


Overview

Work from a broad project looking into various models of
computation over countable and uncountable domains as well as into
definitional approaches to algorithms per se:

TMs, Russian school of constructive approaches (Kolmogorov,
Markov), Shönhage machines, Computable analysis (Weihrauch
school – TTE), BSS model (numerical analysis).

Gurevich, Moschovakis, contemporary approach in France (based
on Girard’s geometry of interaction.)

Goal: understand the underlying notion of ‘algorithm’.

Brief conclusion: we use “algorithms” in more than one way.

In this talk: a higher level (informal) approach to what is at stake.

Only sequential, deterministic algorithms (“the idea of the ’30s”).

Future directions: geometric constructions, parallel algorithms (and

perhaps analog/quantum algorithms).

1 / 20



Overview

Work from a broad project looking into various models of
computation over countable and uncountable domains as well as into
definitional approaches to algorithms per se:

TMs, Russian school of constructive approaches (Kolmogorov,
Markov), Shönhage machines, Computable analysis (Weihrauch
school – TTE), BSS model (numerical analysis).

Gurevich, Moschovakis, contemporary approach in France (based
on Girard’s geometry of interaction.)

Goal: understand the underlying notion of ‘algorithm’.

Brief conclusion: we use “algorithms” in more than one way.

In this talk: a higher level (informal) approach to what is at stake.

Only sequential, deterministic algorithms (“the idea of the ’30s”).

Future directions: geometric constructions, parallel algorithms (and

perhaps analog/quantum algorithms).

1 / 20



Algorithms: the informal idea

A classical algorithm:

is expressed as a set of instructions of finite size.

has a set (perhaps empty) of inputs and a (set of) output(s).

carried out in a discrete stepwise fashion (proceeds in discrete
time).

is deterministic (no resort to random methods).

each step of an algorithm must precisely and unambiguously be
specified to such a sufficient detail as no ingenuity whatsoever
may be required by the computing agent.

generally terminates after a finite number of steps.

2 / 20



Algorithms and models of computation
Such methods have been in use since ancient times. Examples

But there was no strong connection with the effectively computable
functions, in the way that became prominent after the 1930s.

–Algorithms were primarily means for obtaining solutions to problems
(equations, primality tests, etc.).

–OTOH, the early models of computation arose from foundational
concerns:

The first recursive definitions appeared in Dedekind’s and
Skolem’s works on the foundations of arithmetic, and recursion
theory was developed through work in Hilbert’s program and
Gödel’s Inc. theorems to its final form in the theories of general
recursion (Gödel/Herbrand) and µ-recursion (Kleene).

λ-calculus was a sub-system of a broader system by Church
(purporting to avoid the incompleteness results but in the end
discovered inconsistent), whose initial sole purpose was to to
distinguish the function of x (the assignment/rule) from its
values.

3 / 20

https://www.amazon.com/History-Algorithms-Pebble-Microchip/dp/3540633693/


Algorithms and models of computation
Such methods have been in use since ancient times. Examples

But there was no strong connection with the effectively computable
functions, in the way that became prominent after the 1930s.

–Algorithms were primarily means for obtaining solutions to problems
(equations, primality tests, etc.).

–OTOH, the early models of computation arose from foundational
concerns:

The first recursive definitions appeared in Dedekind’s and
Skolem’s works on the foundations of arithmetic, and recursion
theory was developed through work in Hilbert’s program and
Gödel’s Inc. theorems to its final form in the theories of general
recursion (Gödel/Herbrand) and µ-recursion (Kleene).

λ-calculus was a sub-system of a broader system by Church
(purporting to avoid the incompleteness results but in the end
discovered inconsistent), whose initial sole purpose was to to
distinguish the function of x (the assignment/rule) from its
values.

3 / 20

https://www.amazon.com/History-Algorithms-Pebble-Microchip/dp/3540633693/


Algorithms and models of computation
Such methods have been in use since ancient times. Examples

But there was no strong connection with the effectively computable
functions, in the way that became prominent after the 1930s.

–Algorithms were primarily means for obtaining solutions to problems
(equations, primality tests, etc.).

–OTOH, the early models of computation arose from foundational
concerns:

The first recursive definitions appeared in Dedekind’s and
Skolem’s works on the foundations of arithmetic, and recursion
theory was developed through work in Hilbert’s program and
Gödel’s Inc. theorems to its final form in the theories of general
recursion (Gödel/Herbrand) and µ-recursion (Kleene).

λ-calculus was a sub-system of a broader system by Church
(purporting to avoid the incompleteness results but in the end
discovered inconsistent), whose initial sole purpose was to to
distinguish the function of x (the assignment/rule) from its
values.

3 / 20

https://www.amazon.com/History-Algorithms-Pebble-Microchip/dp/3540633693/


Algorithms and models of computation

The connection between the two notions became strengthened by
facts like the following:

Turing’s (1936) focused on the process of computing itself.

The assertion that a specific function “can be computed by
carrying out an effective process” became synonymous to the
assertion that the function can be “computed by following an
algorithm” (e.g., Church 1936).

Although Turing nowhere mentions the term “algorithm” in
(1936), the paper serves, among others, the purpose of providing
an answer to Hilbert’s request for an algorithmic method
(Entscheidungsproblem).

4 / 20



Algorithms and models of computation

The connection between the two notions became strengthened by
facts like the following:

Turing’s (1936) focused on the process of computing itself.

The assertion that a specific function “can be computed by
carrying out an effective process” became synonymous to the
assertion that the function can be “computed by following an
algorithm” (e.g., Church 1936).

Although Turing nowhere mentions the term “algorithm” in
(1936), the paper serves, among others, the purpose of providing
an answer to Hilbert’s request for an algorithmic method
(Entscheidungsproblem).

4 / 20



Algorithms and computation: A marriage made in
heaven?

After these developments, talk about ‘algorithms’ became almost
inseparable from talk about ‘computation’.

Markov’s Theory of Algorithms was very much a continuation of these
developments, but “algorithms” were now explicitly the subject
matter.

Kolmogorov’s (and Uspensky’s) definition of algorithms (1958)
justified the appropriateness of their approach against the backdrop of
the CTT (in its later form, which concerns partial recurs. functions).

