
Andrew Lewis-Pye, 28th June 2022

Consensus
(And View Synchronisation)

HOW DO WE MAINTAIN THE SAFETY CONDITION?

ANDREW LEWIS-PYE

Joint work with Ittai Abraham:
The new result I’ll talk about is a ‘view synchronisation’ method for ’optimistically
responsive’ blockchain protocols (like Hotstu↵) which has O(n) communication com-
plexity per view in the worst case.

Combined with Hotstu↵, this gives the first optimistically response blockchain proto-
col functioning in the partially synchronous setting which has:

• O(n) complexity per confirmed block in the optimistic case;
• O(n2) complexity per confirmed block in the worst case.

Combined with Hotstu↵
We only forward a clock to t in two cases:

• We see attestations from n � f processors that they are at most � behind t
(we see a QC for the previous view).

• We see attestations from f + 1 processors that their clock is � t (we see a
message saying we should start view v).

Inductively, it’s easy to see that the safety condition will never be violated.
We use a standard setup:

• Communication is partially synchronous.
• Some unknown subset of f many processors may display Byzantine faults,

where n � 3f + 1.
• All processors have the same clock speeds and start at the same time with

clocks set to 0 (both of these assumptions can be relaxed).

The underlying protocol. We suppose view synchronisation is required for some
underlying protocol (such as Hotstu↵) with the following properties:

• Instructions are divided into views. Each view v has a designated leader,
denoted lead(v).

• If the honest processors spend long enough in a view with an honest leader
when network conditions are good, the view will complete successfully, and
produce a ‘certificate’ (QC) signed by n� f processors.

The view synchronisation task:

• We have to ensure that all non-faulty processors eventually spend long enough
in the same view that it completes successully.

• We also want a protocol which is optimistically responsive: i.e. can go as fast
as the network can handle.

1

HOW DO WE MAINTAIN THE SAFETY CONDITION?

ANDREW LEWIS-PYE

Joint work with Ittai Abraham:
The new result I’ll talk about is a ‘view synchronisation’ method for ’optimistically
responsive’ blockchain protocols (like Hotstu↵) which has O(n) communication com-
plexity per view in the worst case.

Combined with Hotstu↵, this gives the first optimistically response blockchain proto-
col functioning in the partially synchronous setting which has:

• O(n) complexity per confirmed block in the optimistic case;
• O(n2) complexity per confirmed block in the worst case.

Combined with Hotstu↵
We only forward a clock to t in two cases:

• We see attestations from n � f processors that they are at most � behind t
(we see a QC for the previous view).

• We see attestations from f + 1 processors that their clock is � t (we see a
message saying we should start view v).

Inductively, it’s easy to see that the safety condition will never be violated.
We use a standard setup:

• Communication is partially synchronous.
• Some unknown subset of f many processors may display Byzantine faults,

where n � 3f + 1.
• All processors have the same clock speeds and start at the same time with

clocks set to 0 (both of these assumptions can be relaxed).

The underlying protocol. We suppose view synchronisation is required for some
underlying protocol (such as Hotstu↵) with the following properties:

• Instructions are divided into views. Each view v has a designated leader,
denoted lead(v).

• If the honest processors spend long enough in a view with an honest leader
when network conditions are good, the view will complete successfully, and
produce a ‘certificate’ (QC) signed by n� f processors.

The view synchronisation task:

• We have to ensure that all non-faulty processors eventually spend long enough
in the same view that it completes successully.

• We also want a protocol which is optimistically responsive: i.e. can go as fast
as the network can handle.

1

A LITTLE PUZZLE FOR THOSE WHO KNOW CONSENSUS

ANDREW LEWIS-PYE

Consider the synchronous setting, authenticated channels, Byzantine faults, PKI. Can
you design a deterministic protocol to solve Byzantine Broadcast, in which each party
speaks at most once?

‘Speaking once’ means that each party can send multiple messages, but they must all
be sent at the same timeslot.

• MA402 Game Theory
• MA408 Contemporary Discrete Mathematics
• MA409 Continuous Time Optimisation
• MA411 Probability and Measure
• MA414 Stochastic Analysis
• MA420 Quantifying Risk and Modelling Alternative Markets
• MA421 Advanced Algorithms
• MA427 Mathematical Optimisation
• MA428 Combinatorial Optimisation
• MA429 Algorithmic Techniques for Data Mining
• MA431 Advanced Topics in Operations Research and Applicable Mathematics
• MA433 Mathematics of Networks
• MA434 Algorithmic Game Theory

• EC484 Econometric Analysis
• EC487 Advanced Microeconomics
• FM402 Financial Risk Analysis
• FM429 Asset Markets A
• FM430 Corporate Finance and Asset Markets
• FM441 Derivatives
• FM442 Quantitative Methods for Finance and Risk Analysis
• MG409 Auctions and Game Theory
• ST409 Stochastic Processes
• ST422 Time Series
• ST455 Reinforcement Learning
• ST456 Deep Learning

• Are there limits to the functions that can be calculated by computers?
• To give an answer one has to define computability.
• Such a definition was formulated by Church, Turing, Kleene and others in the

1930s.

• It turns out that many important functions are not computable, e.g. there
is no computer programme which will churn out all the true theorems (and
only true theorems) of number theory.

1

A LITTLE PUZZLE FOR THOSE WHO KNOW CONSENSUS

ANDREW LEWIS-PYE

Consider the synchronous setting, authenticated channels, Byzantine faults, PKI. Can
you design a deterministic protocol to solve Byzantine Broadcast, in which each party
speaks at most once?

‘Speaking once’ means that each party can send multiple messages, but they must all
be sent at the same timeslot.

• MA402 Game Theory
• MA408 Contemporary Discrete Mathematics
• MA409 Continuous Time Optimisation
• MA411 Probability and Measure
• MA414 Stochastic Analysis
• MA420 Quantifying Risk and Modelling Alternative Markets
• MA421 Advanced Algorithms
• MA427 Mathematical Optimisation
• MA428 Combinatorial Optimisation
• MA429 Algorithmic Techniques for Data Mining
• MA431 Advanced Topics in Operations Research and Applicable Mathematics
• MA433 Mathematics of Networks
• MA434 Algorithmic Game Theory

• EC484 Econometric Analysis
• EC487 Advanced Microeconomics
• FM402 Financial Risk Analysis
• FM429 Asset Markets A
• FM430 Corporate Finance and Asset Markets
• FM441 Derivatives
• FM442 Quantitative Methods for Finance and Risk Analysis
• MG409 Auctions and Game Theory
• ST409 Stochastic Processes
• ST422 Time Series
• ST455 Reinforcement Learning
• ST456 Deep Learning

• Are there limits to the functions that can be calculated by computers?
• To give an answer one has to define computability.
• Such a definition was formulated by Church, Turing, Kleene and others in the

1930s.

• It turns out that many important functions are not computable, e.g. there
is no computer programme which will churn out all the true theorems (and
only true theorems) of number theory.

1

SUMMARY

ANDREW LEWIS-PYE

What is the problem a consensus protocol has to solve?

1. Overview

16 Jan: Luna 31B UST 10B

27 Feb: Luna 27B UST 13B

20 Mar: Luna 33B UST 15B

24 Apr: Luna 32B UST 18B

1 May: Luna 28B UST 19B

8 May: Luna 22B UST 19B

9 May: Death Spiral. Luna goes to (essentially) 0.
Luna: 31B

UST: 10B

• The previous analysis assumed infinite liquidity – that we can buy and sell any
amount of Luna at the current ‘price’.

• In particular, we assumed that for any x, there is such a thing as $x of Luna
– if I want to convert 20 billion UST into $20 billion Luna, then it should be
possible to do that.

• Here we get to the crux of the problem: Is there su�cient value in Luna to back
UST?

Summary. No fundamental flaw, but the peg stability module introduces a form of
centralisation and over collaterisation is an issue.

Note that this is how new DAI are minted, but most trades in DAI wont require minting
new DAI – one can just buy and sell directly on an exchange.

1

THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

ANDREW LEWIS-PYE

Several divisions of the Byzantine army are camped outside an enemy city, each division
commanded by its own general. The generals can only communicate by messenger and
must carry out a protocol to decide on a common plan of action, either ‘retreat’ or
‘attack’. Initially, each general has their own private opinion as to the best plan of
action. The di�culty is that some unknown subset of the generals may be dishonest
traitors (and may deviate from the protocol). The protocol must satisfy:

(1) Termination. Each honest general must eventually reach a decision (retreat
or attack).

(2) Agreement. All honest generals must reach the same decision.
(3) Validity. If all honest generals start with the same opinion, then that common

opinion must be the same as their final decision.

What is the problem a consensus protocol has to solve?

1. Overview

16 Jan: Luna 31B UST 10B

27 Feb: Luna 27B UST 13B

20 Mar: Luna 33B UST 15B

24 Apr: Luna 32B UST 18B

1 May: Luna 28B UST 19B

8 May: Luna 22B UST 19B

9 May: Death Spiral. Luna goes to (essentially) 0.
Luna: 31B

UST: 10B

• The previous analysis assumed infinite liquidity – that we can buy and sell any
amount of Luna at the current ‘price’.

1

THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

ANDREW LEWIS-PYE

Several divisions of the Byzantine army are camped outside an enemy city, each division
commanded by its own general. The generals can only communicate by messenger and
must carry out a protocol to decide on a common plan of action, either ‘retreat’ or
‘attack’. Initially, each general has their own private opinion as to the best plan of
action. The di�culty is that some unknown subset of the generals may be dishonest
traitors (and may deviate from the protocol). The protocol must satisfy:

(1) Termination. Each honest general must eventually reach a decision (retreat
or attack).

(2) Agreement. All honest generals must reach the same decision.
(3) Validity. If all honest generals start with the same opinion, then that common

opinion must be the same as their final decision.

What is the problem a consensus protocol has to solve?

1. Overview

16 Jan: Luna 31B UST 10B

27 Feb: Luna 27B UST 13B

20 Mar: Luna 33B UST 15B

24 Apr: Luna 32B UST 18B

1 May: Luna 28B UST 19B

8 May: Luna 22B UST 19B

9 May: Death Spiral. Luna goes to (essentially) 0.
Luna: 31B

UST: 10B

• The previous analysis assumed infinite liquidity – that we can buy and sell any
amount of Luna at the current ‘price’.

1

THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

ANDREW LEWIS-PYE

Several divisions of the Byzantine army are camped outside an enemy city, each division
commanded by its own general. The generals can only communicate by messenger and
must carry out a protocol to decide on a common plan of action, either ‘retreat’ or
‘attack’. Initially, each general has their own private opinion as to the best plan of
action. The di�culty is that some unknown subset of the generals may be dishonest
traitors (and may deviate from the protocol). The protocol must satisfy:

(1) Termination. Each honest general must eventually reach a decision (retreat
or attack).

(2) Agreement. All honest generals must reach the same decision.
(3) Validity. If all honest generals start with the same opinion, then that common

opinion must be the same as their final decision.

What is the problem a consensus protocol has to solve?

1. Overview

16 Jan: Luna 31B UST 10B

27 Feb: Luna 27B UST 13B

20 Mar: Luna 33B UST 15B

24 Apr: Luna 32B UST 18B

1 May: Luna 28B UST 19B

8 May: Luna 22B UST 19B

9 May: Death Spiral. Luna goes to (essentially) 0.
Luna: 31B

UST: 10B

• The previous analysis assumed infinite liquidity – that we can buy and sell any
amount of Luna at the current ‘price’.

1

THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

ANDREW LEWIS-PYE

Several divisions of the Byzantine army are camped outside an enemy city, each division
commanded by its own general. The generals can only communicate by messenger and
must carry out a protocol to decide on a common plan of action, either ‘retreat’ or
‘attack’. Initially, each general has their own private opinion as to the best plan of
action. The di�culty is that some unknown subset of the generals may be dishonest
traitors (and may deviate from the protocol). The protocol must satisfy:

(1) Termination. Each honest general must eventually reach a decision (retreat
or attack).

(2) Agreement. All honest generals must reach the same decision.
(3) Validity. If all honest generals start with the same opinion, then that common

opinion must be the same as their final decision.

What is the problem a consensus protocol has to solve?

1. Overview

16 Jan: Luna 31B UST 10B

27 Feb: Luna 27B UST 13B

20 Mar: Luna 33B UST 15B

24 Apr: Luna 32B UST 18B

1 May: Luna 28B UST 19B

8 May: Luna 22B UST 19B

9 May: Death Spiral. Luna goes to (essentially) 0.
Luna: 31B

UST: 10B

• The previous analysis assumed infinite liquidity – that we can buy and sell any
amount of Luna at the current ‘price’.

1

THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

ANDREW LEWIS-PYE

Several divisions of the Byzantine army are camped outside an enemy city, each division
commanded by its own general. The generals can only communicate by messenger and
must carry out a protocol to decide on a common plan of action, either ‘retreat’ or
‘attack’. Initially, each general has their own private opinion as to the best plan of
action. The di�culty is that some unknown subset of the generals may be dishonest
traitors (and may deviate from the protocol). The protocol must satisfy:

(1) Termination. Each honest general must eventually reach a decision (retreat
or attack).

(2) Agreement. All honest generals must reach the same decision.
(3) Validity. If all honest generals start with the same opinion, then that common

opinion must be the same as their final decision.

What is the problem a consensus protocol has to solve?

1. Overview

16 Jan: Luna 31B UST 10B

27 Feb: Luna 27B UST 13B

20 Mar: Luna 33B UST 15B

24 Apr: Luna 32B UST 18B

1 May: Luna 28B UST 19B

8 May: Luna 22B UST 19B

9 May: Death Spiral. Luna goes to (essentially) 0.
Luna: 31B

UST: 10B

• The previous analysis assumed infinite liquidity – that we can buy and sell any
amount of Luna at the current ‘price’.

1

THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

ANDREW LEWIS-PYE

Several divisions of the Byzantine army are camped outside an enemy city, each division
commanded by its own general. The generals can only communicate by messenger and
must carry out a protocol to decide on a common plan of action, either ‘retreat’ or
‘attack’. Initially, each general has their own private opinion as to the best plan of
action. The di�culty is that some unknown subset of the generals may be dishonest
traitors (and may deviate from the protocol). The protocol must satisfy:

(1) Termination. Each honest general must eventually reach a decision (retreat
or attack).

(2) Agreement. All honest generals must reach the same decision.
(3) Validity. If all honest generals start with the same opinion, then that common

opinion must be the same as their final decision.

What is the problem a consensus protocol has to solve?

1. Overview

16 Jan: Luna 31B UST 10B

27 Feb: Luna 27B UST 13B

20 Mar: Luna 33B UST 15B

24 Apr: Luna 32B UST 18B

1 May: Luna 28B UST 19B

8 May: Luna 22B UST 19B

9 May: Death Spiral. Luna goes to (essentially) 0.
Luna: 31B

UST: 10B

• The previous analysis assumed infinite liquidity – that we can buy and sell any
amount of Luna at the current ‘price’.

1

THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

ANDREW LEWIS-PYE

Several divisions of the Byzantine army are camped outside an enemy city, each division
commanded by its own general. The generals can only communicate by messenger and
must carry out a protocol to decide on a common plan of action, either ‘retreat’ or
‘attack’. Initially, each general has their own private opinion as to the best plan of
action. The di�culty is that some unknown subset of the generals may be dishonest
traitors (and may deviate from the protocol). The protocol must satisfy:

(1) Termination. Each honest general must eventually reach a decision (retreat
or attack).

(2) Agreement. All honest generals must reach the same decision.
(3) Validity. If all honest generals start with the same opinion, then that common

opinion must be the same as their final decision.

What is the problem a consensus protocol has to solve?

1. Overview

16 Jan: Luna 31B UST 10B

27 Feb: Luna 27B UST 13B

20 Mar: Luna 33B UST 15B

24 Apr: Luna 32B UST 18B

1 May: Luna 28B UST 19B

8 May: Luna 22B UST 19B

9 May: Death Spiral. Luna goes to (essentially) 0.
Luna: 31B

UST: 10B

• The previous analysis assumed infinite liquidity – that we can buy and sell any
amount of Luna at the current ‘price’.

