \neg \varphi \rightarrow \Diamond \varphi$ Dual4 $\Diamond \varphi \rightarrow \neg \Box \neg \varphi$ NEC $\frac{\varphi}{\Box \varphi}$

$$\begin{array}{l} \mathsf{D} \quad \Box \varphi \to \Diamond \varphi \\ \mathsf{T} \quad \Box \varphi \to \varphi \\ \mathsf{B} \quad \varphi \to \Box \Diamond \varphi \end{array}$$

Modal Logic \mathbf{K} :

• Prop. axioms MP $\frac{\varphi \quad \varphi \rightarrow \psi}{\psi}$ K $\Box(\varphi \rightarrow \psi) \rightarrow (\Box \varphi \rightarrow \Box \psi)$ Dual1 $\Box \varphi \rightarrow \neg \Diamond \neg \varphi$ Dual2 $\neg \Diamond \neg \varphi \rightarrow \Box \varphi$ Dual3 $\neg \Box \neg \varphi \rightarrow \Diamond \varphi$ Dual4 $\Diamond \varphi \rightarrow \neg \Box \neg \varphi$ NEC $\frac{\varphi}{\Box \varphi}$

$$\begin{array}{ll} \square \varphi \rightarrow \Diamond \varphi & & 4 \ \square \varphi \rightarrow \square \square \varphi \\ T \ \square \varphi \rightarrow \varphi & & \\ B \ \varphi \rightarrow \square \Diamond \varphi & & \end{array}$$

Modal Logic \mathbf{K} :

• Prop. axioms MP $\frac{\varphi \quad \varphi \rightarrow \psi}{\psi}$ K $\Box(\varphi \rightarrow \psi) \rightarrow (\Box \varphi \rightarrow \Box \psi)$ Dual1 $\Box \varphi \rightarrow \neg \Diamond \neg \varphi$ Dual2 $\neg \Diamond \neg \varphi \rightarrow \Box \varphi$ Dual3 $\neg \Box \neg \varphi \rightarrow \Diamond \varphi$ Dual4 $\Diamond \varphi \rightarrow \neg \Box \neg \varphi$ NEC $\frac{\varphi}{\Box \varphi}$

We are interested in the following extensions:

• Axioms D and T are not that relevant for this talk.

Even lower — weaker modal logics

• Logic H is K minus the axiom K and minus D1 - D4.

Even lower — weaker modal logics

- Logic H is K minus the axiom K and minus $\mathsf{D1}-\mathsf{D4}.$
- Logic HD is H plus D1 D4.

N-matrix M = (Val, D, 0) where: 1. $Val = \{c_1, c_2, \dots, c_n\}$: non-empty set of values.

N-matrix

- M = (Val, D, O) where:
 - 1. $Val = \{c_1, c_2, \dots, c_n\}$: non-empty set of values.
 - 2. $D \subseteq Val$: designated values.

N-matrix

M = (Val, D, O) where:

- 1. $Val = \{c_1, c_2, \dots, c_n\}$: non-empty set of values.
- 2. $D \subseteq Val:$ designated values.
- 3. O assigns each connective $\circ_j^i \in F$ to a i-ary function $f_j^i : Var^i \mapsto P(\operatorname{Val}) \setminus \emptyset.$

N-matrix

M = (Val, D, O) where:

- 1. $Val = \{c_1, c_2, \dots, c_n\}$: non-empty set of values.
- 2. $D \subseteq Val:$ designated values.
- 3. O assigns each connective $\circ_j^i \in F$ to a i-ary function $f_j^i: Var^i \mapsto P(\operatorname{Val}) \setminus \emptyset.$

Valuation

$$v: \mathcal{L} \mapsto \texttt{Val such that, for each } \circ_j^i, \\ v(\circ_j^i(\varphi_1, \dots \varphi_i)) \in f_j^i(v(\varphi_1, \dots \varphi_i)).$$

N-matrix

M = (Val, D, O) where:

- 1. $Val = \{c_1, c_2, \dots, c_n\}$: non-empty set of values.
- 2. $D \subseteq Val:$ designated values.
- 3. O assigns each connective $\circ_j^i \in F$ to a i-ary function $f_j^i : Var^i \mapsto P(\operatorname{Val}) \setminus \emptyset.$