Assertions like the following:

“there is no algorithm that decides the validity for any first-order
sentence”

“‘if P 6= NP, there is no algorithm that solves the Boolean
satisfiability problem in polynomial time.”

are staples in computability and complexity theory.

5 / 20



Algorithms and computation: A marriage made in
heaven?

After these developments, talk about ‘algorithms’ became almost
inseparable from talk about ‘computation’.

Markov’s Theory of Algorithms was very much a continuation of these
developments, but “algorithms” were now explicitly the subject
matter.

Kolmogorov’s (and Uspensky’s) definition of algorithms (1958)
justified the appropriateness of their approach against the backdrop of
the CTT (in its later form, which concerns partial recurs. functions).

Assertions like the following:

“there is no algorithm that decides the validity for any first-order
sentence”

“‘if P 6= NP, there is no algorithm that solves the Boolean
satisfiability problem in polynomial time.”

are staples in computability and complexity theory.

5 / 20



Algorithms and computation: A marriage made in
heaven?

Furthermore, the view that TMs and the CTT explicate algorithms
became part of the folklore of logic and CS textbooks:

“Partial recursive functions are the natural formalization of
algorithms” (Odifreddi 1999, p.3)

The CTT “imposes a precise, mathematical upper bound to the
vague, intuitive but basic notion of algorithm that underlies the
concept of effective computability” (ibid., p.102)

Also:

We therefore propose to adopt the Turing machine that halts on
all inputs as the precise formal notion corresponding to the
intuitive notion of an “algorithm.” Nothing will be considered an
algorithm if it cannot be rendered as a Turing machine that is
guaranteed to halt on all inputs, and all such machines will be
rightfully called algorithms. (Lewis and Papadimitriou 1998,
p.246)

6 / 20



Algorithms and computation: A marriage made in
heaven?

Furthermore, the view that TMs and the CTT explicate algorithms
became part of the folklore of logic and CS textbooks:

“Partial recursive functions are the natural formalization of
algorithms” (Odifreddi 1999, p.3)

The CTT “imposes a precise, mathematical upper bound to the
vague, intuitive but basic notion of algorithm that underlies the
concept of effective computability” (ibid., p.102)

Also:

We therefore propose to adopt the Turing machine that halts on
all inputs as the precise formal notion corresponding to the
intuitive notion of an “algorithm.” Nothing will be considered an
algorithm if it cannot be rendered as a Turing machine that is
guaranteed to halt on all inputs, and all such machines will be
rightfully called algorithms. (Lewis and Papadimitriou 1998,
p.246)

6 / 20



The symbolic conception of algorithms

Implicit in the view that identifies algorithms with (instances of)
machine models is a conception of algorithms as symbolic procedures.

Markov (1954 [1962]) considers only “algorithms in given alphabets”
operating with concrete words (p.58-59).

“Without fixing a standard way of writing numbers, to speak of the
algorithm computing [the value of a function from its input] would
make no sense.” (Kolmogorov and Uspenskii 1958 [1963] fn.2)

“Mechanical devices engaged in computation and humans following
algorithms[..] do not encounter numbers themselves, but rather
physical objects such as ink marks on paper. Since strings are the
relevant abstract forms of these physical objects, algorithms should be
understood as procedures for the manipulation of strings, not
numbers.” (Shapiro 1982)

7 / 20



The symbolic conception of algorithms

Implicit in the view that identifies algorithms with (instances of)
machine models is a conception of algorithms as symbolic procedures.

Markov (1954 [1962]) considers only “algorithms in given alphabets”
operating with concrete words (p.58-59).

“Without fixing a standard way of writing numbers, to speak of the
algorithm computing [the value of a function from its input] would
make no sense.” (Kolmogorov and Uspenskii 1958 [1963] fn.2)

“Mechanical devices engaged in computation and humans following
algorithms[..] do not encounter numbers themselves, but rather
physical objects such as ink marks on paper. Since strings are the
relevant abstract forms of these physical objects, algorithms should be
understood as procedures for the manipulation of strings, not
numbers.” (Shapiro 1982)

7 / 20



The symbolic conception of algorithms

On the symbolic view, algorithms are tightly interlocked with specific
notations (alphabets, languages, etc.).

This naturally bears on their identity conditions:

Altering the symbols changes the algorithm too, since it affects
the exact sequence of steps

This is very clearly seen in computation over the reals, where
computability depends on the representations (base-b, nested
intervals, Cauchy sequences, etc.).

8 / 20



The symbolic conception of algorithms

On the symbolic view, algorithms are tightly interlocked with specific
notations (alphabets, languages, etc.).

This naturally bears on their identity conditions:

Altering the symbols changes the algorithm too, since it affects
the exact sequence of steps

This is very clearly seen in computation over the reals, where
computability depends on the representations (base-b, nested
intervals, Cauchy sequences, etc.).

8 / 20



The symbolic conception of algorithms

On the symbolic view, algorithms are tightly interlocked with specific
notations (alphabets, languages, etc.).

This naturally bears on their identity conditions:

Altering the symbols changes the algorithm too, since it affects
the exact sequence of steps

This is very clearly seen in computation over the reals, where
computability depends on the representations (base-b, nested
intervals, Cauchy sequences, etc.).

8 / 20



Symbolic algorithms and mathematical practice

Many algorithms in ordinary math practice are not effective (e.g.,
Bisection algorithm, Newton’s algorithm etc.)

Example: Bisection for finding a root x0 ∈ [a, b] of a continuous
function f(x), when f(a)f(b) < 0. We start with an interval that is
known to contain the root, x0, and we approach it by iterated
bisections of that interval.

Bisect (f, a1, b1)

1. Compute ci =
ai+bi

2
and go to 2;

2. If f(ci) = 0, go to 5, else go to 3;

3. If f(ai)f(ci) < 0, set bi+1 = ci and
ai+1 = ai. Else, set ai+1 = ci and
bi+1 = bi. Go to 4;

4. Set i = i + 1 and go to 1.

5. Stop and return ci

These algorithms do not have precisely defined sequences of steps or
specific alphabets. But we recognize to them some natural structure
and identity.