1

THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

ANDREW LEWIS-PYE

Several divisions of the Byzantine army are camped outside an enemy city, each division
commanded by its own general. The generals can only communicate by messenger and
must carry out a protocol to decide on a common plan of action, either ‘retreat’ or
‘attack’. Initially, each general has their own private opinion as to the best plan of
action. The di�culty is that some unknown subset of the generals may be dishonest
traitors (and may deviate from the protocol). The protocol must satisfy:

(1) Termination. Each honest general must eventually reach a decision (retreat
or attack).

(2) Agreement. All honest generals must reach the same decision.
(3) Validity. If all honest generals start with the same opinion, then that common

opinion must be the same as their final decision.

What is the problem a consensus protocol has to solve?

1. Overview

16 Jan: Luna 31B UST 10B

27 Feb: Luna 27B UST 13B

20 Mar: Luna 33B UST 15B

24 Apr: Luna 32B UST 18B

1 May: Luna 28B UST 19B

8 May: Luna 22B UST 19B

9 May: Death Spiral. Luna goes to (essentially) 0.
Luna: 31B

UST: 10B

• The previous analysis assumed infinite liquidity – that we can buy and sell any
amount of Luna at the current ‘price’.

1

THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

ANDREW LEWIS-PYE

Several divisions of the Byzantine army are camped outside an enemy city, each division
commanded by its own general. The generals can only communicate by messenger and
must carry out a protocol to decide on a common plan of action, either ‘retreat’ or
‘attack’. Initially, each general has their own private opinion as to the best plan of
action. The di�culty is that some unknown subset of the generals may be dishonest
traitors (and may deviate from the protocol). The protocol must satisfy:

(1) Termination. Each honest general must eventually reach a decision (retreat
or attack).

(2) Agreement. All honest generals must reach the same decision.
(3) Validity. If all honest generals start with the same opinion, then that common

opinion must be the same as their final decision.

What is the problem a consensus protocol has to solve?

1. Overview

16 Jan: Luna 31B UST 10B

27 Feb: Luna 27B UST 13B

20 Mar: Luna 33B UST 15B

24 Apr: Luna 32B UST 18B

1 May: Luna 28B UST 19B

8 May: Luna 22B UST 19B

9 May: Death Spiral. Luna goes to (essentially) 0.
Luna: 31B

UST: 10B

• The previous analysis assumed infinite liquidity – that we can buy and sell any
amount of Luna at the current ‘price’.

1

THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

ANDREW LEWIS-PYE

Several divisions of the Byzantine army are camped outside an enemy city, each division
commanded by its own general. The generals can only communicate by messenger and
must carry out a protocol to decide on a common plan of action, either ‘retreat’ or
‘attack’. Initially, each general has their own private opinion as to the best plan of
action. The di�culty is that some unknown subset of the generals may be dishonest
traitors (and may deviate from the protocol). The protocol must satisfy:

(1) Termination. Each honest general must eventually reach a decision (retreat
or attack).

(2) Agreement. All honest generals must reach the same decision.
(3) Validity. If all honest generals start with the same opinion, then that common

opinion must be the same as their final decision.

What is the problem a consensus protocol has to solve?

1. Overview

16 Jan: Luna 31B UST 10B

27 Feb: Luna 27B UST 13B

20 Mar: Luna 33B UST 15B

24 Apr: Luna 32B UST 18B

1 May: Luna 28B UST 19B

8 May: Luna 22B UST 19B

9 May: Death Spiral. Luna goes to (essentially) 0.
Luna: 31B

UST: 10B

• The previous analysis assumed infinite liquidity – that we can buy and sell any
amount of Luna at the current ‘price’.

1

THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

ANDREW LEWIS-PYE

Without validity requirement, it would be trivial.

Several divisions of the Byzantine army are camped outside an enemy city, each division
commanded by its own general. The generals can only communicate by messenger and
must carry out a protocol to decide on a common plan of action, either ‘retreat’ or
‘attack’. Initially, each general has their own private opinion as to the best plan of
action. The di�culty is that some unknown subset of the generals may be dishonest
traitors (and may deviate from the protocol). The protocol must satisfy:

(1) Termination. Each honest general must eventually reach a decision (retreat
or attack).

(2) Agreement. All honest generals must reach the same decision.
(3) Validity. If all honest generals start with the same opinion, then that common

opinion must be the same as their final decision.

What is the problem a consensus protocol has to solve?

1. Overview

16 Jan: Luna 31B UST 10B

27 Feb: Luna 27B UST 13B

20 Mar: Luna 33B UST 15B

24 Apr: Luna 32B UST 18B

1 May: Luna 28B UST 19B

8 May: Luna 22B UST 19B

9 May: Death Spiral. Luna goes to (essentially) 0.
Luna: 31B

UST: 10B

1

THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

ANDREW LEWIS-PYE

Several divisions of the Byzantine army are camped outside an enemy city, each division
commanded by its own general. The generals can only communicate by messenger and
must carry out a protocol to decide on a common plan of action, either ‘retreat’ or
‘attack’. Initially, each general has their own private opinion as to the best plan of
action. The di�culty is that some unknown subset of the generals may be dishonest
traitors (and may deviate from the protocol). The protocol must satisfy:

(1) Termination. Each honest general must eventually reach a decision (retreat
or attack).

(2) Agreement. All honest generals must reach the same decision.
(3) Validity. If all honest generals start with the same opinion, then that common

opinion must be the same as their final decision.

What is the problem a consensus protocol has to solve?

1. Overview

16 Jan: Luna 31B UST 10B

27 Feb: Luna 27B UST 13B

20 Mar: Luna 33B UST 15B

24 Apr: Luna 32B UST 18B

1 May: Luna 28B UST 19B

8 May: Luna 22B UST 19B

9 May: Death Spiral. Luna goes to (essentially) 0.
Luna: 31B

UST: 10B

• The previous analysis assumed infinite liquidity – that we can buy and sell any
amount of Luna at the current ‘price’.

1

THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

ANDREW LEWIS-PYE

There are n parties (generals), of which at most f are dishonest. Each starts with their
own input. Must satisfy:

(1) Termination. Each honest party gives an output.
(2) Agreement. All honest parties give the same output.
(3) Validity. If all honest parties have the same input, this must be their output.

Without validity requirement, it would be trivial.

Several divisions of the Byzantine army are camped outside an enemy city, each division
commanded by its own general. The generals can only communicate by messenger and
must carry out a protocol to decide on a common plan of action, either ‘retreat’ or
‘attack’. Initially, each general has their own private opinion as to the best plan of
action. The di�culty is that some unknown subset of the generals may be dishonest
traitors (and may deviate from the protocol). The protocol must satisfy:

(1) Termination. Each honest general must eventually reach a decision (retreat
or attack).

(2) Agreement. All honest generals must reach the same decision.
(3) Validity. If all honest generals start with the same opinion, then that common

opinion must be the same as their final decision.

What is the problem a consensus protocol has to solve?

1. Overview

16 Jan: Luna 31B UST 10B

27 Feb: Luna 27B UST 13B

20 Mar: Luna 33B UST 15B

24 Apr: Luna 32B UST 18B

1 May: Luna 28B UST 19B

8 May: Luna 22B UST 19B

1

THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

ANDREW LEWIS-PYE

Several divisions of the Byzantine army are camped outside an enemy city, each division
commanded by its own general. The generals can only communicate by messenger and
must carry out a protocol to decide on a common plan of action, either ‘retreat’ or
‘attack’. Initially, each general has their own private opinion as to the best plan of
action. The di�culty is that some unknown subset of the generals may be dishonest
traitors (and may deviate from the protocol). The protocol must satisfy:

(1) Termination. Each honest general must eventually reach a decision (retreat
or attack).

(2) Agreement. All honest generals must reach the same decision.
(3) Validity. If all honest generals start with the same opinion, then that common

opinion must be the same as their final decision.

What is the problem a consensus protocol has to solve?

1. Overview

16 Jan: Luna 31B UST 10B

27 Feb: Luna 27B UST 13B

20 Mar: Luna 33B UST 15B

24 Apr: Luna 32B UST 18B

1 May: Luna 28B UST 19B

8 May: Luna 22B UST 19B

9 May: Death Spiral. Luna goes to (essentially) 0.
Luna: 31B

UST: 10B

• The previous analysis assumed infinite liquidity – that we can buy and sell any
amount of Luna at the current ‘price’.

1

THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

ANDREW LEWIS-PYE

There are n parties (generals), of which at most f are dishonest. Each starts with their
own input. Must satisfy:

(1) Termination. Each honest party gives an output.
(2) Agreement. All honest parties give the same output.
(3) Validity. If all honest parties have the same input, this must be their output.

Without validity requirement, it would be trivial.

Several divisions of the Byzantine army are camped outside an enemy city, each division
commanded by its own general. The generals can only communicate by messenger and
must carry out a protocol to decide on a common plan of action, either ‘retreat’ or
‘attack’. Initially, each general has their own private opinion as to the best plan of
action. The di�culty is that some unknown subset of the generals may be dishonest
traitors (and may deviate from the protocol). The protocol must satisfy:

(1) Termination. Each honest general must eventually reach a decision (retreat
or attack).

(2) Agreement. All honest generals must reach the same decision.
(3) Validity. If all honest generals start with the same opinion, then that common

opinion must be the same as their final decision.

What is the problem a consensus protocol has to solve?

1. Overview

16 Jan: Luna 31B UST 10B

27 Feb: Luna 27B UST 13B

20 Mar: Luna 33B UST 15B

24 Apr: Luna 32B UST 18B

1 May: Luna 28B UST 19B

8 May: Luna 22B UST 19B

1

THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

ANDREW LEWIS-PYE

For clarity, suppose the honest generals know f (but not which are the dishonest gen-
erals).

If f = 0 then the problem is trivial (just do majority vote).

So, it is clear that one of the basic questions we should be interested in is “what values
of n and f can a protocol handle?”.

There are n parties (generals), of which at most f are dishonest. Each starts with their
own input. Must satisfy:

(1) Termination. Each honest party gives an output.
(2) Agreement. All honest parties give the same output.
(3) Validity. If all honest parties have the same input, this must be their output.

Without validity requirement, it would be trivial.

Several divisions of the Byzantine army are camped outside an enemy city, each division
commanded by its own general. The generals can only communicate by messenger and
must carry out a protocol to decide on a common plan of action, either ‘retreat’ or
‘attack’. Initially, each general has their own private opinion as to the best plan of
action. The di�culty is that some unknown subset of the generals may be dishonest
traitors (and may deviate from the protocol). The protocol must satisfy:

(1) Termination. Each honest general must eventually reach a decision (retreat
or attack).

(2) Agreement. All honest generals must reach the same decision.
(3) Validity. If all honest generals start with the same opinion, then that common

opinion must be the same as their final decision.

What is the problem a consensus protocol has to solve?

1. Overview

16 Jan: Luna 31B UST 10B

27 Feb: Luna 27B UST 13B

1

THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

ANDREW LEWIS-PYE

Several divisions of the Byzantine army are camped outside an enemy city, each division
commanded by its own general. The generals can only communicate by messenger and
must carry out a protocol to decide on a common plan of action, either ‘retreat’ or
‘attack’. Initially, each general has their own private opinion as to the best plan of
action. The di�culty is that some unknown subset of the generals may be dishonest
traitors (and may deviate from the protocol). The protocol must satisfy:

(1) Termination. Each honest general must eventually reach a decision (retreat
or attack).

(2) Agreement. All honest generals must reach the same decision.
(3) Validity. If all honest generals start with the same opinion, then that common

opinion must be the same as their final decision.

What is the problem a consensus protocol has to solve?

1. Overview

16 Jan: Luna 31B UST 10B

27 Feb: Luna 27B UST 13B

20 Mar: Luna 33B UST 15B

24 Apr: Luna 32B UST 18B

1 May: Luna 28B UST 19B

8 May: Luna 22B UST 19B

9 May: Death Spiral. Luna goes to (essentially) 0.
Luna: 31B

UST: 10B

• The previous analysis assumed infinite liquidity – that we can buy and sell any
amount of Luna at the current ‘price’.

1

THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

ANDREW LEWIS-PYE

There are n parties (generals), of which at most f are dishonest. Each starts with their
own input. Must satisfy:

(1) Termination. Each honest party gives an output.
(2) Agreement. All honest parties give the same output.
(3) Validity. If all honest parties have the same input, this must be their output.

Without validity requirement, it would be trivial.

Several divisions of the Byzantine army are camped outside an enemy city, each division
commanded by its own general. The generals can only communicate by messenger and
must carry out a protocol to decide on a common plan of action, either ‘retreat’ or
‘attack’. Initially, each general has their own private opinion as to the best plan of
action. The di�culty is that some unknown subset of the generals may be dishonest
traitors (and may deviate from the protocol). The protocol must satisfy:

(1) Termination. Each honest general must eventually reach a decision (retreat
or attack).

(2) Agreement. All honest generals must reach the same decision.
(3) Validity. If all honest generals start with the same opinion, then that common

opinion must be the same as their final decision.

What is the problem a consensus protocol has to solve?

1. Overview

16 Jan: Luna 31B UST 10B

27 Feb: Luna 27B UST 13B

20 Mar: Luna 33B UST 15B

24 Apr: Luna 32B UST 18B

1 May: Luna 28B UST 19B

8 May: Luna 22B UST 19B

1

THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

ANDREW LEWIS-PYE

For clarity, suppose the honest generals know f (but not which are the dishonest gen-
erals).

If f = 0 then the problem is trivial (just do majority vote).

So, it is clear that one of the basic questions we should be interested in is “what values
of n and f can a protocol handle?”.

There are n parties (generals), of which at most f are dishonest. Each starts with their
own input. Must satisfy:

(1) Termination. Each honest party gives an output.
(2) Agreement. All honest parties give the same output.
(3) Validity. If all honest parties have the same input, this must be their output.

Without validity requirement, it would be trivial.

Several divisions of the Byzantine army are camped outside an enemy city, each division
commanded by its own general. The generals can only communicate by messenger and
must carry out a protocol to decide on a common plan of action, either ‘retreat’ or
‘attack’. Initially, each general has their own private opinion as to the best plan of
action. The di�culty is that some unknown subset of the generals may be dishonest
traitors (and may deviate from the protocol). The protocol must satisfy:

(1) Termination. Each honest general must eventually reach a decision (retreat
or attack).

(2) Agreement. All honest generals must reach the same decision.
(3) Validity. If all honest generals start with the same opinion, then that common

opinion must be the same as their final decision.

What is the problem a consensus protocol has to solve?

1. Overview

16 Jan: Luna 31B UST 10B

27 Feb: Luna 27B UST 13B

1

THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

ANDREW LEWIS-PYE

Several divisions of the Byzantine army are camped outside an enemy city, each division
commanded by its own general. The generals can only communicate by messenger and
must carry out a protocol to decide on a common plan of action, either ‘retreat’ or
‘attack’. Initially, each general has their own private opinion as to the best plan of
action. The di�culty is that some unknown subset of the generals may be dishonest
traitors (and may deviate from the protocol). The protocol must satisfy:

(1) Termination. Each honest general must eventually reach a decision (retreat
or attack).

(2) Agreement. All honest generals must reach the same decision.
(3) Validity. If all honest generals start with the same opinion, then that common

opinion must be the same as their final decision.

What is the problem a consensus protocol has to solve?

1. Overview

16 Jan: Luna 31B UST 10B

27 Feb: Luna 27B UST 13B

20 Mar: Luna 33B UST 15B

24 Apr: Luna 32B UST 18B

1 May: Luna 28B UST 19B

8 May: Luna 22B UST 19B

9 May: Death Spiral. Luna goes to (essentially) 0.
Luna: 31B

UST: 10B

• The previous analysis assumed infinite liquidity – that we can buy and sell any
amount of Luna at the current ‘price’.

1

THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

ANDREW LEWIS-PYE

There are n parties (generals), of which at most f are dishonest. Each starts with their
own input. Must satisfy:

(1) Termination. Each honest party gives an output.
(2) Agreement. All honest parties give the same output.
(3) Validity. If all honest parties have the same input, this must be their output.

Without validity requirement, it would be trivial.