Valuation

$$\begin{split} v: \mathcal{L} &\mapsto \texttt{Val such that, for each } \circ^i_j, \\ v(\circ^i_j(\varphi_1, \dots \varphi_i)) \in f^{\,i}_j(v(\varphi_1, \dots \varphi_i)). \end{split}$$

Tautology

 $\models_{\mathbb{M}} \varphi$ iff for any valuation $v, v(\varphi) \in D$. The notion of consequence relation is as usual.

Some remarks

• "Usual" deterministic semantics is a special case of non-deterministic semantics

Some remarks

- "Usual" deterministic semantics is a special case of non-deterministic semantics
- Logic **H** and **HD** do not have deterministic finitely valued semantics.

Some remarks

- "Usual" deterministic semantics is a special case of non-deterministic semantics
- Logic **H** and **HD** do not have deterministic finitely valued semantics.
- NEC-free fragments of modal logics do not have natural semantics at all.

8-valued framework

We are interested in the following set of matrices:

•
$$Val = \{T_{\Diamond}, T, t_{\Diamond}, t, f, f_{\Diamond}, F, F_{\Diamond}\}.$$

8-valued framework

We are interested in the following set of matrices:

- $Val = \{T_{\Diamond}, T, t_{\Diamond}, t, f, f_{\Diamond}, F, F_{\Diamond}\}.$
- $D = \{T_{\Diamond}, T, t_{\Diamond}, t\}.$

8-valued framework

We are interested in the following set of matrices:

- $Val = \{T_{\Diamond}, T, t_{\Diamond}, t, f, f_{\Diamond}, F, F_{\Diamond}\}.$
- $D = \{T_{\Diamond}, T, t_{\Diamond}, t\}.$
- O interprets ¬, →, ◊, □. The rest of the Boolean connectives are taken to be non-primitive.

A bit of philosophical story

Table: Meaning of values

Value	Status of the sentence
T_{\diamondsuit}	$\Box \varphi, \Diamond \varphi, \varphi$ (necessary, possible and true)
Т	$\Box \varphi, \neg \Diamond \varphi, \varphi$ (necessary, not possible and true)
\mathtt{t}_{\Diamond}	$\neg \Box \varphi, \Diamond \varphi, \varphi$ (not necessary, possible and true)
t	$\neg \Box \varphi, \neg \Diamond \varphi, \varphi$ (not necessary, not possible and true)
\mathtt{f}_{\Diamond}	$\neg \Box \varphi, \Diamond \varphi, \neg \varphi$ (not necessary, possible and false)
F	$\Box \varphi, \neg \Diamond \varphi, \neg \varphi$ (necessary, not possible and false)
F_{\Diamond}	$\Box \varphi, \Diamond \varphi, \neg \varphi$ (necessary, possible and false)
f	$\neg \Box \varphi, \neg \Diamond \varphi, \neg \varphi$ (not necessary, not possible and false)

Two implications

\rightarrow_{H}	T⊘	Т	\mathtt{t}_{\Diamond}	t	F⊘	F	f_{\Diamond}	f
T⊘	D	D	D	D	D	D	D	D
Т	D	D	D	D	D	D	D	D
\mathtt{t}_{\Diamond}	D	D	D	D	D	D	D	D
t	D	D	D	D	D	D	D	D
F⊘	D	D	D	D	D	D	D	D
F	D	D	D	D	D	D	D	D
\mathtt{f}_{\Diamond}	D	D	D	D	D	D	D	D
f	D	D	D	D	D	D	D	D