9 / 20



Symbolic algorithms and mathematical practice

Many algorithms in ordinary math practice are not effective (e.g.,
Bisection algorithm, Newton’s algorithm etc.)

Example: Bisection for finding a root x0 ∈ [a, b] of a continuous
function f(x), when f(a)f(b) < 0. We start with an interval that is
known to contain the root, x0, and we approach it by iterated
bisections of that interval.

Bisect (f, a1, b1)

1. Compute ci =
ai+bi

2
and go to 2;

2. If f(ci) = 0, go to 5, else go to 3;

3. If f(ai)f(ci) < 0, set bi+1 = ci and
ai+1 = ai. Else, set ai+1 = ci and
bi+1 = bi. Go to 4;

4. Set i = i + 1 and go to 1.

5. Stop and return ci

These algorithms do not have precisely defined sequences of steps or
specific alphabets. But we recognize to them some natural structure
and identity.

9 / 20



Algorithms
One might be inclined to see the issue as one concerning easily filled
details (e.g., by invoking a distinction between higher/lower-level
algorithms).

It must be clear that the ways and means which a mathematician
is used to of describing a general procedure are in general too
vague to come up really to the required standard of exactness.
This applies for instance to the usual description of methods for
the solution of a linear equation system. ... It is however clear to
every mathematician that ... the [additional necessary]
instruction[s] can be supplemented to make a complete instruction
which does not leave anything open. (Hermes 1969, p.2)

Thus, perhaps one could say that abstract algorithms (like the above)
are higher-level algorithms, which do not describe exact
computational procedures but some sort of patterns of actions or
“algorithmic schemas”

.

But this leads nowhere really. A great many of such algorithms rely
essentially on some non-effective operations (mainly comparisons
between reals, assuming a CTT).

10 / 20



Algorithms
One might be inclined to see the issue as one concerning easily filled
details (e.g., by invoking a distinction between higher/lower-level
algorithms).

It must be clear that the ways and means which a mathematician
is used to of describing a general procedure are in general too
vague to come up really to the required standard of exactness.
This applies for instance to the usual description of methods for
the solution of a linear equation system. ... It is however clear to
every mathematician that ... the [additional necessary]
instruction[s] can be supplemented to make a complete instruction
which does not leave anything open. (Hermes 1969, p.2)

Thus, perhaps one could say that abstract algorithms (like the above)
are higher-level algorithms, which do not describe exact
computational procedures but some sort of patterns of actions or
“algorithmic schemas”

.

But this leads nowhere really. A great many of such algorithms rely
essentially on some non-effective operations (mainly comparisons
between reals, assuming a CTT).

10 / 20



Algorithms
One might be inclined to see the issue as one concerning easily filled
details (e.g., by invoking a distinction between higher/lower-level
algorithms).

It must be clear that the ways and means which a mathematician
is used to of describing a general procedure are in general too
vague to come up really to the required standard of exactness.
This applies for instance to the usual description of methods for
the solution of a linear equation system. ... It is however clear to
every mathematician that ... the [additional necessary]
instruction[s] can be supplemented to make a complete instruction
which does not leave anything open. (Hermes 1969, p.2)

Thus, perhaps one could say that abstract algorithms (like the above)
are higher-level algorithms, which do not describe exact
computational procedures but some sort of patterns of actions or
“algorithmic schemas”.

But this leads nowhere really. A great many of such algorithms rely
essentially on some non-effective operations (mainly comparisons
between reals, assuming a CTT).

10 / 20



Algorithms
One might be inclined to see the issue as one concerning easily filled
details (e.g., by invoking a distinction between higher/lower-level
algorithms).

It must be clear that the ways and means which a mathematician
is used to of describing a general procedure are in general too
vague to come up really to the required standard of exactness.
This applies for instance to the usual description of methods for
the solution of a linear equation system. ... It is however clear to
every mathematician that ... the [additional necessary]
instruction[s] can be supplemented to make a complete instruction
which does not leave anything open. (Hermes 1969, p.2)

Thus, perhaps one could say that abstract algorithms (like the above)
are higher-level algorithms, which do not describe exact
computational procedures but some sort of patterns of actions or
“algorithmic schemas”.
But this leads nowhere really. A great many of such algorithms rely
essentially on some non-effective operations (mainly comparisons
between reals, assuming a CTT).

10 / 20



The Abstract conception of algorithms

It seems a stretch to conceptualize algorithms like the above as specifying
purely symbolic manipulations.

Similarly, it seems unnatural to formalize them in a way that their identity
conditions are highly sensitive to the chosen representations.
Rather, algorithms like the above seem to possess an identity and natural
structure of their own.

The same seems true of also some algorithms over countable domains (e.g.,
divide-and-conquer, such as Mergesort). Though these are effective.

One way to conceptualize the abstractness (for algorithms over countable
domains) is to understand algorithms as entities hovering over (equivalence)
classes, where the equivalence relations might be simulability between
machine models. (This faces various problems (see Dean 2016) but it is a
natural starting point.)

With numerical analysis the situation is worse, because there isn’t an
abundance of machine models similar to computation over countable
domains (except BSS and TTE, which are incompatible), and so no
equivalence classes either.

11 / 20



The Abstract conception of algorithms

It seems a stretch to conceptualize algorithms like the above as specifying
purely symbolic manipulations.

Similarly, it seems unnatural to formalize them in a way that their identity
conditions are highly sensitive to the chosen representations.
Rather, algorithms like the above seem to possess an identity and natural
structure of their own.

The same seems true of also some algorithms over countable domains (e.g.,
divide-and-conquer, such as Mergesort). Though these are effective.

One way to conceptualize the abstractness (for algorithms over countable
domains) is to understand algorithms as entities hovering over (equivalence)
classes, where the equivalence relations might be simulability between
machine models. (This faces various problems (see Dean 2016) but it is a
natural starting point.)

With numerical analysis the situation is worse, because there isn’t an
abundance of machine models similar to computation over countable
domains (except BSS and TTE, which are incompatible), and so no
equivalence classes either.

11 / 20



The Abstract conception of algorithms

It seems a stretch to conceptualize algorithms like the above as specifying
purely symbolic manipulations.