Several divisions of the Byzantine army are camped outside an enemy city, each division
commanded by its own general. The generals can only communicate by messenger and
must carry out a protocol to decide on a common plan of action, either ‘retreat’ or
‘attack’. Initially, each general has their own private opinion as to the best plan of
action. The di�culty is that some unknown subset of the generals may be dishonest
traitors (and may deviate from the protocol). The protocol must satisfy:

(1) Termination. Each honest general must eventually reach a decision (retreat
or attack).

(2) Agreement. All honest generals must reach the same decision.
(3) Validity. If all honest generals start with the same opinion, then that common

opinion must be the same as their final decision.

What is the problem a consensus protocol has to solve?

1. Overview

16 Jan: Luna 31B UST 10B

27 Feb: Luna 27B UST 13B

20 Mar: Luna 33B UST 15B

24 Apr: Luna 32B UST 18B

1 May: Luna 28B UST 19B

8 May: Luna 22B UST 19B

1

THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

ANDREW LEWIS-PYE

For clarity, suppose the honest generals know f (but not which are the dishonest gen-
erals).

If f = 0 then the problem is trivial (just do majority vote).

So, it is clear that one of the basic questions we should be interested in is “what values
of n and f can a protocol handle?”.

There are n parties (generals), of which at most f are dishonest. Each starts with their
own input. Must satisfy:

(1) Termination. Each honest party gives an output.
(2) Agreement. All honest parties give the same output.
(3) Validity. If all honest parties have the same input, this must be their output.

Without validity requirement, it would be trivial.

Several divisions of the Byzantine army are camped outside an enemy city, each division
commanded by its own general. The generals can only communicate by messenger and
must carry out a protocol to decide on a common plan of action, either ‘retreat’ or
‘attack’. Initially, each general has their own private opinion as to the best plan of
action. The di�culty is that some unknown subset of the generals may be dishonest
traitors (and may deviate from the protocol). The protocol must satisfy:

(1) Termination. Each honest general must eventually reach a decision (retreat
or attack).

(2) Agreement. All honest generals must reach the same decision.
(3) Validity. If all honest generals start with the same opinion, then that common

opinion must be the same as their final decision.

What is the problem a consensus protocol has to solve?

1. Overview

16 Jan: Luna 31B UST 10B

27 Feb: Luna 27B UST 13B

1

THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

ANDREW LEWIS-PYE

Several divisions of the Byzantine army are camped outside an enemy city, each division
commanded by its own general. The generals can only communicate by messenger and
must carry out a protocol to decide on a common plan of action, either ‘retreat’ or
‘attack’. Initially, each general has their own private opinion as to the best plan of
action. The di�culty is that some unknown subset of the generals may be dishonest
traitors (and may deviate from the protocol). The protocol must satisfy:

(1) Termination. Each honest general must eventually reach a decision (retreat
or attack).

(2) Agreement. All honest generals must reach the same decision.
(3) Validity. If all honest generals start with the same opinion, then that common

opinion must be the same as their final decision.

What is the problem a consensus protocol has to solve?

1. Overview

16 Jan: Luna 31B UST 10B

27 Feb: Luna 27B UST 13B

20 Mar: Luna 33B UST 15B

24 Apr: Luna 32B UST 18B

1 May: Luna 28B UST 19B

8 May: Luna 22B UST 19B

9 May: Death Spiral. Luna goes to (essentially) 0.
Luna: 31B

UST: 10B

• The previous analysis assumed infinite liquidity – that we can buy and sell any
amount of Luna at the current ‘price’.

1

THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

ANDREW LEWIS-PYE

There are n parties (generals), of which at most f are dishonest. Each starts with their
own input. Must satisfy:

(1) Termination. Each honest party gives an output.
(2) Agreement. All honest parties give the same output.
(3) Validity. If all honest parties have the same input, this must be their output.

Without validity requirement, it would be trivial.

Several divisions of the Byzantine army are camped outside an enemy city, each division
commanded by its own general. The generals can only communicate by messenger and
must carry out a protocol to decide on a common plan of action, either ‘retreat’ or
‘attack’. Initially, each general has their own private opinion as to the best plan of
action. The di�culty is that some unknown subset of the generals may be dishonest
traitors (and may deviate from the protocol). The protocol must satisfy:

(1) Termination. Each honest general must eventually reach a decision (retreat
or attack).

(2) Agreement. All honest generals must reach the same decision.
(3) Validity. If all honest generals start with the same opinion, then that common

opinion must be the same as their final decision.

What is the problem a consensus protocol has to solve?

1. Overview

16 Jan: Luna 31B UST 10B

27 Feb: Luna 27B UST 13B

20 Mar: Luna 33B UST 15B

24 Apr: Luna 32B UST 18B

1 May: Luna 28B UST 19B

8 May: Luna 22B UST 19B

1

THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

ANDREW LEWIS-PYE

Not possible if f � n/2.

For clarity, suppose the honest generals know f (but not which are the dishonest gen-
erals).

If f = 0 then the problem is trivial (just do majority vote).

So, it is clear that one of the basic questions we should be interested in is “what values
of n and f can a protocol handle?”.

There are n parties (generals), of which at most f are dishonest. Each starts with their
own input. Must satisfy:

(1) Termination. Each honest party gives an output.
(2) Agreement. All honest parties give the same output.
(3) Validity. If all honest parties have the same input, this must be their output.

Without validity requirement, it would be trivial.

Several divisions of the Byzantine army are camped outside an enemy city, each division
commanded by its own general. The generals can only communicate by messenger and
must carry out a protocol to decide on a common plan of action, either ‘retreat’ or
‘attack’. Initially, each general has their own private opinion as to the best plan of
action. The di�culty is that some unknown subset of the generals may be dishonest
traitors (and may deviate from the protocol). The protocol must satisfy:

(1) Termination. Each honest general must eventually reach a decision (retreat
or attack).

(2) Agreement. All honest generals must reach the same decision.
(3) Validity. If all honest generals start with the same opinion, then that common

opinion must be the same as their final decision.

What is the problem a consensus protocol has to solve?

1. Overview

16 Jan: Luna 31B UST 10B

1

THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

ANDREW LEWIS-PYE

Several divisions of the Byzantine army are camped outside an enemy city, each division
commanded by its own general. The generals can only communicate by messenger and
must carry out a protocol to decide on a common plan of action, either ‘retreat’ or
‘attack’. Initially, each general has their own private opinion as to the best plan of
action. The di�culty is that some unknown subset of the generals may be dishonest
traitors (and may deviate from the protocol). The protocol must satisfy:

(1) Termination. Each honest general must eventually reach a decision (retreat
or attack).

(2) Agreement. All honest generals must reach the same decision.
(3) Validity. If all honest generals start with the same opinion, then that common

opinion must be the same as their final decision.

What is the problem a consensus protocol has to solve?

1. Overview

16 Jan: Luna 31B UST 10B

27 Feb: Luna 27B UST 13B

20 Mar: Luna 33B UST 15B

24 Apr: Luna 32B UST 18B

1 May: Luna 28B UST 19B

8 May: Luna 22B UST 19B

9 May: Death Spiral. Luna goes to (essentially) 0.
Luna: 31B

UST: 10B

• The previous analysis assumed infinite liquidity – that we can buy and sell any
amount of Luna at the current ‘price’.

1

THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

ANDREW LEWIS-PYE

There are n parties (generals), of which at most f are dishonest. Each starts with their
own input. Must satisfy:

(1) Termination. Each honest party gives an output.
(2) Agreement. All honest parties give the same output.
(3) Validity. If all honest parties have the same input, this must be their output.

Without validity requirement, it would be trivial.

Several divisions of the Byzantine army are camped outside an enemy city, each division
commanded by its own general. The generals can only communicate by messenger and
must carry out a protocol to decide on a common plan of action, either ‘retreat’ or
‘attack’. Initially, each general has their own private opinion as to the best plan of
action. The di�culty is that some unknown subset of the generals may be dishonest
traitors (and may deviate from the protocol). The protocol must satisfy:

(1) Termination. Each honest general must eventually reach a decision (retreat
or attack).

(2) Agreement. All honest generals must reach the same decision.
(3) Validity. If all honest generals start with the same opinion, then that common

opinion must be the same as their final decision.

What is the problem a consensus protocol has to solve?

1. Overview

16 Jan: Luna 31B UST 10B

27 Feb: Luna 27B UST 13B

20 Mar: Luna 33B UST 15B

24 Apr: Luna 32B UST 18B

1 May: Luna 28B UST 19B

8 May: Luna 22B UST 19B

1

THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

ANDREW LEWIS-PYE

Not possible if f � n/2.

For clarity, suppose the honest generals know f (but not which are the dishonest gen-
erals).

If f = 0 then the problem is trivial (just do majority vote).

So, it is clear that one of the basic questions we should be interested in is “what values
of n and f can a protocol handle?”.

There are n parties (generals), of which at most f are dishonest. Each starts with their
own input. Must satisfy:

(1) Termination. Each honest party gives an output.
(2) Agreement. All honest parties give the same output.
(3) Validity. If all honest parties have the same input, this must be their output.

Without validity requirement, it would be trivial.

Several divisions of the Byzantine army are camped outside an enemy city, each division
commanded by its own general. The generals can only communicate by messenger and
must carry out a protocol to decide on a common plan of action, either ‘retreat’ or
‘attack’. Initially, each general has their own private opinion as to the best plan of
action. The di�culty is that some unknown subset of the generals may be dishonest
traitors (and may deviate from the protocol). The protocol must satisfy:

(1) Termination. Each honest general must eventually reach a decision (retreat
or attack).

(2) Agreement. All honest generals must reach the same decision.
(3) Validity. If all honest generals start with the same opinion, then that common

opinion must be the same as their final decision.

What is the problem a consensus protocol has to solve?

1. Overview

16 Jan: Luna 31B UST 10B

1

THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

ANDREW LEWIS-PYE

Attack

Retreat

Output: Attack

Not possible if f � n/2.

For clarity, suppose the honest generals know f (but not which are the dishonest gen-
erals).

If f = 0 then the problem is trivial (just do majority vote).

So, it is clear that one of the basic questions we should be interested in is “what values
of n and f can a protocol handle?”.

There are n parties (generals), of which at most f are dishonest. Each starts with their
own input. Must satisfy:

(1) Termination. Each honest party gives an output.
(2) Agreement. All honest parties give the same output.
(3) Validity. If all honest parties have the same input, this must be their output.

Without validity requirement, it would be trivial.

Several divisions of the Byzantine army are camped outside an enemy city, each division
commanded by its own general. The generals can only communicate by messenger and
must carry out a protocol to decide on a common plan of action, either ‘retreat’ or
‘attack’. Initially, each general has their own private opinion as to the best plan of
action. The di�culty is that some unknown subset of the generals may be dishonest
traitors (and may deviate from the protocol). The protocol must satisfy:

(1) Termination. Each honest general must eventually reach a decision (retreat
or attack).

(2) Agreement. All honest generals must reach the same decision.
(3) Validity. If all honest generals start with the same opinion, then that common

opinion must be the same as their final decision.
1

THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

ANDREW LEWIS-PYE

Attack

Retreat

Output: Attack

Not possible if f � n/2.

For clarity, suppose the honest generals know f (but not which are the dishonest gen-
erals).

If f = 0 then the problem is trivial (just do majority vote).

So, it is clear that one of the basic questions we should be interested in is “what values
of n and f can a protocol handle?”.

There are n parties (generals), of which at most f are dishonest. Each starts with their
own input. Must satisfy:

(1) Termination. Each honest party gives an output.
(2) Agreement. All honest parties give the same output.
(3) Validity. If all honest parties have the same input, this must be their output.

Without validity requirement, it would be trivial.

Several divisions of the Byzantine army are camped outside an enemy city, each division
commanded by its own general. The generals can only communicate by messenger and
must carry out a protocol to decide on a common plan of action, either ‘retreat’ or
‘attack’. Initially, each general has their own private opinion as to the best plan of
action. The di�culty is that some unknown subset of the generals may be dishonest
traitors (and may deviate from the protocol). The protocol must satisfy:

(1) Termination. Each honest general must eventually reach a decision (retreat
or attack).

(2) Agreement. All honest generals must reach the same decision.
(3) Validity. If all honest generals start with the same opinion, then that common

opinion must be the same as their final decision.
1

THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

ANDREW LEWIS-PYE

Attack

Retreat

Output: Attack

Not possible if f � n/2.

For clarity, suppose the honest generals know f (but not which are the dishonest gen-
erals).

If f = 0 then the problem is trivial (just do majority vote).

So, it is clear that one of the basic questions we should be interested in is “what values
of n and f can a protocol handle?”.

There are n parties (generals), of which at most f are dishonest. Each starts with their
own input. Must satisfy:

(1) Termination. Each honest party gives an output.
(2) Agreement. All honest parties give the same output.
(3) Validity. If all honest parties have the same input, this must be their output.

Without validity requirement, it would be trivial.

Several divisions of the Byzantine army are camped outside an enemy city, each division
commanded by its own general. The generals can only communicate by messenger and
must carry out a protocol to decide on a common plan of action, either ‘retreat’ or
‘attack’. Initially, each general has their own private opinion as to the best plan of
action. The di�culty is that some unknown subset of the generals may be dishonest
traitors (and may deviate from the protocol). The protocol must satisfy:

(1) Termination. Each honest general must eventually reach a decision (retreat
or attack).

(2) Agreement. All honest generals must reach the same decision.
(3) Validity. If all honest generals start with the same opinion, then that common

opinion must be the same as their final decision.
1

THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

ANDREW LEWIS-PYE

Several divisions of the Byzantine army are camped outside an enemy city, each division
commanded by its own general. The generals can only communicate by messenger and
must carry out a protocol to decide on a common plan of action, either ‘retreat’ or
‘attack’. Initially, each general has their own private opinion as to the best plan of
action. The di�culty is that some unknown subset of the generals may be dishonest
traitors (and may deviate from the protocol). The protocol must satisfy:

(1) Termination. Each honest general must eventually reach a decision (retreat
or attack).

(2) Agreement. All honest generals must reach the same decision.
(3) Validity. If all honest generals start with the same opinion, then that common

opinion must be the same as their final decision.

What is the problem a consensus protocol has to solve?

1. Overview

16 Jan: Luna 31B UST 10B

27 Feb: Luna 27B UST 13B

20 Mar: Luna 33B UST 15B

24 Apr: Luna 32B UST 18B

1 May: Luna 28B UST 19B

8 May: Luna 22B UST 19B

9 May: Death Spiral. Luna goes to (essentially) 0.
Luna: 31B

UST: 10B

• The previous analysis assumed infinite liquidity – that we can buy and sell any
amount of Luna at the current ‘price’.

1

THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

ANDREW LEWIS-PYE

There are n parties (generals), of which at most f are dishonest. Each starts with their
own input. Must satisfy:

(1) Termination. Each honest party gives an output.
(2) Agreement. All honest parties give the same output.
(3) Validity. If all honest parties have the same input, this must be their output.

Without validity requirement, it would be trivial.

Several divisions of the Byzantine army are camped outside an enemy city, each division
commanded by its own general. The generals can only communicate by messenger and
must carry out a protocol to decide on a common plan of action, either ‘retreat’ or
‘attack’. Initially, each general has their own private opinion as to the best plan of
action. The di�culty is that some unknown subset of the generals may be dishonest
traitors (and may deviate from the protocol). The protocol must satisfy:

(1) Termination. Each honest general must eventually reach a decision (retreat
or attack).

(2) Agreement. All honest generals must reach the same decision.
(3) Validity. If all honest generals start with the same opinion, then that common

opinion must be the same as their final decision.

What is the problem a consensus protocol has to solve?

1. Overview

16 Jan: Luna 31B UST 10B

27 Feb: Luna 27B UST 13B

20 Mar: Luna 33B UST 15B

24 Apr: Luna 32B UST 18B

1 May: Luna 28B UST 19B

8 May: Luna 22B UST 19B

1

THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

ANDREW LEWIS-PYE

Not possible if f � n/2.

For clarity, suppose the honest generals know f (but not which are the dishonest gen-
erals).