Two implications

$\rightarrow_{\mathbf{K}}$	T⊘	Т	\mathtt{t}_{\Diamond}	t	F_{\Diamond}	F	\mathtt{f}_{\Diamond}	f
T⊘	D	D	D	D	D	D	$\{\mathtt{f}_{\Diamond},\mathtt{f}\}$	$\{f_{\Diamond}, f\}$
Т	D	D	D	D	D	D	$\{\mathtt{f}_{\Diamond},\mathtt{f}\}$	$\{f_{\Diamond}, f\}$
t _{\lambda}	D	D	D	D	D	D	\overline{D}	D
t	D	D	D	D	D	D	\overline{D}	D
F⊘	D	D	$\{t_{\Diamond},t\}$	$\{t_{\Diamond},t\}$	D	D	$\{t_{\Diamond},t\}$	$\{t_{\Diamond},t\}$
F	D	D	D	D	D	D	D	D
\mathtt{f}_{\Diamond}	D	D	D	D	D	D	D	D
f	D	D	D	D	D	D	D	D

Five negations

φ	$\neg D1$	$\neg D2$	$\neg D3$	$\neg D4$	D123 4
T⊘	D	D	$\{\texttt{f}_{\Diamond},\texttt{f}\}$	$\{F, f\}$	f
Т	D	$\{F_{\Diamond},F\}$	$\{F_{\Diamond},F\}$	$\{F, f\}$	F
\mathtt{t}_{\Diamond}	$\{\mathtt{F}_{\Diamond}, \mathtt{f}_{\Diamond}\}$	\overline{D}	$\{\mathtt{f}_{\Diamond}, \mathtt{f}\}$	D	\mathtt{f}_{\Diamond}
t	$\{\mathtt{F}_{\Diamond}, \mathtt{f}_{\Diamond}\}$	$\{F_{\Diamond},F\}$	F_{\Diamond}	D	F_{\Diamond}
F_{\diamondsuit}	D	D	$\{t_{\Diamond},t\}$	$\{T,t\}$	t
F	D	$\{T_{\diamondsuit}, T\}$	$\{T_{\Diamond}, T\}$	$\{T,t\}$	Т
\mathtt{f}_{\Diamond}	$\{\mathtt{T}_{\Diamond}, \mathtt{t}_{\Diamond}\}$	D	$\{t_{\Diamond},t\}$	D	\mathtt{t}_{\Diamond}
f	$\{\mathtt{T}_{\Diamond}, \mathtt{t}_{\Diamond}\}$	$\{T_{\diamondsuit},T\}$	D	D	T⊘

Plenty of boxes and diamonds

φ	\diamond_4	\square_4	\diamond_5	\Box_5	$\Diamond_{\mathbf{B}}$	$\Box_{\mathbf{B}}$
T⊘	D	$\{T_{\Diamond}, T\}$	$\{T_{\Diamond}, T\}$	D	$\{T_{\Diamond}, T\}$	D
Т	D	$\{T_{\Diamond}, T\}$	\overline{D}	D	$\{F_{\Diamond},F\}$	D
\mathtt{t}_{\Diamond}	D	\overline{D}	$\{T_{\Diamond}, T\}$	\overline{D}	$\{T_{\Diamond}, T\}$	D
t	D	\overline{D}	\overline{D}	\overline{D}	$\{F_{\Diamond}, F\}$	D
F_{\Diamond}	D	$\{T_{\Diamond}, T\}$	$\{T_{\Diamond}, T\}$	D	D	D
F	D	$\{T_{\Diamond}, T\}$	\overline{D}	D	\overline{D}	D
\mathtt{f}_{\Diamond}	D	D	$\{T_{\diamondsuit}, T\}$	\overline{D}	D	D
f	D	D	\overline{D}	\overline{D}	\overline{D}	D

Completeness and some observations

• The above semantics is strongly sound and complete with respect to the mentioned axiomatizations.

Completeness and some observations

- The above semantics is strongly sound and complete with respect to the mentioned axiomatizations.
- NEC is missing.