Similarly, it seems unnatural to formalize them in a way that their identity
conditions are highly sensitive to the chosen representations.
Rather, algorithms like the above seem to possess an identity and natural
structure of their own.

The same seems true of also some algorithms over countable domains (e.g.,
divide-and-conquer, such as Mergesort). Though these are effective.

One way to conceptualize the abstractness (for algorithms over countable
domains) is to understand algorithms as entities hovering over (equivalence)
classes, where the equivalence relations might be simulability between
machine models. (This faces various problems (see Dean 2016) but it is a
natural starting point.)

With numerical analysis the situation is worse, because there isn’t an
abundance of machine models similar to computation over countable
domains (except BSS and TTE, which are incompatible), and so no
equivalence classes either.

11 / 20



The Abstract conception of algorithms

It seems a stretch to conceptualize algorithms like the above as specifying
purely symbolic manipulations.

Similarly, it seems unnatural to formalize them in a way that their identity
conditions are highly sensitive to the chosen representations.
Rather, algorithms like the above seem to possess an identity and natural
structure of their own.

The same seems true of also some algorithms over countable domains (e.g.,
divide-and-conquer, such as Mergesort). Though these are effective.

One way to conceptualize the abstractness (for algorithms over countable
domains) is to understand algorithms as entities hovering over (equivalence)
classes, where the equivalence relations might be simulability between
machine models. (This faces various problems (see Dean 2016) but it is a
natural starting point.)

With numerical analysis the situation is worse, because there isn’t an
abundance of machine models similar to computation over countable
domains (except BSS and TTE, which are incompatible), and so no
equivalence classes either.

11 / 20



The Abstract conception of algorithms

It seems a stretch to conceptualize algorithms like the above as specifying
purely symbolic manipulations.

Similarly, it seems unnatural to formalize them in a way that their identity
conditions are highly sensitive to the chosen representations.
Rather, algorithms like the above seem to possess an identity and natural
structure of their own.

The same seems true of also some algorithms over countable domains (e.g.,
divide-and-conquer, such as Mergesort). Though these are effective.

One way to conceptualize the abstractness (for algorithms over countable
domains) is to understand algorithms as entities hovering over (equivalence)
classes, where the equivalence relations might be simulability between
machine models. (This faces various problems (see Dean 2016) but it is a
natural starting point.)

With numerical analysis the situation is worse, because there isn’t an
abundance of machine models similar to computation over countable
domains (except BSS and TTE, which are incompatible), and so no
equivalence classes either.

11 / 20



A fundamental tension
So are algorithms processes of symbolic manipulations (thus,
dependent on the particular symbols used) or do they have some
identity and natural structure independent of particular symbolic
systems?

“Notice, however, that the standard algorithm for multiplication ...
works on numbers written in decimal notation. The same algorithm
would either give the wrong results, or senseless results, for numbers
written in unary, binary, hexadecimal or Roman notation.” (Shapiro
2017)

“Sturm’s algorithm is usually defined over the class of all polynomials
with arbitrary real coefficients, and there is nothing in its description
or analysis of its implementation that requires those coefficients be
integers or rationals. If we want to implement the algorithm to some
actual computer or abstract Turing machine, then, of course, we need
to approximate the real coefficients by means of rationals, and choose
certain symbolic representation. However, there are various ways to go
about these choices and none of these is essentially included in Sturm’s
algorithm” (Moschovakis 1997)

The tension is fundamental and has to do with our pre-theoretical
idea of what and algorithms is.

12 / 20



A fundamental tension
So are algorithms processes of symbolic manipulations (thus,
dependent on the particular symbols used) or do they have some
identity and natural structure independent of particular symbolic
systems?

“Notice, however, that the standard algorithm for multiplication ...
works on numbers written in decimal notation. The same algorithm
would either give the wrong results, or senseless results, for numbers
written in unary, binary, hexadecimal or Roman notation.” (Shapiro
2017)

“Sturm’s algorithm is usually defined over the class of all polynomials
with arbitrary real coefficients, and there is nothing in its description
or analysis of its implementation that requires those coefficients be
integers or rationals. If we want to implement the algorithm to some
actual computer or abstract Turing machine, then, of course, we need
to approximate the real coefficients by means of rationals, and choose
certain symbolic representation. However, there are various ways to go
about these choices and none of these is essentially included in Sturm’s
algorithm” (Moschovakis 1997)

The tension is fundamental and has to do with our pre-theoretical
idea of what and algorithms is.

12 / 20



A fundamental tension
So are algorithms processes of symbolic manipulations (thus,
dependent on the particular symbols used) or do they have some
identity and natural structure independent of particular symbolic
systems?

“Notice, however, that the standard algorithm for multiplication ...
works on numbers written in decimal notation. The same algorithm
would either give the wrong results, or senseless results, for numbers
written in unary, binary, hexadecimal or Roman notation.” (Shapiro
2017)

“Sturm’s algorithm is usually defined over the class of all polynomials
with arbitrary real coefficients, and there is nothing in its description
or analysis of its implementation that requires those coefficients be
integers or rationals. If we want to implement the algorithm to some
actual computer or abstract Turing machine, then, of course, we need
to approximate the real coefficients by means of rationals, and choose
certain symbolic representation. However, there are various ways to go
about these choices and none of these is essentially included in Sturm’s
algorithm” (Moschovakis 1997)

The tension is fundamental and has to do with our pre-theoretical
idea of what and algorithms is.

12 / 20



A fundamental tension
So are algorithms processes of symbolic manipulations (thus,
dependent on the particular symbols used) or do they have some
identity and natural structure independent of particular symbolic
systems?

“Notice, however, that the standard algorithm for multiplication ...
works on numbers written in decimal notation. The same algorithm
would either give the wrong results, or senseless results, for numbers
written in unary, binary, hexadecimal or Roman notation.” (Shapiro
2017)

“Sturm’s algorithm is usually defined over the class of all polynomials
with arbitrary real coefficients, and there is nothing in its description
or analysis of its implementation that requires those coefficients be
integers or rationals. If we want to implement the algorithm to some
actual computer or abstract Turing machine, then, of course, we need
to approximate the real coefficients by means of rationals, and choose
certain symbolic representation. However, there are various ways to go
about these choices and none of these is essentially included in Sturm’s
algorithm” (Moschovakis 1997)

The tension is fundamental and has to do with our pre-theoretical
idea of what and algorithms is.