If f = 0 then the problem is trivial (just do majority vote).

So, it is clear that one of the basic questions we should be interested in is “what values
of n and f can a protocol handle?”.

There are n parties (generals), of which at most f are dishonest. Each starts with their
own input. Must satisfy:

(1) Termination. Each honest party gives an output.
(2) Agreement. All honest parties give the same output.
(3) Validity. If all honest parties have the same input, this must be their output.

Without validity requirement, it would be trivial.

Several divisions of the Byzantine army are camped outside an enemy city, each division
commanded by its own general. The generals can only communicate by messenger and
must carry out a protocol to decide on a common plan of action, either ‘retreat’ or
‘attack’. Initially, each general has their own private opinion as to the best plan of
action. The di�culty is that some unknown subset of the generals may be dishonest
traitors (and may deviate from the protocol). The protocol must satisfy:

(1) Termination. Each honest general must eventually reach a decision (retreat
or attack).

(2) Agreement. All honest generals must reach the same decision.
(3) Validity. If all honest generals start with the same opinion, then that common

opinion must be the same as their final decision.

What is the problem a consensus protocol has to solve?

1. Overview

16 Jan: Luna 31B UST 10B

1

THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

ANDREW LEWIS-PYE

Attack

Retreat

Output: Attack

Not possible if f � n/2.

For clarity, suppose the honest generals know f (but not which are the dishonest gen-
erals).

If f = 0 then the problem is trivial (just do majority vote).

So, it is clear that one of the basic questions we should be interested in is “what values
of n and f can a protocol handle?”.

There are n parties (generals), of which at most f are dishonest. Each starts with their
own input. Must satisfy:

(1) Termination. Each honest party gives an output.
(2) Agreement. All honest parties give the same output.
(3) Validity. If all honest parties have the same input, this must be their output.

Without validity requirement, it would be trivial.

Several divisions of the Byzantine army are camped outside an enemy city, each division
commanded by its own general. The generals can only communicate by messenger and
must carry out a protocol to decide on a common plan of action, either ‘retreat’ or
‘attack’. Initially, each general has their own private opinion as to the best plan of
action. The di�culty is that some unknown subset of the generals may be dishonest
traitors (and may deviate from the protocol). The protocol must satisfy:

(1) Termination. Each honest general must eventually reach a decision (retreat
or attack).

(2) Agreement. All honest generals must reach the same decision.
(3) Validity. If all honest generals start with the same opinion, then that common

opinion must be the same as their final decision.
1

THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

ANDREW LEWIS-PYE

Attack

Retreat

Output: Attack

Not possible if f � n/2.

For clarity, suppose the honest generals know f (but not which are the dishonest gen-
erals).

If f = 0 then the problem is trivial (just do majority vote).

So, it is clear that one of the basic questions we should be interested in is “what values
of n and f can a protocol handle?”.

There are n parties (generals), of which at most f are dishonest. Each starts with their
own input. Must satisfy:

(1) Termination. Each honest party gives an output.
(2) Agreement. All honest parties give the same output.
(3) Validity. If all honest parties have the same input, this must be their output.

Without validity requirement, it would be trivial.

Several divisions of the Byzantine army are camped outside an enemy city, each division
commanded by its own general. The generals can only communicate by messenger and
must carry out a protocol to decide on a common plan of action, either ‘retreat’ or
‘attack’. Initially, each general has their own private opinion as to the best plan of
action. The di�culty is that some unknown subset of the generals may be dishonest
traitors (and may deviate from the protocol). The protocol must satisfy:

(1) Termination. Each honest general must eventually reach a decision (retreat
or attack).

(2) Agreement. All honest generals must reach the same decision.
(3) Validity. If all honest generals start with the same opinion, then that common

opinion must be the same as their final decision.
1

THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

ANDREW LEWIS-PYE

Attack

Retreat

Output: Attack

Not possible if f � n/2.

For clarity, suppose the honest generals know f (but not which are the dishonest gen-
erals).

If f = 0 then the problem is trivial (just do majority vote).

So, it is clear that one of the basic questions we should be interested in is “what values
of n and f can a protocol handle?”.

There are n parties (generals), of which at most f are dishonest. Each starts with their
own input. Must satisfy:

(1) Termination. Each honest party gives an output.
(2) Agreement. All honest parties give the same output.
(3) Validity. If all honest parties have the same input, this must be their output.

Without validity requirement, it would be trivial.

Several divisions of the Byzantine army are camped outside an enemy city, each division
commanded by its own general. The generals can only communicate by messenger and
must carry out a protocol to decide on a common plan of action, either ‘retreat’ or
‘attack’. Initially, each general has their own private opinion as to the best plan of
action. The di�culty is that some unknown subset of the generals may be dishonest
traitors (and may deviate from the protocol). The protocol must satisfy:

(1) Termination. Each honest general must eventually reach a decision (retreat
or attack).

(2) Agreement. All honest generals must reach the same decision.
(3) Validity. If all honest generals start with the same opinion, then that common

opinion must be the same as their final decision.
1

THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

ANDREW LEWIS-PYE

Attack

Retreat

Output: Attack

Not possible if f � n/2.

For clarity, suppose the honest generals know f (but not which are the dishonest gen-
erals).

If f = 0 then the problem is trivial (just do majority vote).

So, it is clear that one of the basic questions we should be interested in is “what values
of n and f can a protocol handle?”.

There are n parties (generals), of which at most f are dishonest. Each starts with their
own input. Must satisfy:

(1) Termination. Each honest party gives an output.
(2) Agreement. All honest parties give the same output.
(3) Validity. If all honest parties have the same input, this must be their output.

Without validity requirement, it would be trivial.

Several divisions of the Byzantine army are camped outside an enemy city, each division
commanded by its own general. The generals can only communicate by messenger and
must carry out a protocol to decide on a common plan of action, either ‘retreat’ or
‘attack’. Initially, each general has their own private opinion as to the best plan of
action. The di�culty is that some unknown subset of the generals may be dishonest
traitors (and may deviate from the protocol). The protocol must satisfy:

(1) Termination. Each honest general must eventually reach a decision (retreat
or attack).

(2) Agreement. All honest generals must reach the same decision.
(3) Validity. If all honest generals start with the same opinion, then that common

opinion must be the same as their final decision.
1

THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

ANDREW LEWIS-PYE

Attack

Retreat

Output: Attack

Not possible if f � n/2.

For clarity, suppose the honest generals know f (but not which are the dishonest gen-
erals).

If f = 0 then the problem is trivial (just do majority vote).

So, it is clear that one of the basic questions we should be interested in is “what values
of n and f can a protocol handle?”.

There are n parties (generals), of which at most f are dishonest. Each starts with their
own input. Must satisfy:

(1) Termination. Each honest party gives an output.
(2) Agreement. All honest parties give the same output.
(3) Validity. If all honest parties have the same input, this must be their output.

Without validity requirement, it would be trivial.

Several divisions of the Byzantine army are camped outside an enemy city, each division
commanded by its own general. The generals can only communicate by messenger and
must carry out a protocol to decide on a common plan of action, either ‘retreat’ or
‘attack’. Initially, each general has their own private opinion as to the best plan of
action. The di�culty is that some unknown subset of the generals may be dishonest
traitors (and may deviate from the protocol). The protocol must satisfy:

(1) Termination. Each honest general must eventually reach a decision (retreat
or attack).

(2) Agreement. All honest generals must reach the same decision.
(3) Validity. If all honest generals start with the same opinion, then that common

opinion must be the same as their final decision.
1

THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

ANDREW LEWIS-PYE

Attack

Retreat

Output: Attack

Not possible if f � n/2.

For clarity, suppose the honest generals know f (but not which are the dishonest gen-
erals).

If f = 0 then the problem is trivial (just do majority vote).

So, it is clear that one of the basic questions we should be interested in is “what values
of n and f can a protocol handle?”.

There are n parties (generals), of which at most f are dishonest. Each starts with their
own input. Must satisfy:

(1) Termination. Each honest party gives an output.
(2) Agreement. All honest parties give the same output.
(3) Validity. If all honest parties have the same input, this must be their output.

Without validity requirement, it would be trivial.

Several divisions of the Byzantine army are camped outside an enemy city, each division
commanded by its own general. The generals can only communicate by messenger and
must carry out a protocol to decide on a common plan of action, either ‘retreat’ or
‘attack’. Initially, each general has their own private opinion as to the best plan of
action. The di�culty is that some unknown subset of the generals may be dishonest
traitors (and may deviate from the protocol). The protocol must satisfy:

(1) Termination. Each honest general must eventually reach a decision (retreat
or attack).

(2) Agreement. All honest generals must reach the same decision.
(3) Validity. If all honest generals start with the same opinion, then that common

opinion must be the same as their final decision.
1

THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

ANDREW LEWIS-PYE

Acts like honest general with input “Attack”.

Attack

Retreat

Output: Attack

Not possible if f � n/2.

For clarity, suppose the honest generals know f (but not which are the dishonest gen-
erals).

If f = 0 then the problem is trivial (just do majority vote).

So, it is clear that one of the basic questions we should be interested in is “what values
of n and f can a protocol handle?”.

There are n parties (generals), of which at most f are dishonest. Each starts with their
own input. Must satisfy:

(1) Termination. Each honest party gives an output.
(2) Agreement. All honest parties give the same output.
(3) Validity. If all honest parties have the same input, this must be their output.

Without validity requirement, it would be trivial.

Several divisions of the Byzantine army are camped outside an enemy city, each division
commanded by its own general. The generals can only communicate by messenger and
must carry out a protocol to decide on a common plan of action, either ‘retreat’ or
‘attack’. Initially, each general has their own private opinion as to the best plan of
action. The di�culty is that some unknown subset of the generals may be dishonest
traitors (and may deviate from the protocol). The protocol must satisfy:

(1) Termination. Each honest general must eventually reach a decision (retreat
or attack).

(2) Agreement. All honest generals must reach the same decision.
1

THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

ANDREW LEWIS-PYE

Several divisions of the Byzantine army are camped outside an enemy city, each division
commanded by its own general. The generals can only communicate by messenger and
must carry out a protocol to decide on a common plan of action, either ‘retreat’ or
‘attack’. Initially, each general has their own private opinion as to the best plan of
action. The di�culty is that some unknown subset of the generals may be dishonest
traitors (and may deviate from the protocol). The protocol must satisfy:

(1) Termination. Each honest general must eventually reach a decision (retreat
or attack).

(2) Agreement. All honest generals must reach the same decision.
(3) Validity. If all honest generals start with the same opinion, then that common

opinion must be the same as their final decision.

What is the problem a consensus protocol has to solve?

1. Overview

16 Jan: Luna 31B UST 10B

27 Feb: Luna 27B UST 13B

20 Mar: Luna 33B UST 15B

24 Apr: Luna 32B UST 18B

1 May: Luna 28B UST 19B

8 May: Luna 22B UST 19B

9 May: Death Spiral. Luna goes to (essentially) 0.
Luna: 31B

UST: 10B

• The previous analysis assumed infinite liquidity – that we can buy and sell any
amount of Luna at the current ‘price’.

1

THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

ANDREW LEWIS-PYE

Is it trivial when f < n/2? Can we not just implement a majority vote argument?

The problem with this approach stems from the allowed form of communication be-
tween generals (which is intended to accurately reflect communication between proces-
sors in real world scenarios).

If the generals were standing in a circle and shouting out their votes – so that every-
body can see who is shouting out a vote and any vote heard by a single honest general
is immediately heard by all – then a simple majority vote approach would work. In
the setting described above, however, communication occurs by messenger between one
pair of generals at a time.

The problem now is that dishonest generals can tell di↵erent things to di↵erent gener-
als. Suppose n = 3 and f = 1. One honest general initially wants to attack, while the
other wants to retreat. If we carry out a simple majority vote protocol as described
above, and if the dishonest general sends a ‘retreat’ message to the general who wants
to retreat and an ‘attack’ message to the general who wants to attack, then the honest
generals will see di↵erent majority votes and so will decide di↵erently.

In fact, we will see that (under a natural formalisation of the informal problem above)
the Byzantine Agreement problem is not solvable when f � n/3 unless we endow the
generals with certain extra abilities. So the problem is not as trivial as it might initially
seem.

To establish impossibility results of this kind, though, we certainly need a formal
framework. So, that is what we will set up in the next section.
Acts like honest general with input “Attack”.

Attack

Retreat

Output: Attack

1

THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

ANDREW LEWIS-PYE

Several divisions of the Byzantine army are camped outside an enemy city, each division
commanded by its own general. The generals can only communicate by messenger and
must carry out a protocol to decide on a common plan of action, either ‘retreat’ or
‘attack’. Initially, each general has their own private opinion as to the best plan of
action. The di�culty is that some unknown subset of the generals may be dishonest
traitors (and may deviate from the protocol). The protocol must satisfy:

(1) Termination. Each honest general must eventually reach a decision (retreat
or attack).

(2) Agreement. All honest generals must reach the same decision.
(3) Validity. If all honest generals start with the same opinion, then that common

opinion must be the same as their final decision.

What is the problem a consensus protocol has to solve?

1. Overview

16 Jan: Luna 31B UST 10B

27 Feb: Luna 27B UST 13B

20 Mar: Luna 33B UST 15B

24 Apr: Luna 32B UST 18B

1 May: Luna 28B UST 19B

8 May: Luna 22B UST 19B

9 May: Death Spiral. Luna goes to (essentially) 0.
Luna: 31B

UST: 10B

• The previous analysis assumed infinite liquidity – that we can buy and sell any
amount of Luna at the current ‘price’.

1

THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

ANDREW LEWIS-PYE

Is it trivial when f < n/2? Can we not just implement a majority vote argument?

The problem with this approach stems from the allowed form of communication be-
tween generals (which is intended to accurately reflect communication between proces-
sors in real world scenarios).

If the generals were standing in a circle and shouting out their votes – so that every-
body can see who is shouting out a vote and any vote heard by a single honest general
is immediately heard by all – then a simple majority vote approach would work. In
the setting described above, however, communication occurs by messenger between one
pair of generals at a time.

The problem now is that dishonest generals can tell di↵erent things to di↵erent gener-
als. Suppose n = 3 and f = 1. One honest general initially wants to attack, while the
other wants to retreat. If we carry out a simple majority vote protocol as described
above, and if the dishonest general sends a ‘retreat’ message to the general who wants
to retreat and an ‘attack’ message to the general who wants to attack, then the honest
generals will see di↵erent majority votes and so will decide di↵erently.

In fact, we will see that (under a natural formalisation of the informal problem above)
the Byzantine Agreement problem is not solvable when f � n/3 unless we endow the
generals with certain extra abilities. So the problem is not as trivial as it might initially
seem.

To establish impossibility results of this kind, though, we certainly need a formal
framework. So, that is what we will set up in the next section.
Acts like honest general with input “Attack”.

Attack

Retreat

Output: Attack

1

THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

ANDREW LEWIS-PYE

Is it trivial when f < n/2? Can we not just implement a majority vote argument?

The problem with this approach stems from the allowed form of communication be-
tween generals (which is intended to accurately reflect communication between proces-
sors in real world scenarios).

If the generals were standing in a circle and shouting out their votes – so that every-
body can see who is shouting out a vote and any vote heard by a single honest general
is immediately heard by all – then a simple majority vote approach would work. In
the setting described above, however, communication occurs by messenger between one
pair of generals at a time.

The problem now is that dishonest generals can tell di↵erent things to di↵erent gener-
als. Suppose n = 3 and f = 1. One honest general initially wants to attack, while the
other wants to retreat. If we carry out a simple majority vote protocol as described
above, and if the dishonest general sends a ‘retreat’ message to the general who wants
to retreat and an ‘attack’ message to the general who wants to attack, then the honest
generals will see di↵erent majority votes and so will decide di↵erently.

In fact, we will see that (under a natural formalisation of the informal problem above)
the Byzantine Agreement problem is not solvable when f � n/3 unless we endow the
generals with certain extra abilities. So the problem is not as trivial as it might initially
seem.

To establish impossibility results of this kind, though, we certainly need a formal
framework. So, that is what we will set up in the next section.
Acts like honest general with input “Attack”.