Starting-point: well-known modal logics and their NEC-free fragments

*m*th-level valuations

Let v be a valuation in an nmatrix M and L logic induced by M. Let $\mathbf{Sp} \subseteq D$ be the set of super-designated values. We say that v is:

*m*th-level valuations

Let v be a valuation in an nmatrix M and L logic induced by M. Let $\mathbf{Sp} \subseteq D$ be the set of super-designated values. We say that v is:

1. a 0th-level L-valuation w.r.t ${\bf Sp}$ if v is an L-valuation.

mth-level valuations

Let v be a valuation in an nmatrix M and L logic induced by M. Let $\mathbf{Sp} \subseteq D$ be the set of super-designated values. We say that v is:

- 1. a 0th-level L-valuation w.r.t ${\bf Sp}$ if v is an L-valuation.
- 2. v is a m + 1th-level L-valuation w.r.t **Sp** if v is mth-level L-valuation w.r.t **Sp** and v assigns a super-designated value to every formula φ that has a designated value for any mth-level L-valuation v'.

mth-level valuations

Let v be a valuation in an nmatrix M and L logic induced by M. Let $\mathbf{Sp} \subseteq D$ be the set of super-designated values. We say that v is:

- 1. a 0th-level L-valuation w.r.t ${\bf Sp}$ if v is an L-valuation.
- 2. v is a m + 1th-level L-valuation w.r.t **Sp** if v is mth-level L-valuation w.r.t **Sp** and v assigns a super-designated value to every formula φ that has a designated value for any mth-level L-valuation v'.
- 3. We say that v is a L⁺-valuation w.r.t **Sp** iff v is a *m*th-level L-valuation w.r.t **Sp** for every *m*.

Getting the NEC back

• If $\mathbf{Sp} = \{T, T_{\Diamond}\},$ then the resulting system is closed under NEC.

Getting the NEC back

- If $\mathbf{Sp} = \{T, T_{\Diamond}\},$ then the resulting system is closed under NEC.
- If the initial logic validates 4, already the first level of valuations.

Getting the NEC back

- If $\mathbf{Sp} = \{T, T_{\Diamond}\},$ then the resulting system is closed under NEC.
- If the initial logic validates 4, already the first level of valuations.
- At each level you regain NEC for the previous level.

Example

Consider a formula $\Box(\Box(p\rightarrow p))$ and the following subset of valuations:

#	p	$p \rightarrow p$	$\Box(p \to p)$	$\Box(\Box(p \to p))$
1	t	T⊘	T⊘	T⊘
2	t	T⊘	T⊘	T
3	t	T☆	T	T⊘
4	t	T⊘	Т	Т
5	t	T	T_{\diamondsuit}	T⊘
6	t	Т	T⊘	Т
7	t	Т	Т	T⊘
8	t	Т	Т	T
9	t	t	F_{\Diamond}	T⊘
10	t	t	F_{\Diamond}	Т
11	t	t	F	T⊘
12	t	t	F	Т
13	t	t	f	\mathtt{f}_{\Diamond}
14	t	t	f	f
15	t	t	f	F⊘
16	t	t	f	F
17	t	t	\mathtt{f}_{\Diamond}	\mathtt{f}_{\Diamond}
18	t	t	f_{\Diamond}	f
19	t	t	f_{\Diamond}	F⊘
20	t	t	\mathtt{f}_{\Diamond}	F

Example continue

If we look only at the first level valuations we are left with:

#	p	$p \to p$	$\square(p \to p)$	$\square(\square(p \to p))$
1	t	T_{\Diamond}	T⊘	T⊘
2	t	T⊘	T⊘	Т
3	t	T⊘	Т	T⊘
4	t	T⊘	Т	Т
5	t	T	T⊘	T⊘
6	t	Т	T⊘	Т
7	t	Т	Т	T_{\Diamond}
8	t	Т	Т	Т

Some problems with the approach

• The lack of analyticity. Not every partial valuation can be extended to the full valuation.

Some problems with the approach

- The lack of analyticity. Not every partial valuation can be extended to the full valuation.
- The lack of decidability. Solved for some specific cases.

• What other logics can be defined in this framework? [Work in progress]

- What other logics can be defined in this framework? [Work in progress]
- On what does the valuation hierarchy depend?

- What other logics can be defined in this framework? [Work in progress]
- On what does the valuation hierarchy depend?
- What about other principles weaker than NEC?

- What other logics can be defined in this framework? [Work in progress]
- On what does the valuation hierarchy depend?
- What about other principles weaker than NEC?
- What modal logics cannot be described by these semantics?

Thank you for your attention!