12 / 20



Another aspect of the same tension

Are algorithms syntactic or semantic objects?

“We are interested in the semantics-to-syntax analyses of algorithms
like that of Turing. You study a species of algorithms. and you try to
explicate it ... And you finish up with a syntactic artifact, like a
particular kind of machines that execute all and only the algorithms ...
in consideration.” (Gurevich 2015, 188-9)

Contrast:

“[Recursive definitions] are the “more abstract” machines which model
single-valued algorithms, and I have avoided the word “definition” in
their name since it suggests syntactical objects, which algorithms are
not” (Moschovakis 2001)

“[T]here are many ways to assign an iterator ... to each system of
recursive equations ... and there is no single, natural way to choose
any one of them as “canonical”. This problem ... makes it very
unlikely that we can usefully identify algorithms with computational
procedures, or iterators.” (Moschovakis 1998, 4.3)

13 / 20



Another aspect of the same tension

Are algorithms syntactic or semantic objects?

“We are interested in the semantics-to-syntax analyses of algorithms
like that of Turing. You study a species of algorithms. and you try to
explicate it ... And you finish up with a syntactic artifact, like a
particular kind of machines that execute all and only the algorithms ...
in consideration.” (Gurevich 2015, 188-9)

Contrast:

“[Recursive definitions] are the “more abstract” machines which model
single-valued algorithms, and I have avoided the word “definition” in
their name since it suggests syntactical objects, which algorithms are
not” (Moschovakis 2001)

“[T]here are many ways to assign an iterator ... to each system of
recursive equations ... and there is no single, natural way to choose
any one of them as “canonical”. This problem ... makes it very
unlikely that we can usefully identify algorithms with computational
procedures, or iterators.” (Moschovakis 1998, 4.3)

13 / 20



Another aspect of the same tension

Are algorithms syntactic or semantic objects?

“We are interested in the semantics-to-syntax analyses of algorithms
like that of Turing. You study a species of algorithms. and you try to
explicate it ... And you finish up with a syntactic artifact, like a
particular kind of machines that execute all and only the algorithms ...
in consideration.” (Gurevich 2015, 188-9)

Contrast:

“[Recursive definitions] are the “more abstract” machines which model
single-valued algorithms, and I have avoided the word “definition” in
their name since it suggests syntactical objects, which algorithms are
not” (Moschovakis 2001)

“[T]here are many ways to assign an iterator ... to each system of
recursive equations ... and there is no single, natural way to choose
any one of them as “canonical”. This problem ... makes it very
unlikely that we can usefully identify algorithms with computational
procedures, or iterators.” (Moschovakis 1998, 4.3)

13 / 20



Another aspect of the same tension

Are algorithms syntactic or semantic objects?

“We are interested in the semantics-to-syntax analyses of algorithms
like that of Turing. You study a species of algorithms. and you try to
explicate it ... And you finish up with a syntactic artifact, like a
particular kind of machines that execute all and only the algorithms ...
in consideration.” (Gurevich 2015, 188-9)

Contrast:

“[Recursive definitions] are the “more abstract” machines which model
single-valued algorithms, and I have avoided the word “definition” in
their name since it suggests syntactical objects, which algorithms are
not” (Moschovakis 2001)

“[T]here are many ways to assign an iterator ... to each system of
recursive equations ... and there is no single, natural way to choose
any one of them as “canonical”. This problem ... makes it very
unlikely that we can usefully identify algorithms with computational
procedures, or iterators.” (Moschovakis 1998, 4.3)

13 / 20



Another aspect of the same tension

Are algorithms syntactic or semantic objects?

“We are interested in the semantics-to-syntax analyses of algorithms
like that of Turing. You study a species of algorithms. and you try to
explicate it ... And you finish up with a syntactic artifact, like a
particular kind of machines that execute all and only the algorithms ...
in consideration.” (Gurevich 2015, 188-9)

Contrast:

“[Recursive definitions] are the “more abstract” machines which model
single-valued algorithms, and I have avoided the word “definition” in
their name since it suggests syntactical objects, which algorithms are
not” (Moschovakis 2001)

“[T]here are many ways to assign an iterator ... to each system of
recursive equations ... and there is no single, natural way to choose
any one of them as “canonical”. This problem ... makes it very
unlikely that we can usefully identify algorithms with computational
procedures, or iterators.” (Moschovakis 1998, 4.3)

13 / 20



What is at stake?

Resolving the tension is crucial, for it bears on the imposed identity
conditions within any formal definition/framework:

OTOH, we surely want to say that various specific processes
instantiate the same algorithm even when their implementation
details are changed (e.g., order of steps in Newton’s method or
Mergesort, particular alphabet/programming language, number of
tapes/states in TMs, etc.).

This becomes even more apparent in:

our use of proper names for algorithms (Euclid’s algorithm,
Lucas-Lehmer algorithm, Gauss elimination, etc.)

our assignment of properties that purport to be “objective” and
model-independent, such as:

asymptotic costs to algorithms over countable domains
(number-theoretic, sorting, etc.)
properties like stability, convergence etc. to algorithms over
uncountable domains (numerical)

14 / 20



What is at stake?

Resolving the tension is crucial, for it bears on the imposed identity
conditions within any formal definition/framework:

OTOH, we surely want to say that various specific processes
instantiate the same algorithm even when their implementation
details are changed (e.g., order of steps in Newton’s method or
Mergesort, particular alphabet/programming language, number of
tapes/states in TMs, etc.).

This becomes even more apparent in:

our use of proper names for algorithms (Euclid’s algorithm,
Lucas-Lehmer algorithm, Gauss elimination, etc.)

our assignment of properties that purport to be “objective” and
model-independent, such as:

asymptotic costs to algorithms over countable domains
(number-theoretic, sorting, etc.)
properties like stability, convergence etc. to algorithms over
uncountable domains (numerical)

14 / 20



What is at stake?