Attack

Retreat

Output: Attack

1

THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

ANDREW LEWIS-PYE

Several divisions of the Byzantine army are camped outside an enemy city, each division
commanded by its own general. The generals can only communicate by messenger and
must carry out a protocol to decide on a common plan of action, either ‘retreat’ or
‘attack’. Initially, each general has their own private opinion as to the best plan of
action. The di�culty is that some unknown subset of the generals may be dishonest
traitors (and may deviate from the protocol). The protocol must satisfy:

(1) Termination. Each honest general must eventually reach a decision (retreat
or attack).

(2) Agreement. All honest generals must reach the same decision.
(3) Validity. If all honest generals start with the same opinion, then that common

opinion must be the same as their final decision.

What is the problem a consensus protocol has to solve?

1. Overview

16 Jan: Luna 31B UST 10B

27 Feb: Luna 27B UST 13B

20 Mar: Luna 33B UST 15B

24 Apr: Luna 32B UST 18B

1 May: Luna 28B UST 19B

8 May: Luna 22B UST 19B

9 May: Death Spiral. Luna goes to (essentially) 0.
Luna: 31B

UST: 10B

• The previous analysis assumed infinite liquidity – that we can buy and sell any
amount of Luna at the current ‘price’.

1

THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

ANDREW LEWIS-PYE

Is it trivial when f < n/2? Can we not just implement a majority vote argument?

The problem with this approach stems from the allowed form of communication be-
tween generals (which is intended to accurately reflect communication between proces-
sors in real world scenarios).

If the generals were standing in a circle and shouting out their votes – so that every-
body can see who is shouting out a vote and any vote heard by a single honest general
is immediately heard by all – then a simple majority vote approach would work. In
the setting described above, however, communication occurs by messenger between one
pair of generals at a time.

The problem now is that dishonest generals can tell di↵erent things to di↵erent gener-
als. Suppose n = 3 and f = 1. One honest general initially wants to attack, while the
other wants to retreat. If we carry out a simple majority vote protocol as described
above, and if the dishonest general sends a ‘retreat’ message to the general who wants
to retreat and an ‘attack’ message to the general who wants to attack, then the honest
generals will see di↵erent majority votes and so will decide di↵erently.

In fact, we will see that (under a natural formalisation of the informal problem above)
the Byzantine Agreement problem is not solvable when f � n/3 unless we endow the
generals with certain extra abilities. So the problem is not as trivial as it might initially
seem.

To establish impossibility results of this kind, though, we certainly need a formal
framework. So, that is what we will set up in the next section.
Acts like honest general with input “Attack”.

Attack

Retreat

Output: Attack

1

THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

ANDREW LEWIS-PYE

Is it trivial when f < n/2? Can we not just implement a majority vote argument?

The problem with this approach stems from the allowed form of communication be-
tween generals (which is intended to accurately reflect communication between proces-
sors in real world scenarios).

If the generals were standing in a circle and shouting out their votes – so that every-
body can see who is shouting out a vote and any vote heard by a single honest general
is immediately heard by all – then a simple majority vote approach would work. In
the setting described above, however, communication occurs by messenger between one
pair of generals at a time.

The problem now is that dishonest generals can tell di↵erent things to di↵erent gener-
als. Suppose n = 3 and f = 1. One honest general initially wants to attack, while the
other wants to retreat. If we carry out a simple majority vote protocol as described
above, and if the dishonest general sends a ‘retreat’ message to the general who wants
to retreat and an ‘attack’ message to the general who wants to attack, then the honest
generals will see di↵erent majority votes and so will decide di↵erently.

In fact, we will see that (under a natural formalisation of the informal problem above)
the Byzantine Agreement problem is not solvable when f � n/3 unless we endow the
generals with certain extra abilities. So the problem is not as trivial as it might initially
seem.

To establish impossibility results of this kind, though, we certainly need a formal
framework. So, that is what we will set up in the next section.
Acts like honest general with input “Attack”.

Attack

Retreat

Output: Attack

1

THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

ANDREW LEWIS-PYE

Several divisions of the Byzantine army are camped outside an enemy city, each division
commanded by its own general. The generals can only communicate by messenger and
must carry out a protocol to decide on a common plan of action, either ‘retreat’ or
‘attack’. Initially, each general has their own private opinion as to the best plan of
action. The di�culty is that some unknown subset of the generals may be dishonest
traitors (and may deviate from the protocol). The protocol must satisfy:

(1) Termination. Each honest general must eventually reach a decision (retreat
or attack).

(2) Agreement. All honest generals must reach the same decision.
(3) Validity. If all honest generals start with the same opinion, then that common

opinion must be the same as their final decision.

What is the problem a consensus protocol has to solve?

1. Overview

16 Jan: Luna 31B UST 10B

27 Feb: Luna 27B UST 13B

20 Mar: Luna 33B UST 15B

24 Apr: Luna 32B UST 18B

1 May: Luna 28B UST 19B

8 May: Luna 22B UST 19B

9 May: Death Spiral. Luna goes to (essentially) 0.
Luna: 31B

UST: 10B

• The previous analysis assumed infinite liquidity – that we can buy and sell any
amount of Luna at the current ‘price’.

1

THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

ANDREW LEWIS-PYE

Is it trivial when f < n/2? Can we not just implement a majority vote argument?

The problem with this approach stems from the allowed form of communication be-
tween generals (which is intended to accurately reflect communication between proces-
sors in real world scenarios).

If the generals were standing in a circle and shouting out their votes – so that every-
body can see who is shouting out a vote and any vote heard by a single honest general
is immediately heard by all – then a simple majority vote approach would work. In
the setting described above, however, communication occurs by messenger between one
pair of generals at a time.

The problem now is that dishonest generals can tell di↵erent things to di↵erent gener-
als. Suppose n = 3 and f = 1. One honest general initially wants to attack, while the
other wants to retreat. If we carry out a simple majority vote protocol as described
above, and if the dishonest general sends a ‘retreat’ message to the general who wants
to retreat and an ‘attack’ message to the general who wants to attack, then the honest
generals will see di↵erent majority votes and so will decide di↵erently.

In fact, we will see that (under a natural formalisation of the informal problem above)
the Byzantine Agreement problem is not solvable when f � n/3 unless we endow the
generals with certain extra abilities. So the problem is not as trivial as it might initially
seem.

To establish impossibility results of this kind, though, we certainly need a formal
framework. So, that is what we will set up in the next section.
Acts like honest general with input “Attack”.

Attack

Retreat

Output: Attack

1

THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

ANDREW LEWIS-PYE

Is it trivial when f < n/2? Can we not just implement a majority vote argument?

The problem with this approach stems from the allowed form of communication be-
tween generals (which is intended to accurately reflect communication between proces-
sors in real world scenarios).

If the generals were standing in a circle and shouting out their votes – so that every-
body can see who is shouting out a vote and any vote heard by a single honest general
is immediately heard by all – then a simple majority vote approach would work. In
the setting described above, however, communication occurs by messenger between one
pair of generals at a time.

The problem now is that dishonest generals can tell di↵erent things to di↵erent gener-
als. Suppose n = 3 and f = 1. One honest general initially wants to attack, while the
other wants to retreat. If the dishonest general sends a ‘retreat’ message to the general
who wants to retreat and an ‘attack’ message to the general who wants to attack, then
the honest generals will see di↵erent majority votes.

In fact, we will see that (under a natural formalisation of the informal problem above)
the Byzantine Agreement problem is not solvable when f � n/3 unless we endow the
generals with certain extra abilities. So the problem is not as trivial as it might initially
seem.

To establish impossibility results of this kind, though, we certainly need a formal
framework. So, that is what we will set up in the next section.
Acts like honest general with input “Attack”.

Attack

Retreat

Output: Attack

1

THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

ANDREW LEWIS-PYE

Several divisions of the Byzantine army are camped outside an enemy city, each division
commanded by its own general. The generals can only communicate by messenger and
must carry out a protocol to decide on a common plan of action, either ‘retreat’ or
‘attack’. Initially, each general has their own private opinion as to the best plan of
action. The di�culty is that some unknown subset of the generals may be dishonest
traitors (and may deviate from the protocol). The protocol must satisfy:

(1) Termination. Each honest general must eventually reach a decision (retreat
or attack).

(2) Agreement. All honest generals must reach the same decision.
(3) Validity. If all honest generals start with the same opinion, then that common

opinion must be the same as their final decision.

What is the problem a consensus protocol has to solve?

1. Overview

16 Jan: Luna 31B UST 10B

27 Feb: Luna 27B UST 13B

20 Mar: Luna 33B UST 15B

24 Apr: Luna 32B UST 18B

1 May: Luna 28B UST 19B

8 May: Luna 22B UST 19B

9 May: Death Spiral. Luna goes to (essentially) 0.
Luna: 31B

UST: 10B

• The previous analysis assumed infinite liquidity – that we can buy and sell any
amount of Luna at the current ‘price’.

1

THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

ANDREW LEWIS-PYE

Is it trivial when f < n/2? Can we not just implement a majority vote argument?

The problem with this approach stems from the allowed form of communication be-
tween generals (which is intended to accurately reflect communication between proces-
sors in real world scenarios).

If the generals were standing in a circle and shouting out their votes – so that every-
body can see who is shouting out a vote and any vote heard by a single honest general
is immediately heard by all – then a simple majority vote approach would work. In
the setting described above, however, communication occurs by messenger between one
pair of generals at a time.

The problem now is that dishonest generals can tell di↵erent things to di↵erent gener-
als. Suppose n = 3 and f = 1. One honest general initially wants to attack, while the
other wants to retreat. If we carry out a simple majority vote protocol as described
above, and if the dishonest general sends a ‘retreat’ message to the general who wants
to retreat and an ‘attack’ message to the general who wants to attack, then the honest
generals will see di↵erent majority votes and so will decide di↵erently.

In fact, we will see that (under a natural formalisation of the informal problem above)
the Byzantine Agreement problem is not solvable when f � n/3 unless we endow the
generals with certain extra abilities. So the problem is not as trivial as it might initially
seem.

To establish impossibility results of this kind, though, we certainly need a formal
framework. So, that is what we will set up in the next section.
Acts like honest general with input “Attack”.

Attack

Retreat

Output: Attack

1

THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

ANDREW LEWIS-PYE

Is it trivial when f < n/2? Can we not just implement a majority vote argument?

The problem with this approach stems from the allowed form of communication be-
tween generals (which is intended to accurately reflect communication between proces-
sors in real world scenarios).

If the generals were standing in a circle and shouting out their votes – so that every-
body can see who is shouting out a vote and any vote heard by a single honest general
is immediately heard by all – then a simple majority vote approach would work. In
the setting described above, however, communication occurs by messenger between one
pair of generals at a time.

The problem now is that dishonest generals can tell di↵erent things to di↵erent gener-
als. Suppose n = 3 and f = 1. One honest general initially wants to attack, while the
other wants to retreat. If the dishonest general sends a ‘retreat’ message to the general
who wants to retreat and an ‘attack’ message to the general who wants to attack, then
the honest generals will see di↵erent majority votes.

In fact, we will see that (under a natural formalisation of the informal problem above)
the Byzantine Agreement problem is not solvable when f � n/3 unless we endow the
generals with certain extra abilities. So the problem is not as trivial as it might initially
seem.

To establish impossibility results of this kind, though, we certainly need a formal
framework. So, that is what we will set up in the next section.
Acts like honest general with input “Attack”.

Attack

Retreat

Output: Attack

1

THE FORMAL FRAMEWORK

ANDREW LEWIS-PYE

The setup:

• We formalise each general as a processor.
• The execution of the protocol is divided into discrete timeslots, beginning at
time t = 0. At each time t, each processor receives a certain set of messages
from other processors, and then carries out a finite set of instructions to decide
what messages to send to other processors at that timeslot.

• There are n processors given names 0 to n� 1. Each processor is told n as well
as their own name i, i.e. this information is given as part of their input.

Is it trivial when f < n/2? Can we not just implement a majority vote argument?

The problem with this approach stems from the allowed form of communication be-
tween generals (which is intended to accurately reflect communication between proces-
sors in real world scenarios).

If the generals were standing in a circle and shouting out their votes – so that every-
body can see who is shouting out a vote and any vote heard by a single honest general
is immediately heard by all – then a simple majority vote approach would work. In
the setting described above, however, communication occurs by messenger between one
pair of generals at a time.

The problem now is that dishonest generals can tell di↵erent things to di↵erent gener-
als. Suppose n = 3 and f = 1. One honest general initially wants to attack, while the
other wants to retreat. If the dishonest general sends a ‘retreat’ message to the general
who wants to retreat and an ‘attack’ message to the general who wants to attack, then
the honest generals will see di↵erent majority votes.

In fact, we will see that (under a natural formalisation of the informal problem above)
the Byzantine Agreement problem is not solvable when f � n/3 unless we endow the
generals with certain extra abilities. So the problem is not as trivial as it might initially
seem.

To establish impossibility results of this kind, though, we certainly need a formal
framework. So, that is what we will set up in the next section.

1

THE FORMAL FRAMEWORK

ANDREW LEWIS-PYE

The setup:

• We formalise each general as a processor.
• The execution of the protocol is divided into discrete timeslots, beginning at
time t = 0. At each time t, each processor receives a certain set of messages
from other processors, and then carries out a finite set of instructions to decide
what messages to send to other processors at that timeslot.

• There are n processors given names 0 to n� 1. Each processor is told n as well
as their own name i, i.e. this information is given as part of their input.

Is it trivial when f < n/2? Can we not just implement a majority vote argument?

The problem with this approach stems from the allowed form of communication be-
tween generals (which is intended to accurately reflect communication between proces-
sors in real world scenarios).

If the generals were standing in a circle and shouting out their votes – so that every-
body can see who is shouting out a vote and any vote heard by a single honest general
is immediately heard by all – then a simple majority vote approach would work. In
the setting described above, however, communication occurs by messenger between one
pair of generals at a time.

The problem now is that dishonest generals can tell di↵erent things to di↵erent gener-
als. Suppose n = 3 and f = 1. One honest general initially wants to attack, while the
other wants to retreat. If the dishonest general sends a ‘retreat’ message to the general
who wants to retreat and an ‘attack’ message to the general who wants to attack, then
the honest generals will see di↵erent majority votes.

In fact, we will see that (under a natural formalisation of the informal problem above)
the Byzantine Agreement problem is not solvable when f � n/3 unless we endow the
generals with certain extra abilities. So the problem is not as trivial as it might initially
seem.

To establish impossibility results of this kind, though, we certainly need a formal
framework. So, that is what we will set up in the next section.

1

THE FORMAL FRAMEWORK

ANDREW LEWIS-PYE

The setup:

• We formalise each general as a processor.
• The execution of the protocol is divided into discrete timeslots, beginning at
time t = 0. At each time t, each processor receives a certain set of messages
from other processors, and then carries out a finite set of instructions to decide
what messages to send to other processors at that timeslot.

• There are n processors given names 0 to n� 1. Each processor is told n as well
as their own name i, i.e. this information is given as part of their input.

Is it trivial when f < n/2? Can we not just implement a majority vote argument?

The problem with this approach stems from the allowed form of communication be-
tween generals (which is intended to accurately reflect communication between proces-
sors in real world scenarios).

If the generals were standing in a circle and shouting out their votes – so that every-
body can see who is shouting out a vote and any vote heard by a single honest general
is immediately heard by all – then a simple majority vote approach would work. In
the setting described above, however, communication occurs by messenger between one
pair of generals at a time.

The problem now is that dishonest generals can tell di↵erent things to di↵erent gener-
als. Suppose n = 3 and f = 1. One honest general initially wants to attack, while the
other wants to retreat. If the dishonest general sends a ‘retreat’ message to the general
who wants to retreat and an ‘attack’ message to the general who wants to attack, then
the honest generals will see di↵erent majority votes.

In fact, we will see that (under a natural formalisation of the informal problem above)
the Byzantine Agreement problem is not solvable when f � n/3 unless we endow the
generals with certain extra abilities. So the problem is not as trivial as it might initially
seem.

To establish impossibility results of this kind, though, we certainly need a formal
framework. So, that is what we will set up in the next section.

1

THE FORMAL FRAMEWORK

ANDREW LEWIS-PYE

The setup:

• We formalise each general as a processor.
• The execution of the protocol is divided into discrete timeslots, beginning at
time t = 0. At each time t, each processor receives a certain set of messages
from other processors, and then carries out a finite set of instructions to decide
what messages to send to other processors at that timeslot.

• There are n processors given names 0 to n� 1. Each processor is told n as well
as their own name i, i.e. this information is given as part of their input.

Is it trivial when f < n/2? Can we not just implement a majority vote argument?

The problem with this approach stems from the allowed form of communication be-
tween generals (which is intended to accurately reflect communication between proces-
sors in real world scenarios).

If the generals were standing in a circle and shouting out their votes – so that every-
body can see who is shouting out a vote and any vote heard by a single honest general
is immediately heard by all – then a simple majority vote approach would work. In
the setting described above, however, communication occurs by messenger between one
pair of generals at a time.

The problem now is that dishonest generals can tell di↵erent things to di↵erent gener-
als. Suppose n = 3 and f = 1. One honest general initially wants to attack, while the
other wants to retreat. If the dishonest general sends a ‘retreat’ message to the general
who wants to retreat and an ‘attack’ message to the general who wants to attack, then
the honest generals will see di↵erent majority votes.

In fact, we will see that (under a natural formalisation of the informal problem above)
the Byzantine Agreement problem is not solvable when f � n/3 unless we endow the
generals with certain extra abilities. So the problem is not as trivial as it might initially
seem.

To establish impossibility results of this kind, though, we certainly need a formal
framework. So, that is what we will set up in the next section.

1

THE FORMAL FRAMEWORK

ANDREW LEWIS-PYE

The setup:

• We formalise each general as a processor.
• The execution of the protocol is divided into discrete timeslots, beginning at
time t = 0. At each time t, each processor receives a certain set of messages
from other processors, and then carries out a finite set of instructions to decide
what messages to send to other processors at that timeslot.

• There are n processors given names 0 to n� 1. Each processor is told n as well
as their own name i, i.e. this information is given as part of their input.

Is it trivial when f < n/2? Can we not just implement a majority vote argument?

The problem with this approach stems from the allowed form of communication be-
tween generals (which is intended to accurately reflect communication between proces-
sors in real world scenarios).

If the generals were standing in a circle and shouting out their votes – so that every-
body can see who is shouting out a vote and any vote heard by a single honest general
is immediately heard by all – then a simple majority vote approach would work. In
the setting described above, however, communication occurs by messenger between one
pair of generals at a time.

The problem now is that dishonest generals can tell di↵erent things to di↵erent gener-
als. Suppose n = 3 and f = 1. One honest general initially wants to attack, while the
other wants to retreat. If the dishonest general sends a ‘retreat’ message to the general
who wants to retreat and an ‘attack’ message to the general who wants to attack, then
the honest generals will see di↵erent majority votes.

In fact, we will see that (under a natural formalisation of the informal problem above)
the Byzantine Agreement problem is not solvable when f � n/3 unless we endow the
generals with certain extra abilities. So the problem is not as trivial as it might initially
seem.

To establish impossibility results of this kind, though, we certainly need a formal
framework. So, that is what we will set up in the next section.

1

THE FORMAL FRAMEWORK

ANDREW LEWIS-PYE

The setup:

• We formalise each general as a processor.
• The execution of the protocol is divided into discrete timeslots, beginning at
time t = 0. At each time t, each processor receives a certain set of messages
from other processors, and then carries out a finite set of instructions to decide
what messages to send to other processors at that timeslot.

• There are n processors given names 0 to n� 1. Each processor is told n as well
as their own name i, i.e. this information is given as part of their input.

Is it trivial when f < n/2? Can we not just implement a majority vote argument?

The problem with this approach stems from the allowed form of communication be-
tween generals (which is intended to accurately reflect communication between proces-
sors in real world scenarios).

If the generals were standing in a circle and shouting out their votes – so that every-
body can see who is shouting out a vote and any vote heard by a single honest general
is immediately heard by all – then a simple majority vote approach would work. In
the setting described above, however, communication occurs by messenger between one
pair of generals at a time.

The problem now is that dishonest generals can tell di↵erent things to di↵erent gener-
als. Suppose n = 3 and f = 1. One honest general initially wants to attack, while the
other wants to retreat. If the dishonest general sends a ‘retreat’ message to the general
who wants to retreat and an ‘attack’ message to the general who wants to attack, then
the honest generals will see di↵erent majority votes.

In fact, we will see that (under a natural formalisation of the informal problem above)
the Byzantine Agreement problem is not solvable when f � n/3 unless we endow the
generals with certain extra abilities. So the problem is not as trivial as it might initially
seem.

To establish impossibility results of this kind, though, we certainly need a formal
framework. So, that is what we will set up in the next section.

1

THE FORMAL FRAMEWORK

ANDREW LEWIS-PYE

The setup:

• We formalise each general as a processor.
• The execution of the protocol is divided into discrete timeslots, beginning at
time t = 0. At each time t, each processor receives a certain set of messages
from other processors, and then carries out a finite set of instructions to decide
what messages to send to other processors at that timeslot.

• There are n processors given names 0 to n� 1. Each processor is told n as well
as their own name i, i.e. this information is given as part of their input.

Is it trivial when f < n/2? Can we not just implement a majority vote argument?

The problem with this approach stems from the allowed form of communication be-
tween generals (which is intended to accurately reflect communication between proces-
sors in real world scenarios).

If the generals were standing in a circle and shouting out their votes – so that every-
body can see who is shouting out a vote and any vote heard by a single honest general
is immediately heard by all – then a simple majority vote approach would work. In
the setting described above, however, communication occurs by messenger between one
pair of generals at a time.

The problem now is that dishonest generals can tell di↵erent things to di↵erent gener-
als. Suppose n = 3 and f = 1. One honest general initially wants to attack, while the
other wants to retreat. If the dishonest general sends a ‘retreat’ message to the general
who wants to retreat and an ‘attack’ message to the general who wants to attack, then
the honest generals will see di↵erent majority votes.

In fact, we will see that (under a natural formalisation of the informal problem above)
the Byzantine Agreement problem is not solvable when f � n/3 unless we endow the
generals with certain extra abilities. So the problem is not as trivial as it might initially
seem.

To establish impossibility results of this kind, though, we certainly need a formal
framework. So, that is what we will set up in the next section.

1

THE FORMAL FRAMEWORK

ANDREW LEWIS-PYE

Authenticated channels. There exists a two-way authenticated
communication channel {i, j} for each pair of distinct processors i
and j:

• Only i can send messages to j and only j can send messages
to i on the channel {i, j}, and;

• When i receives messages it is aware of the channel by which
the messages were sent, i.e. the instructions for i can depend
not only on the messages received at any given timeslot but
also which channels the messages arrived on.

At each timeslot, the instructions for processor i determine which mes-
sages it should send along each of its channels {i, j}.

The setup:

• We formalise each general as a processor.
• The execution of the protocol is divided into discrete timeslots,
beginning at time t = 0. At each time t, each processor re-
ceives a certain set of messages from other processors, and then
carries out a finite set of instructions to decide what messages
to send to other processors at that timeslot.

• There are n processors given names 0 to n�1. Each processor
is told n as well as their own name i, i.e. this information is
given as part of their input.

Is it trivial when f < n/2? Can we not just implement a majority
vote argument?

The problem with this approach stems from the allowed form of com-
munication between generals (which is intended to accurately reflect
communication between processors in real world scenarios).

If the generals were standing in a circle and shouting out their votes
– so that everybody can see who is shouting out a vote and any vote
heard by a single honest general is immediately heard by all – then a
simple majority vote approach would work. In the setting described
above, however, communication occurs by messenger between one pair

1

THE FORMAL FRAMEWORK

ANDREW LEWIS-PYE

The setup:

• We formalise each general as a processor.
• The execution of the protocol is divided into discrete timeslots, beginning at
time t = 0. At each time t, each processor receives a certain set of messages
from other processors, and then carries out a finite set of instructions to decide
what messages to send to other processors at that timeslot.

• There are n processors given names 0 to n� 1. Each processor is told n as well
as their own name i, i.e. this information is given as part of their input.

Is it trivial when f < n/2? Can we not just implement a majority vote argument?

The problem with this approach stems from the allowed form of communication be-
tween generals (which is intended to accurately reflect communication between proces-
sors in real world scenarios).

If the generals were standing in a circle and shouting out their votes – so that every-
body can see who is shouting out a vote and any vote heard by a single honest general
is immediately heard by all – then a simple majority vote approach would work. In
the setting described above, however, communication occurs by messenger between one
pair of generals at a time.

The problem now is that dishonest generals can tell di↵erent things to di↵erent gener-
als. Suppose n = 3 and f = 1. One honest general initially wants to attack, while the
other wants to retreat. If the dishonest general sends a ‘retreat’ message to the general
who wants to retreat and an ‘attack’ message to the general who wants to attack, then
the honest generals will see di↵erent majority votes.

In fact, we will see that (under a natural formalisation of the informal problem above)
the Byzantine Agreement problem is not solvable when f � n/3 unless we endow the
generals with certain extra abilities. So the problem is not as trivial as it might initially
seem.

To establish impossibility results of this kind, though, we certainly need a formal
framework. So, that is what we will set up in the next section.

1

THE FORMAL FRAMEWORK

ANDREW LEWIS-PYE

Authenticated channels. There exists a two-way authenticated
communication channel {i, j} for each pair of distinct processors i
and j:

• Only i can send messages to j and only j can send messages
to i on the channel {i, j}, and;

• When i receives messages it is aware of the channel by which
the messages were sent, i.e. the instructions for i can depend
not only on the messages received at any given timeslot but
also which channels the messages arrived on.

At each timeslot, the instructions for processor i determine which mes-
sages it should send along each of its channels {i, j}.

The setup:

• We formalise each general as a processor.
• The execution of the protocol is divided into discrete timeslots,
beginning at time t = 0. At each time t, each processor re-
ceives a certain set of messages from other processors, and then
carries out a finite set of instructions to decide what messages
to send to other processors at that timeslot.

• There are n processors given names 0 to n�1. Each processor
is told n as well as their own name i, i.e. this information is
given as part of their input.

Is it trivial when f < n/2? Can we not just implement a majority
vote argument?

The problem with this approach stems from the allowed form of com-
munication between generals (which is intended to accurately reflect
communication between processors in real world scenarios).

If the generals were standing in a circle and shouting out their votes
– so that everybody can see who is shouting out a vote and any vote
heard by a single honest general is immediately heard by all – then a
simple majority vote approach would work. In the setting described
above, however, communication occurs by messenger between one pair

1

THE FORMAL FRAMEWORK

ANDREW LEWIS-PYE

The setup:

• We formalise each general as a processor.
• The execution of the protocol is divided into discrete timeslots, beginning at
time t = 0. At each time t, each processor receives a certain set of messages
from other processors, and then carries out a finite set of instructions to decide
what messages to send to other processors at that timeslot.

• There are n processors given names 0 to n� 1. Each processor is told n as well
as their own name i, i.e. this information is given as part of their input.

Is it trivial when f < n/2? Can we not just implement a majority vote argument?

The problem with this approach stems from the allowed form of communication be-
tween generals (which is intended to accurately reflect communication between proces-
sors in real world scenarios).

If the generals were standing in a circle and shouting out their votes – so that every-
body can see who is shouting out a vote and any vote heard by a single honest general
is immediately heard by all – then a simple majority vote approach would work. In
the setting described above, however, communication occurs by messenger between one
pair of generals at a time.

The problem now is that dishonest generals can tell di↵erent things to di↵erent gener-
als. Suppose n = 3 and f = 1. One honest general initially wants to attack, while the
other wants to retreat. If the dishonest general sends a ‘retreat’ message to the general
who wants to retreat and an ‘attack’ message to the general who wants to attack, then
the honest generals will see di↵erent majority votes.

In fact, we will see that (under a natural formalisation of the informal problem above)
the Byzantine Agreement problem is not solvable when f � n/3 unless we endow the
generals with certain extra abilities. So the problem is not as trivial as it might initially
seem.

To establish impossibility results of this kind, though, we certainly need a formal
framework. So, that is what we will set up in the next section.

1

THE FORMAL FRAMEWORK

ANDREW LEWIS-PYE

Authenticated channels. There exists a two-way authenticated
communication channel {i, j} for each pair of distinct processors i
and j:

• Only i can send messages to j and only j can send messages
to i on the channel {i, j}, and;

• When i receives messages it is aware of the channel by which
the messages were sent, i.e. the instructions for i can depend
not only on the messages received at any given timeslot but
also which channels the messages arrived on.

At each timeslot, the instructions for processor i determine which mes-
sages it should send along each of its channels {i, j}.

The setup:

• We formalise each general as a processor.
• The execution of the protocol is divided into discrete timeslots,
beginning at time t = 0. At each time t, each processor re-
ceives a certain set of messages from other processors, and then
carries out a finite set of instructions to decide what messages
to send to other processors at that timeslot.

• There are n processors given names 0 to n�1. Each processor
is told n as well as their own name i, i.e. this information is
given as part of their input.

Is it trivial when f < n/2? Can we not just implement a majority
vote argument?

The problem with this approach stems from the allowed form of com-
munication between generals (which is intended to accurately reflect
communication between processors in real world scenarios).

If the generals were standing in a circle and shouting out their votes
– so that everybody can see who is shouting out a vote and any vote
heard by a single honest general is immediately heard by all – then a
simple majority vote approach would work. In the setting described
above, however, communication occurs by messenger between one pair

1

THE FORMAL FRAMEWORK

ANDREW LEWIS-PYE

Authenticated channels. There exists a two-way authenticated
communication channel {i, j} for each pair of distinct processors i
and j:

• Only i can send messages to j and only j can send messages
to i on the channel {i, j}, and;

• When i receives messages it is aware of the channel by which
the messages were sent, i.e. the instructions for i can depend
not only on the messages received at any given timeslot but
also which channels the messages arrived on.

At each timeslot, the instructions for processor i determine which mes-
sages it should send along each of its channels {i, j}.

The setup:

• We formalise each general as a processor.
• The execution of the protocol is divided into discrete timeslots,
beginning at time t = 0. At each time t, each processor re-
ceives a certain set of messages from other processors, and then
carries out a finite set of instructions to decide what messages
to send to other processors at that timeslot.

• There are n processors given names 0 to n�1. Each processor
is told n as well as their own name i, i.e. this information is
given as part of their input.

Is it trivial when f < n/2? Can we not just implement a majority
vote argument?

The problem with this approach stems from the allowed form of com-
munication between generals (which is intended to accurately reflect
communication between processors in real world scenarios).

If the generals were standing in a circle and shouting out their votes
– so that everybody can see who is shouting out a vote and any vote
heard by a single honest general is immediately heard by all – then a
simple majority vote approach would work. In the setting described
above, however, communication occurs by messenger between one pair

1

THE FORMAL FRAMEWORK

ANDREW LEWIS-PYE

The setup:

• We formalise each general as a processor.
• The execution of the protocol is divided into discrete timeslots, beginning at
time t = 0. At each time t, each processor receives a certain set of messages
from other processors, and then carries out a finite set of instructions to decide
what messages to send to other processors at that timeslot.

• There are n processors given names 0 to n� 1. Each processor is told n as well
as their own name i, i.e. this information is given as part of their input.

Is it trivial when f < n/2? Can we not just implement a majority vote argument?

The problem with this approach stems from the allowed form of communication be-
tween generals (which is intended to accurately reflect communication between proces-
sors in real world scenarios).

If the generals were standing in a circle and shouting out their votes – so that every-
body can see who is shouting out a vote and any vote heard by a single honest general
is immediately heard by all – then a simple majority vote approach would work. In
the setting described above, however, communication occurs by messenger between one
pair of generals at a time.

The problem now is that dishonest generals can tell di↵erent things to di↵erent gener-
als. Suppose n = 3 and f = 1. One honest general initially wants to attack, while the
other wants to retreat. If the dishonest general sends a ‘retreat’ message to the general
who wants to retreat and an ‘attack’ message to the general who wants to attack, then
the honest generals will see di↵erent majority votes.