Resolving the tension is crucial, for it bears on the imposed identity
conditions within any formal definition/framework:

OTOH, we surely want to say that various specific processes
instantiate the same algorithm even when their implementation
details are changed (e.g., order of steps in Newton’s method or
Mergesort, particular alphabet/programming language, number of
tapes/states in TMs, etc.).

This becomes even more apparent in:

our use of proper names for algorithms (Euclid’s algorithm,
Lucas-Lehmer algorithm, Gauss elimination, etc.)

our assignment of properties that purport to be “objective” and
model-independent, such as:

asymptotic costs to algorithms over countable domains
(number-theoretic, sorting, etc.)
properties like stability, convergence etc. to algorithms over
uncountable domains (numerical)

14 / 20



What is at stake?

Resolving the tension is crucial, for it bears on the imposed identity
conditions within any formal definition/framework:

OTOH, we surely want to say that various specific processes
instantiate the same algorithm even when their implementation
details are changed (e.g., order of steps in Newton’s method or
Mergesort, particular alphabet/programming language, number of
tapes/states in TMs, etc.).

This becomes even more apparent in:

our use of proper names for algorithms (Euclid’s algorithm,
Lucas-Lehmer algorithm, Gauss elimination, etc.)

our assignment of properties that purport to be “objective” and
model-independent, such as:

asymptotic costs to algorithms over countable domains
(number-theoretic, sorting, etc.)
properties like stability, convergence etc. to algorithms over
uncountable domains (numerical)

14 / 20



What is at stake?

OTOH, we want to safeguard against triviality, esp., wrt algorithmic
analysis and complexity. E.g., consider the sorting algorithm for the
list B:

TrivialSort(B):

1. “return sort(B)”

This is definitely effective and has a very convenient running time!
O(1).

The way to avoid such cases is by assuming that proper algorithms
are those able to be couched in an appropriate machine model. But
this shifts again the conceptual priority to symbolic computations.

Furthermore, the claim that an algorithm remains the same even
when the exact sequence of actions change seems to fly in the face of
almost every (logic) textbook definition of algorithm.

15 / 20



What is at stake?

OTOH, we want to safeguard against triviality, esp., wrt algorithmic
analysis and complexity. E.g., consider the sorting algorithm for the
list B:

TrivialSort(B):

1. “return sort(B)”

This is definitely effective and has a very convenient running time!
O(1).

The way to avoid such cases is by assuming that proper algorithms
are those able to be couched in an appropriate machine model. But
this shifts again the conceptual priority to symbolic computations.

Furthermore, the claim that an algorithm remains the same even
when the exact sequence of actions change seems to fly in the face of
almost every (logic) textbook definition of algorithm.

15 / 20



An etiology: sharpening the requirement for small steps
In a sense, the tension can be seen underlying already the informal
requirement of small steps in the very idea of ‘algorithm’ itself.

First approximation (still vague): “at any given state the application of the
next step must be immediately clear and recognizable, in the sense that no
actual thought is needed to perform it.

Two possibilities to further formalize:

1. understand this requirement in the most absolute sense possible:
algorithmic steps somehow be immediate and “intuitively obvious”
(whatever that means)

Preceding philosophical attempts to found mathematics in self-evident
operations of that sort can guide us. Cf. Hilbert (1926):

Express the entities under consideration in ways that are “intuitively
present as immediate experience prior to all thought”. Fro this use of
concrete signs “whose shape is ... immediately clear and recognizable” (e.g.,
stroke notation). Then, various aspects of these objects (concatenation,
order of occurrence, etc.) are “given intuitively ... as something that neither
can be reduced to anything else nor requires reduction” (p.376).

The absolute-immediate idea of step leads naturally to the symbolic
approach to formalizing algorithms (e,g., Turing, computable analysis,
Russian school, etc.)

16 / 20



An etiology: sharpening the requirement for small steps
In a sense, the tension can be seen underlying already the informal
requirement of small steps in the very idea of ‘algorithm’ itself.

First approximation (still vague): “at any given state the application of the
next step must be immediately clear and recognizable, in the sense that no
actual thought is needed to perform it.

Two possibilities to further formalize:

1. understand this requirement in the most absolute sense possible:
algorithmic steps somehow be immediate and “intuitively obvious”
(whatever that means)

Preceding philosophical attempts to found mathematics in self-evident
operations of that sort can guide us. Cf. Hilbert (1926):

Express the entities under consideration in ways that are “intuitively
present as immediate experience prior to all thought”. Fro this use of
concrete signs “whose shape is ... immediately clear and recognizable” (e.g.,
stroke notation). Then, various aspects of these objects (concatenation,
order of occurrence, etc.) are “given intuitively ... as something that neither
can be reduced to anything else nor requires reduction” (p.376).

The absolute-immediate idea of step leads naturally to the symbolic
approach to formalizing algorithms (e,g., Turing, computable analysis,
Russian school, etc.)

16 / 20



An etiology: sharpening the requirement for small steps
In a sense, the tension can be seen underlying already the informal
requirement of small steps in the very idea of ‘algorithm’ itself.

First approximation (still vague): “at any given state the application of the
next step must be immediately clear and recognizable, in the sense that no
actual thought is needed to perform it.

Two possibilities to further formalize:

1. understand this requirement in the most absolute sense possible:
algorithmic steps somehow be immediate and “intuitively obvious”
(whatever that means)

Preceding philosophical attempts to found mathematics in self-evident
operations of that sort can guide us. Cf. Hilbert (1926):

Express the entities under consideration in ways that are “intuitively
present as immediate experience prior to all thought”. Fro this use of
concrete signs “whose shape is ... immediately clear and recognizable” (e.g.,
stroke notation). Then, various aspects of these objects (concatenation,
order of occurrence, etc.) are “given intuitively ... as something that neither
can be reduced to anything else nor requires reduction” (p.376).

The absolute-immediate idea of step leads naturally to the symbolic
approach to formalizing algorithms (e,g., Turing, computable analysis,
Russian school, etc.)

16 / 20



An etiology: sharpening the requirement for small steps
In a sense, the tension can be seen underlying already the informal
requirement of small steps in the very idea of ‘algorithm’ itself.

First approximation (still vague): “at any given state the application of the
next step must be immediately clear and recognizable, in the sense that no
actual thought is needed to perform it.

Two possibilities to further formalize:

1. understand this requirement in the most absolute sense possible:
algorithmic steps somehow be immediate and “intuitively obvious”
(whatever that means)

Preceding philosophical attempts to found mathematics in self-evident
operations of that sort can guide us. Cf. Hilbert (1926):

Express the entities under consideration in ways that are “intuitively
present as immediate experience prior to all thought”. Fro this use of
concrete signs “whose shape is ... immediately clear and recognizable” (e.g.,
stroke notation). Then, various aspects of these objects (concatenation,
order of occurrence, etc.) are “given intuitively ... as something that neither
can be reduced to anything else nor requires reduction” (p.376).

The absolute-immediate idea of step leads naturally to the symbolic
approach to formalizing algorithms (e,g., Turing, computable analysis,
Russian school, etc.)

16 / 20



An etiology: sharpening the requirement for small steps
In a sense, the tension can be seen underlying already the informal
requirement of small steps in the very idea of ‘algorithm’ itself.

First approximation (still vague): “at any given state the application of the
next step must be immediately clear and recognizable, in the sense that no
actual thought is needed to perform it.

Two possibilities to further formalize:

1. understand this requirement in the most absolute sense possible:
algorithmic steps somehow be immediate and “intuitively obvious”
(whatever that means)

Preceding philosophical attempts to found mathematics in self-evident
operations of that sort can guide us. Cf. Hilbert (1926):
Express the entities under consideration in ways that are “intuitively
present as immediate experience prior to all thought”. Fro this use of
concrete signs “whose shape is ... immediately clear and recognizable” (e.g.,
stroke notation). Then, various aspects of these objects (concatenation,
order of occurrence, etc.) are “given intuitively ... as something that neither
can be reduced to anything else nor requires reduction” (p.376).

The absolute-immediate idea of step leads naturally to the symbolic
approach to formalizing algorithms (e,g., Turing, computable analysis,
Russian school, etc.)

16 / 20



An etiology: sharpening the requirement for small steps
In a sense, the tension can be seen underlying already the informal
requirement of small steps in the very idea of ‘algorithm’ itself.

First approximation (still vague): “at any given state the application of the
next step must be immediately clear and recognizable, in the sense that no
actual thought is needed to perform it.

Two possibilities to further formalize:

1. understand this requirement in the most absolute sense possible:
algorithmic steps somehow be immediate and “intuitively obvious”
(whatever that means)

Preceding philosophical attempts to found mathematics in self-evident
operations of that sort can guide us. Cf. Hilbert (1926):
Express the entities under consideration in ways that are “intuitively
present as immediate experience prior to all thought”. Fro this use of
concrete signs “whose shape is ... immediately clear and recognizable” (e.g.,
stroke notation). Then, various aspects of these objects (concatenation,
order of occurrence, etc.) are “given intuitively ... as something that neither
can be reduced to anything else nor requires reduction” (p.376).

The absolute-immediate idea of step leads naturally to the symbolic
approach to formalizing algorithms (e,g., Turing, computable analysis,
Russian school, etc.)

16 / 20



An etiology: sharpening the requirement for small steps
Two possibilities to further formalize:

2. understand it relative to the computing agent: the agent deals with
actions that are immediately recognizable in the sense that s/he has
achieved such a degree of familiarity with them as to immediately
recognize them as clear and obvious.

Examples:

µ-recursive functions or λ-calculus, take certain operations, such as
composition or substitution, as immediately recognizable

truth-table validity tests take the assignment of truth values to the
basic logical connectives as primitive

elem. school algorithms for long multiplication and long division take
multiplication tables as primitive

more advanced number-theoretic algorithms (e.g., Euclid’s algorithm)
take (±×÷), as well as (≤,≥) as primitive.

(Numerical) algorithms seem to tacitly assume ‘immediate steps’ in this
sense of familiar-immediate primitives in the domains of interest.

The familiar-relative idea of step leads naturally to the abstract conception
of ‘algorithm’. This goes hand in hand with a model-/level-/structure-
relative idea of ‘algorithm’ (as in Moschovakis, Gurevich, Blum et al.).

17 / 20



An etiology: sharpening the requirement for small steps
Two possibilities to further formalize:

2. understand it relative to the computing agent: the agent deals with
actions that are immediately recognizable in the sense that s/he has
achieved such a degree of familiarity with them as to immediately
recognize them as clear and obvious.

Examples:

µ-recursive functions or λ-calculus, take certain operations, such as
composition or substitution, as immediately recognizable

truth-table validity tests take the assignment of truth values to the
basic logical connectives as primitive

elem. school algorithms for long multiplication and long division take
multiplication tables as primitive

more advanced number-theoretic algorithms (e.g., Euclid’s algorithm)
take (±×÷), as well as (≤,≥) as primitive.

(Numerical) algorithms seem to tacitly assume ‘immediate steps’ in this
sense of familiar-immediate primitives in the domains of interest.

The familiar-relative idea of step leads naturally to the abstract conception
of ‘algorithm’. This goes hand in hand with a model-/level-/structure-
relative idea of ‘algorithm’ (as in Moschovakis, Gurevich, Blum et al.).

17 / 20



An etiology: sharpening the requirement for small steps
Two possibilities to further formalize:

2. understand it relative to the computing agent: the agent deals with
actions that are immediately recognizable in the sense that s/he has
achieved such a degree of familiarity with them as to immediately
recognize them as clear and obvious.

Examples:

µ-recursive functions or λ-calculus, take certain operations, such as
composition or substitution, as immediately recognizable

truth-table validity tests take the assignment of truth values to the
basic logical connectives as primitive

elem. school algorithms for long multiplication and long division take
multiplication tables as primitive

more advanced number-theoretic algorithms (e.g., Euclid’s algorithm)
take (±×÷), as well as (≤,≥) as primitive.

(Numerical) algorithms seem to tacitly assume ‘immediate steps’ in this
sense of familiar-immediate primitives in the domains of interest.

The familiar-relative idea of step leads naturally to the abstract conception
of ‘algorithm’. This goes hand in hand with a model-/level-/structure-
relative idea of ‘algorithm’ (as in Moschovakis, Gurevich, Blum et al.).