In fact, we will see that (under a natural formalisation of the informal problem above)
the Byzantine Agreement problem is not solvable when f � n/3 unless we endow the
generals with certain extra abilities. So the problem is not as trivial as it might initially
seem.

To establish impossibility results of this kind, though, we certainly need a formal
framework. So, that is what we will set up in the next section.

1

THE FORMAL FRAMEWORK

ANDREW LEWIS-PYE

Public Key Infrastructure (PKI). Sometimes we’ll as-
sume given a PKI, sometimes not. If given a PKI, this means
each processor is provided with a (sk, pk) pair, and is told the
public key of each of the other processors.

Aut. There exists a two-way authenticated communication
channel {i, j} for each pair of distinct processors i and j:

• Only i can send messages to j and only j can send
messages to i on the channel {i, j}, and;

• When i receives messages it is aware of the channel by
which the messages were sent, i.e. the instructions for
i can depend not only on the messages received at any
given timeslot but also which channels the messages
arrived on.

At each timeslot, the instructions for processor i determine
which messages it should send along each of its channels {i, j}.

The setup:

• We formalise each general as a processor.
• The execution of the protocol is divided into discrete
timeslots, beginning at time t = 0. At each time t,
each processor receives a certain set of messages from
other processors, and then carries out a finite set of
instructions to decide what messages to send to other
processors at that timeslot.

• There are n processors given names 0 to n � 1. Each
processor is told n as well as their own name i, i.e. this
information is given as part of their input.

Is it trivial when f < n/2? Can we not just implement a
majority vote argument?

The problem with this approach stems from the allowed form
of communication between generals (which is intended to ac-
curately reflect communication between processors in real world

1

THE FORMAL FRAMEWORK

ANDREW LEWIS-PYE

The setup:

• We formalise each general as a processor.
• The execution of the protocol is divided into discrete timeslots, beginning at
time t = 0. At each time t, each processor receives a certain set of messages
from other processors, and then carries out a finite set of instructions to decide
what messages to send to other processors at that timeslot.

• There are n processors given names 0 to n� 1. Each processor is told n as well
as their own name i, i.e. this information is given as part of their input.

Is it trivial when f < n/2? Can we not just implement a majority vote argument?

The problem with this approach stems from the allowed form of communication be-
tween generals (which is intended to accurately reflect communication between proces-
sors in real world scenarios).

If the generals were standing in a circle and shouting out their votes – so that every-
body can see who is shouting out a vote and any vote heard by a single honest general
is immediately heard by all – then a simple majority vote approach would work. In
the setting described above, however, communication occurs by messenger between one
pair of generals at a time.

The problem now is that dishonest generals can tell di↵erent things to di↵erent gener-
als. Suppose n = 3 and f = 1. One honest general initially wants to attack, while the
other wants to retreat. If the dishonest general sends a ‘retreat’ message to the general
who wants to retreat and an ‘attack’ message to the general who wants to attack, then
the honest generals will see di↵erent majority votes.

In fact, we will see that (under a natural formalisation of the informal problem above)
the Byzantine Agreement problem is not solvable when f � n/3 unless we endow the
generals with certain extra abilities. So the problem is not as trivial as it might initially
seem.

To establish impossibility results of this kind, though, we certainly need a formal
framework. So, that is what we will set up in the next section.

1

THE FORMAL FRAMEWORK

ANDREW LEWIS-PYE

Message delay and the synchronous setting. To keep things simple, we start by
considering what is known as the synchronous setting. This means that if i sends j a
message at time t then j receives that message from i at time t+ 1.

How can dishonest generals behave?

• Some of the processors may be faulty.
• Each processor is given an upper bound f for the number of faulty processors
as part of its input.

• Generally, we are most interested in analysing settings where the faulty proces-
sors can display arbitrary (and potentially malicious) behaviour. In this case,
we say that the processors display Byzantine faults. Formally, this means that
faulty processors can execute any arbitrary program.

Crash faults. Sometimes we will also be interested in a more benign form of faulty
behaviour known as crash faults. In the crash fault setting, faulty processors must
follow the protocol precisely until such a point as they crash, whereupon they execute
no further instructions.

The adversary. In the paragraph above, we have formally specified how the faulty
processors may behave. When we reason informally, it will be often be convenient to
think of the faulty processors as being coordinated by an adversary who may choose
their actions so as to be as troublesome as possible for the protocols we design.

Public Key Infrastructure (PKI). Sometimes we’ll assume given a PKI, sometimes
not. If given a PKI, this means each processor is provided with a (sk, pk) pair, and is
told the public key of each of the other processors.

Aut. There exists a two-way authenticated communication channel {i, j} for each pair
of distinct processors i and j:

• Only i can send messages to j and only j can send messages to i on the channel
{i, j}, and;

• When i receives messages it is aware of the channel by which the messages were
sent, i.e. the instructions for i can depend not only on the messages received at
any given timeslot but also which channels the messages arrived on.

1

THE FORMAL FRAMEWORK

ANDREW LEWIS-PYE

The setup:

• We formalise each general as a processor.
• The execution of the protocol is divided into discrete timeslots, beginning at
time t = 0. At each time t, each processor receives a certain set of messages
from other processors, and then carries out a finite set of instructions to decide
what messages to send to other processors at that timeslot.

• There are n processors given names 0 to n� 1. Each processor is told n as well
as their own name i, i.e. this information is given as part of their input.

Is it trivial when f < n/2? Can we not just implement a majority vote argument?

The problem with this approach stems from the allowed form of communication be-
tween generals (which is intended to accurately reflect communication between proces-
sors in real world scenarios).

If the generals were standing in a circle and shouting out their votes – so that every-
body can see who is shouting out a vote and any vote heard by a single honest general
is immediately heard by all – then a simple majority vote approach would work. In
the setting described above, however, communication occurs by messenger between one
pair of generals at a time.

The problem now is that dishonest generals can tell di↵erent things to di↵erent gener-
als. Suppose n = 3 and f = 1. One honest general initially wants to attack, while the
other wants to retreat. If the dishonest general sends a ‘retreat’ message to the general
who wants to retreat and an ‘attack’ message to the general who wants to attack, then
the honest generals will see di↵erent majority votes.

In fact, we will see that (under a natural formalisation of the informal problem above)
the Byzantine Agreement problem is not solvable when f � n/3 unless we endow the
generals with certain extra abilities. So the problem is not as trivial as it might initially
seem.

To establish impossibility results of this kind, though, we certainly need a formal
framework. So, that is what we will set up in the next section.

1

THE FORMAL FRAMEWORK

ANDREW LEWIS-PYE

Message delay and the synchronous setting. To keep things simple, we start by
considering what is known as the synchronous setting. This means that if i sends j a
message at time t then j receives that message from i at time t+ 1.

How can dishonest generals behave?

• Some of the processors may be faulty.
• Each processor is given an upper bound f for the number of faulty processors
as part of its input.

• Generally, we are most interested in analysing settings where the faulty proces-
sors can display arbitrary (and potentially malicious) behaviour. In this case,
we say that the processors display Byzantine faults. Formally, this means that
faulty processors can execute any arbitrary program.

Crash faults. Sometimes we will also be interested in a more benign form of faulty
behaviour known as crash faults. In the crash fault setting, faulty processors must
follow the protocol precisely until such a point as they crash, whereupon they execute
no further instructions.

The adversary. In the paragraph above, we have formally specified how the faulty
processors may behave. When we reason informally, it will be often be convenient to
think of the faulty processors as being coordinated by an adversary who may choose
their actions so as to be as troublesome as possible for the protocols we design.

Public Key Infrastructure (PKI). Sometimes we’ll assume given a PKI, sometimes
not. If given a PKI, this means each processor is provided with a (sk, pk) pair, and is
told the public key of each of the other processors.

Aut. There exists a two-way authenticated communication channel {i, j} for each pair
of distinct processors i and j:

• Only i can send messages to j and only j can send messages to i on the channel
{i, j}, and;

• When i receives messages it is aware of the channel by which the messages were
sent, i.e. the instructions for i can depend not only on the messages received at
any given timeslot but also which channels the messages arrived on.

1

THE FORMAL FRAMEWORK

ANDREW LEWIS-PYE

The setup:

• We formalise each general as a processor.
• The execution of the protocol is divided into discrete timeslots, beginning at
time t = 0. At each time t, each processor receives a certain set of messages
from other processors, and then carries out a finite set of instructions to decide
what messages to send to other processors at that timeslot.

• There are n processors given names 0 to n� 1. Each processor is told n as well
as their own name i, i.e. this information is given as part of their input.

Is it trivial when f < n/2? Can we not just implement a majority vote argument?

The problem with this approach stems from the allowed form of communication be-
tween generals (which is intended to accurately reflect communication between proces-
sors in real world scenarios).

If the generals were standing in a circle and shouting out their votes – so that every-
body can see who is shouting out a vote and any vote heard by a single honest general
is immediately heard by all – then a simple majority vote approach would work. In
the setting described above, however, communication occurs by messenger between one
pair of generals at a time.

The problem now is that dishonest generals can tell di↵erent things to di↵erent gener-
als. Suppose n = 3 and f = 1. One honest general initially wants to attack, while the
other wants to retreat. If the dishonest general sends a ‘retreat’ message to the general
who wants to retreat and an ‘attack’ message to the general who wants to attack, then
the honest generals will see di↵erent majority votes.

In fact, we will see that (under a natural formalisation of the informal problem above)
the Byzantine Agreement problem is not solvable when f � n/3 unless we endow the
generals with certain extra abilities. So the problem is not as trivial as it might initially
seem.

To establish impossibility results of this kind, though, we certainly need a formal
framework. So, that is what we will set up in the next section.

1

THE FORMAL FRAMEWORK

ANDREW LEWIS-PYE

Message delay and the synchronous setting. To keep things simple, we start by
considering what is known as the synchronous setting. This means that if i sends j a
message at time t then j receives that message from i at time t+ 1.

How can dishonest generals behave?

• Some of the processors may be faulty.
• Each processor is given an upper bound f for the number of faulty processors
as part of its input.

• Generally, we are most interested in analysing settings where the faulty proces-
sors can display arbitrary (and potentially malicious) behaviour. In this case,
we say that the processors display Byzantine faults. Formally, this means that
faulty processors can execute any arbitrary program.

Crash faults. Sometimes we will also be interested in a more benign form of faulty
behaviour known as crash faults. In the crash fault setting, faulty processors must
follow the protocol precisely until such a point as they crash, whereupon they execute
no further instructions.

The adversary. In the paragraph above, we have formally specified how the faulty
processors may behave. When we reason informally, it will be often be convenient to
think of the faulty processors as being coordinated by an adversary who may choose
their actions so as to be as troublesome as possible for the protocols we design.

Public Key Infrastructure (PKI). Sometimes we’ll assume given a PKI, sometimes
not. If given a PKI, this means each processor is provided with a (sk, pk) pair, and is
told the public key of each of the other processors.

Aut. There exists a two-way authenticated communication channel {i, j} for each pair
of distinct processors i and j:

• Only i can send messages to j and only j can send messages to i on the channel
{i, j}, and;

• When i receives messages it is aware of the channel by which the messages were
sent, i.e. the instructions for i can depend not only on the messages received at
any given timeslot but also which channels the messages arrived on.

1

THE FORMAL FRAMEWORK

ANDREW LEWIS-PYE

The setup:

• We formalise each general as a processor.
• The execution of the protocol is divided into discrete timeslots, beginning at
time t = 0. At each time t, each processor receives a certain set of messages
from other processors, and then carries out a finite set of instructions to decide
what messages to send to other processors at that timeslot.

• There are n processors given names 0 to n� 1. Each processor is told n as well
as their own name i, i.e. this information is given as part of their input.

Is it trivial when f < n/2? Can we not just implement a majority vote argument?

The problem with this approach stems from the allowed form of communication be-
tween generals (which is intended to accurately reflect communication between proces-
sors in real world scenarios).

If the generals were standing in a circle and shouting out their votes – so that every-
body can see who is shouting out a vote and any vote heard by a single honest general
is immediately heard by all – then a simple majority vote approach would work. In
the setting described above, however, communication occurs by messenger between one
pair of generals at a time.

The problem now is that dishonest generals can tell di↵erent things to di↵erent gener-
als. Suppose n = 3 and f = 1. One honest general initially wants to attack, while the
other wants to retreat. If the dishonest general sends a ‘retreat’ message to the general
who wants to retreat and an ‘attack’ message to the general who wants to attack, then
the honest generals will see di↵erent majority votes.

In fact, we will see that (under a natural formalisation of the informal problem above)
the Byzantine Agreement problem is not solvable when f � n/3 unless we endow the
generals with certain extra abilities. So the problem is not as trivial as it might initially
seem.

To establish impossibility results of this kind, though, we certainly need a formal
framework. So, that is what we will set up in the next section.

1

THE FORMAL FRAMEWORK

ANDREW LEWIS-PYE

Message delay and the synchronous setting. To keep things simple, we start by
considering what is known as the synchronous setting. This means that if i sends j a
message at time t then j receives that message from i at time t+ 1.

How can dishonest generals behave?

• Some of the processors may be faulty.
• Each processor is given an upper bound f for the number of faulty processors
as part of its input.

• Generally, we are most interested in analysing settings where the faulty proces-
sors can display arbitrary (and potentially malicious) behaviour. In this case,
we say that the processors display Byzantine faults. Formally, this means that
faulty processors can execute any arbitrary program.

Crash faults. Sometimes we will also be interested in a more benign form of faulty
behaviour known as crash faults. In the crash fault setting, faulty processors must
follow the protocol precisely until such a point as they crash, whereupon they execute
no further instructions.

The adversary. In the paragraph above, we have formally specified how the faulty
processors may behave. When we reason informally, it will be often be convenient to
think of the faulty processors as being coordinated by an adversary who may choose
their actions so as to be as troublesome as possible for the protocols we design.

Public Key Infrastructure (PKI). Sometimes we’ll assume given a PKI, sometimes
not. If given a PKI, this means each processor is provided with a (sk, pk) pair, and is
told the public key of each of the other processors.

Aut. There exists a two-way authenticated communication channel {i, j} for each pair
of distinct processors i and j:

• Only i can send messages to j and only j can send messages to i on the channel
{i, j}, and;

• When i receives messages it is aware of the channel by which the messages were
sent, i.e. the instructions for i can depend not only on the messages received at
any given timeslot but also which channels the messages arrived on.

1

THE FORMAL FRAMEWORK

ANDREW LEWIS-PYE

The setup:

• We formalise each general as a processor.
• The execution of the protocol is divided into discrete timeslots, beginning at
time t = 0. At each time t, each processor receives a certain set of messages
from other processors, and then carries out a finite set of instructions to decide
what messages to send to other processors at that timeslot.

• There are n processors given names 0 to n� 1. Each processor is told n as well
as their own name i, i.e. this information is given as part of their input.

Is it trivial when f < n/2? Can we not just implement a majority vote argument?

The problem with this approach stems from the allowed form of communication be-
tween generals (which is intended to accurately reflect communication between proces-
sors in real world scenarios).

If the generals were standing in a circle and shouting out their votes – so that every-
body can see who is shouting out a vote and any vote heard by a single honest general
is immediately heard by all – then a simple majority vote approach would work. In
the setting described above, however, communication occurs by messenger between one
pair of generals at a time.

The problem now is that dishonest generals can tell di↵erent things to di↵erent gener-
als. Suppose n = 3 and f = 1. One honest general initially wants to attack, while the
other wants to retreat. If the dishonest general sends a ‘retreat’ message to the general
who wants to retreat and an ‘attack’ message to the general who wants to attack, then
the honest generals will see di↵erent majority votes.

In fact, we will see that (under a natural formalisation of the informal problem above)
the Byzantine Agreement problem is not solvable when f � n/3 unless we endow the
generals with certain extra abilities. So the problem is not as trivial as it might initially
seem.

To establish impossibility results of this kind, though, we certainly need a formal
framework. So, that is what we will set up in the next section.

1

THE FORMAL FRAMEWORK

ANDREW LEWIS-PYE

Message delay and the synchronous setting. To keep things simple, we start by
considering what is known as the synchronous setting. This means that if i sends j a
message at time t then j receives that message from i at time t+ 1.