17 / 20



An etiology: sharpening the requirement for small steps
Two possibilities to further formalize:

2. understand it relative to the computing agent: the agent deals with
actions that are immediately recognizable in the sense that s/he has
achieved such a degree of familiarity with them as to immediately
recognize them as clear and obvious.

Examples:

µ-recursive functions or λ-calculus, take certain operations, such as
composition or substitution, as immediately recognizable

truth-table validity tests take the assignment of truth values to the
basic logical connectives as primitive

elem. school algorithms for long multiplication and long division take
multiplication tables as primitive

more advanced number-theoretic algorithms (e.g., Euclid’s algorithm)
take (±×÷), as well as (≤,≥) as primitive.

(Numerical) algorithms seem to tacitly assume ‘immediate steps’ in this
sense of familiar-immediate primitives in the domains of interest.

The familiar-relative idea of step leads naturally to the abstract conception
of ‘algorithm’. This goes hand in hand with a model-/level-/structure-
relative idea of ‘algorithm’ (as in Moschovakis, Gurevich, Blum et al.).

17 / 20



An etiology: sharpening the requirement for small steps
Two possibilities to further formalize:

2. understand it relative to the computing agent: the agent deals with
actions that are immediately recognizable in the sense that s/he has
achieved such a degree of familiarity with them as to immediately
recognize them as clear and obvious.

Examples:

µ-recursive functions or λ-calculus, take certain operations, such as
composition or substitution, as immediately recognizable

truth-table validity tests take the assignment of truth values to the
basic logical connectives as primitive

elem. school algorithms for long multiplication and long division take
multiplication tables as primitive

more advanced number-theoretic algorithms (e.g., Euclid’s algorithm)
take (±×÷), as well as (≤,≥) as primitive.

(Numerical) algorithms seem to tacitly assume ‘immediate steps’ in this
sense of familiar-immediate primitives in the domains of interest.

The familiar-relative idea of step leads naturally to the abstract conception
of ‘algorithm’. This goes hand in hand with a model-/level-/structure-
relative idea of ‘algorithm’ (as in Moschovakis, Gurevich, Blum et al.).

17 / 20



Defining ‘algorithms’: An additional tension in the goals

Development of mathematical definitions resembles development of
Covid19 tests:

sensitivity ←→ specificity

Similarly:

inclusiveness/abstractness/generality ←→ domain-specific fecundity

There usually is a number of acceptable ways of trading off these
virtues, and a number of possible concepts encapsulating them.

18 / 20



Defining ‘algorithms’: An additional tension in the goals

Development of mathematical definitions resembles development of
Covid19 tests:

sensitivity ←→ specificity

Similarly:

inclusiveness/abstractness/generality ←→ domain-specific fecundity

There usually is a number of acceptable ways of trading off these
virtues, and a number of possible concepts encapsulating them.

18 / 20



Defining ‘algorithms’: An additional tension in the goals

Development of mathematical definitions resembles development of
Covid19 tests:

sensitivity ←→ specificity

Similarly:

inclusiveness/abstractness/generality ←→ domain-specific fecundity

There usually is a number of acceptable ways of trading off these
virtues, and a number of possible concepts encapsulating them.

18 / 20



Defining ‘algorithms’: One more tension in the goals
The quest for definitions of algorithms exemplifies this predicament
perhaps most strikingly:

OTOH, the desire for inclusiveness pushes in the direction of a more
abstract concept. One that ideally captures both algorithms over
countable and uncountable domains. Model-/level-/structure-relative
approaches meet that desideratum (e.g., Gurevich and Moschovakis).

But they are too general/powerful to provide a yardstick against
which to reasonably measure algorithmic costs (no standard of
powerfulness of operations).

OTOH, the desire for the formal concept to underpin a rich theory of
complexity pushes in the direction of more and more domain-specific
formal concepts (TMs (ordinary and TTE), K&U, RAM, BSS).

These all (can) underpin theories of complexity (classical and real),
but hardly any of these can be used for more than one domain (e.g.,
countable and uncountable computations alike (except maybe TTE
but too cumbersome and low-level)).

19 / 20



Defining ‘algorithms’: One more tension in the goals
The quest for definitions of algorithms exemplifies this predicament
perhaps most strikingly:

OTOH, the desire for inclusiveness pushes in the direction of a more
abstract concept. One that ideally captures both algorithms over
countable and uncountable domains. Model-/level-/structure-relative
approaches meet that desideratum (e.g., Gurevich and Moschovakis).

But they are too general/powerful to provide a yardstick against
which to reasonably measure algorithmic costs (no standard of
powerfulness of operations).

OTOH, the desire for the formal concept to underpin a rich theory of
complexity pushes in the direction of more and more domain-specific
formal concepts (TMs (ordinary and TTE), K&U, RAM, BSS).

These all (can) underpin theories of complexity (classical and real),
but hardly any of these can be used for more than one domain (e.g.,
countable and uncountable computations alike (except maybe TTE
but too cumbersome and low-level)).

19 / 20



Defining ‘algorithms’: One more tension in the goals
The quest for definitions of algorithms exemplifies this predicament
perhaps most strikingly:

OTOH, the desire for inclusiveness pushes in the direction of a more
abstract concept. One that ideally captures both algorithms over
countable and uncountable domains. Model-/level-/structure-relative
approaches meet that desideratum (e.g., Gurevich and Moschovakis).

But they are too general/powerful to provide a yardstick against
which to reasonably measure algorithmic costs (no standard of
powerfulness of operations).

OTOH, the desire for the formal concept to underpin a rich theory of
complexity pushes in the direction of more and more domain-specific
formal concepts (TMs (ordinary and TTE), K&U, RAM, BSS).

These all (can) underpin theories of complexity (classical and real),
but hardly any of these can be used for more than one domain (e.g.,
countable and uncountable computations alike (except maybe TTE
but too cumbersome and low-level)).

19 / 20



TrivialThanks(PLS13):

1. return Thank you(PLS13);

This work has been partially supported by the ANR project

The Geometry of Algorithms – GoA (ANR-20-CE27-0004).

20 / 20