How can dishonest generals behave?

• Some of the processors may be faulty.
• Each processor is given an upper bound f for the number of faulty processors
as part of its input.

• Generally, we are most interested in analysing settings where the faulty proces-
sors can display arbitrary (and potentially malicious) behaviour. In this case,
we say that the processors display Byzantine faults. Formally, this means that
faulty processors can execute any arbitrary program.

Crash faults. Sometimes we will also be interested in a more benign form of faulty
behaviour known as crash faults. In the crash fault setting, faulty processors must
follow the protocol precisely until such a point as they crash, whereupon they execute
no further instructions.

The adversary. In the paragraph above, we have formally specified how the faulty
processors may behave. When we reason informally, it will be often be convenient to
think of the faulty processors as being coordinated by an adversary who may choose
their actions so as to be as troublesome as possible for the protocols we design.

Public Key Infrastructure (PKI). Sometimes we’ll assume given a PKI, sometimes
not. If given a PKI, this means each processor is provided with a (sk, pk) pair, and is
told the public key of each of the other processors.

Aut. There exists a two-way authenticated communication channel {i, j} for each pair
of distinct processors i and j:

• Only i can send messages to j and only j can send messages to i on the channel
{i, j}, and;

• When i receives messages it is aware of the channel by which the messages were
sent, i.e. the instructions for i can depend not only on the messages received at
any given timeslot but also which channels the messages arrived on.

1

BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST
(BB)

ANDREW LEWIS-PYE

1. Byzantine Agreement (BA) and Byzantine Broadcast (BB)

Previously, we considered a binary version of the Byzantine Agreement Problem. Some-
times convenient to consider a more general form of the problem:

• We consider a set of n processors, of which at most f display Byzantine faults.1

• For some set V , each processor is given an input in V (di↵erent processors
potentially receiving di↵erent inputs). V is told to the processors2 and could
be of any finite size � 2.

• The protocol must satisfy the following conditions:
– Termination. All non-faulty processors must give an output in V .
– Agreement. All non-faulty processors must give the same output.
– Validity. If all non-faulty processors have the same input v, then v must
be their common output.

The Byzantine Broadcast Problem. In the original papers in which Lamport,
Shostak and Pease introduced the Byzantine Agreement problem, they actually fo-
cussed on a variant of the problem which is now known as Byzantine Broadcast :

• We consider a set of n processors, of which at most f display Byzantine faults.
• One processor is designated the ‘broadcaster’. All processors are given the name
of the broadcaster.

• The broadcaster is given an input in some set V . The set V is told to all
processors.

• The protocol must satisfy the following conditions:
– Termination. All non-faulty processors must give an output in V .
– Agreement. All non-faulty processors must give the same output.
– Validity. If the broadcaster is not faulty and has input v, then all non-
faulty processors must output v.

1Recall from section ?? that processors are told n and f .
2A small detail (whose purpose will become clear later) is that we will assume V is given in such
a way that some generic algorithm allows all non-faulty processors to pick the same ‘default’ value
v 2 V given only V as input. This will be the case if V has a first element, or if all elements of V
are represented by finite binary codes, or if V is just given directly with a distinguished element. The
same assumption is also made for Byzantine Broadcast.

1

BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST
(BB)

ANDREW LEWIS-PYE

1. Byzantine Agreement (BA) and Byzantine Broadcast (BB)

Previously, we considered a binary version of the Byzantine Agreement Problem. Some-
times convenient to consider a more general form of the problem:

• We consider a set of n processors, of which at most f display Byzantine faults.
• For some set V , each processor is given an input in V (di↵erent processors
potentially receiving di↵erent inputs). V is told to the processors and could be
of any finite size � 2.

• The protocol must satisfy the following conditions:
– Termination. All non-faulty processors must give an output in V .
– Agreement. All non-faulty processors must give the same output.
– Validity. If all non-faulty processors have the same input v, then v must
be their common output.

The Byzantine Broadcast Problem. In the original papers in which Lamport,
Shostak and Pease introduced the Byzantine Agreement problem, they actually fo-
cussed on a variant of the problem which is now known as Byzantine Broadcast :

• We consider a set of n processors, of which at most f display Byzantine faults.
• One processor is designated the ‘broadcaster’. All processors are given the name
of the broadcaster.

• The broadcaster is given an input in some set V . The set V is told to all
processors.

• The protocol must satisfy the following conditions:
– Termination. All non-faulty processors must give an output in V .
– Agreement. All non-faulty processors must give the same output.
– Validity. If the broadcaster is not faulty and has input v, then all non-
faulty processors must output v.

What is the relationship between the Byzantine Agreement (BA) problem and the
Byzantine Broadcast (BB) problem? In paragraph ??, we noted that BA cannot be
solved when f � n/2. It is easy to see, though, that the argument given there does
not apply to BB (the reader is invited to check). In Section ?? we will see that, if a
PKI is given and we work in the synchronous setting, then BB can actually be solved
for any number of faulty processors. So, there are certainly scenarios in which BB can
be solved although BA cannot be.

1

BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST
(BB)

ANDREW LEWIS-PYE

1. Byzantine Agreement (BA) and Byzantine Broadcast (BB)

Previously, we considered a binary version of the Byzantine Agreement Problem. Some-
times convenient to consider a more general form of the problem:

• We consider a set of n processors, of which at most f display Byzantine faults.1

• For some set V , each processor is given an input in V (di↵erent processors
potentially receiving di↵erent inputs). V is told to the processors2 and could
be of any finite size � 2.

• The protocol must satisfy the following conditions:
– Termination. All non-faulty processors must give an output in V .
– Agreement. All non-faulty processors must give the same output.
– Validity. If all non-faulty processors have the same input v, then v must
be their common output.

The Byzantine Broadcast Problem. In the original papers in which Lamport,
Shostak and Pease introduced the Byzantine Agreement problem, they actually fo-
cussed on a variant of the problem which is now known as Byzantine Broadcast :

• We consider a set of n processors, of which at most f display Byzantine faults.
• One processor is designated the ‘broadcaster’. All processors are given the name
of the broadcaster.

• The broadcaster is given an input in some set V . The set V is told to all
processors.

• The protocol must satisfy the following conditions:
– Termination. All non-faulty processors must give an output in V .
– Agreement. All non-faulty processors must give the same output.
– Validity. If the broadcaster is not faulty and has input v, then all non-
faulty processors must output v.

1Recall from section ?? that processors are told n and f .
2A small detail (whose purpose will become clear later) is that we will assume V is given in such
a way that some generic algorithm allows all non-faulty processors to pick the same ‘default’ value
v 2 V given only V as input. This will be the case if V has a first element, or if all elements of V
are represented by finite binary codes, or if V is just given directly with a distinguished element. The
same assumption is also made for Byzantine Broadcast.

1

BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST
(BB)

ANDREW LEWIS-PYE

1. Byzantine Agreement (BA) and Byzantine Broadcast (BB)

Previously, we considered a binary version of the Byzantine Agreement Problem. Some-
times convenient to consider a more general form of the problem:

• We consider a set of n processors, of which at most f display Byzantine faults.
• For some set V , each processor is given an input in V (di↵erent processors
potentially receiving di↵erent inputs). V is told to the processors and could be
of any finite size � 2.

• The protocol must satisfy the following conditions:
– Termination. All non-faulty processors must give an output in V .
– Agreement. All non-faulty processors must give the same output.
– Validity. If all non-faulty processors have the same input v, then v must
be their common output.

The Byzantine Broadcast Problem. In the original papers in which Lamport,
Shostak and Pease introduced the Byzantine Agreement problem, they actually fo-
cussed on a variant of the problem which is now known as Byzantine Broadcast :

• We consider a set of n processors, of which at most f display Byzantine faults.
• One processor is designated the ‘broadcaster’. All processors are given the name
of the broadcaster.

• The broadcaster is given an input in some set V . The set V is told to all
processors.

• The protocol must satisfy the following conditions:
– Termination. All non-faulty processors must give an output in V .
– Agreement. All non-faulty processors must give the same output.
– Validity. If the broadcaster is not faulty and has input v, then all non-
faulty processors must output v.

What is the relationship between the Byzantine Agreement (BA) problem and the
Byzantine Broadcast (BB) problem? In paragraph ??, we noted that BA cannot be
solved when f � n/2. It is easy to see, though, that the argument given there does
not apply to BB (the reader is invited to check). In Section ?? we will see that, if a
PKI is given and we work in the synchronous setting, then BB can actually be solved
for any number of faulty processors. So, there are certainly scenarios in which BB can
be solved although BA cannot be.

1

BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST
(BB)

ANDREW LEWIS-PYE

1. Byzantine Agreement (BA) and Byzantine Broadcast (BB)

Previously, we considered a binary version of the Byzantine Agreement Problem. Some-
times convenient to consider a more general form of the problem:

• We consider a set of n processors, of which at most f display Byzantine faults.1

• For some set V , each processor is given an input in V (di↵erent processors
potentially receiving di↵erent inputs). V is told to the processors2 and could
be of any finite size � 2.

• The protocol must satisfy the following conditions:
– Termination. All non-faulty processors must give an output in V .
– Agreement. All non-faulty processors must give the same output.
– Validity. If all non-faulty processors have the same input v, then v must
be their common output.

The Byzantine Broadcast Problem. In the original papers in which Lamport,
Shostak and Pease introduced the Byzantine Agreement problem, they actually fo-
cussed on a variant of the problem which is now known as Byzantine Broadcast :

• We consider a set of n processors, of which at most f display Byzantine faults.
• One processor is designated the ‘broadcaster’. All processors are given the name
of the broadcaster.

• The broadcaster is given an input in some set V . The set V is told to all
processors.

• The protocol must satisfy the following conditions:
– Termination. All non-faulty processors must give an output in V .
– Agreement. All non-faulty processors must give the same output.
– Validity. If the broadcaster is not faulty and has input v, then all non-
faulty processors must output v.

1Recall from section ?? that processors are told n and f .
2A small detail (whose purpose will become clear later) is that we will assume V is given in such
a way that some generic algorithm allows all non-faulty processors to pick the same ‘default’ value
v 2 V given only V as input. This will be the case if V has a first element, or if all elements of V
are represented by finite binary codes, or if V is just given directly with a distinguished element. The
same assumption is also made for Byzantine Broadcast.

1

BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST
(BB)

ANDREW LEWIS-PYE

1. Byzantine Agreement (BA) and Byzantine Broadcast (BB)

Previously, we considered a binary version of the Byzantine Agreement Problem. Some-
times convenient to consider a more general form of the problem:

• We consider a set of n processors, of which at most f display Byzantine faults.
• For some set V , each processor is given an input in V (di↵erent processors
potentially receiving di↵erent inputs). V is told to the processors and could be
of any finite size � 2.

• The protocol must satisfy the following conditions:
– Termination. All non-faulty processors must give an output in V .
– Agreement. All non-faulty processors must give the same output.
– Validity. If all non-faulty processors have the same input v, then v must
be their common output.

The Byzantine Broadcast Problem. In the original papers in which Lamport,
Shostak and Pease introduced the Byzantine Agreement problem, they actually fo-
cussed on a variant of the problem which is now known as Byzantine Broadcast :

• We consider a set of n processors, of which at most f display Byzantine faults.
• One processor is designated the ‘broadcaster’. All processors are given the name
of the broadcaster.

• The broadcaster is given an input in some set V . The set V is told to all
processors.

• The protocol must satisfy the following conditions:
– Termination. All non-faulty processors must give an output in V .
– Agreement. All non-faulty processors must give the same output.
– Validity. If the broadcaster is not faulty and has input v, then all non-
faulty processors must output v.

What is the relationship between the Byzantine Agreement (BA) problem and the
Byzantine Broadcast (BB) problem? In paragraph ??, we noted that BA cannot be
solved when f � n/2. It is easy to see, though, that the argument given there does
not apply to BB (the reader is invited to check). In Section ?? we will see that, if a
PKI is given and we work in the synchronous setting, then BB can actually be solved
for any number of faulty processors. So, there are certainly scenarios in which BB can
be solved although BA cannot be.

1

BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST
(BB)

ANDREW LEWIS-PYE

1. Byzantine Agreement (BA) and Byzantine Broadcast (BB)

Previously, we considered a binary version of the Byzantine Agreement Problem. Some-
times convenient to consider a more general form of the problem:

• We consider a set of n processors, of which at most f display Byzantine faults.1

• For some set V , each processor is given an input in V (di↵erent processors
potentially receiving di↵erent inputs). V is told to the processors2 and could
be of any finite size � 2.

• The protocol must satisfy the following conditions:
– Termination. All non-faulty processors must give an output in V .
– Agreement. All non-faulty processors must give the same output.
– Validity. If all non-faulty processors have the same input v, then v must
be their common output.

The Byzantine Broadcast Problem. In the original papers in which Lamport,
Shostak and Pease introduced the Byzantine Agreement problem, they actually fo-
cussed on a variant of the problem which is now known as Byzantine Broadcast :

• We consider a set of n processors, of which at most f display Byzantine faults.
• One processor is designated the ‘broadcaster’. All processors are given the name
of the broadcaster.

• The broadcaster is given an input in some set V . The set V is told to all
processors.

• The protocol must satisfy the following conditions:
– Termination. All non-faulty processors must give an output in V .
– Agreement. All non-faulty processors must give the same output.
– Validity. If the broadcaster is not faulty and has input v, then all non-
faulty processors must output v.

1Recall from section ?? that processors are told n and f .
2A small detail (whose purpose will become clear later) is that we will assume V is given in such
a way that some generic algorithm allows all non-faulty processors to pick the same ‘default’ value
v 2 V given only V as input. This will be the case if V has a first element, or if all elements of V
are represented by finite binary codes, or if V is just given directly with a distinguished element. The
same assumption is also made for Byzantine Broadcast.

1

BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST
(BB)

ANDREW LEWIS-PYE

1. Byzantine Agreement (BA) and Byzantine Broadcast (BB)

Previously, we considered a binary version of the Byzantine Agreement Problem. Some-
times convenient to consider a more general form of the problem:

• We consider a set of n processors, of which at most f display Byzantine faults.
• For some set V , each processor is given an input in V (di↵erent processors
potentially receiving di↵erent inputs). V is told to the processors and could be
of any finite size � 2.

• The protocol must satisfy the following conditions:
– Termination. All non-faulty processors must give an output in V .
– Agreement. All non-faulty processors must give the same output.
– Validity. If all non-faulty processors have the same input v, then v must
be their common output.

The Byzantine Broadcast Problem. In the original papers in which Lamport,
Shostak and Pease introduced the Byzantine Agreement problem, they actually fo-
cussed on a variant of the problem which is now known as Byzantine Broadcast :

• We consider a set of n processors, of which at most f display Byzantine faults.
• One processor is designated the ‘broadcaster’. All processors are given the name
of the broadcaster.

• The broadcaster is given an input in some set V . The set V is told to all
processors.

• The protocol must satisfy the following conditions:
– Termination. All non-faulty processors must give an output in V .
– Agreement. All non-faulty processors must give the same output.
– Validity. If the broadcaster is not faulty and has input v, then all non-
faulty processors must output v.

What is the relationship between the Byzantine Agreement (BA) problem and the
Byzantine Broadcast (BB) problem? In paragraph ??, we noted that BA cannot be
solved when f � n/2. It is easy to see, though, that the argument given there does
not apply to BB (the reader is invited to check). In Section ?? we will see that, if a
PKI is given and we work in the synchronous setting, then BB can actually be solved
for any number of faulty processors. So, there are certainly scenarios in which BB can
be solved although BA cannot be.

1

BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST
(BB)

ANDREW LEWIS-PYE

1. Byzantine Agreement (BA) and Byzantine Broadcast (BB)

Previously, we considered a binary version of the Byzantine Agreement Problem. Some-
times convenient to consider a more general form of the problem:

• We consider a set of n processors, of which at most f display Byzantine faults.1

• For some set V , each processor is given an input in V (di↵erent processors
potentially receiving di↵erent inputs). V is told to the processors2 and could
be of any finite size � 2.

• The protocol must satisfy the following conditions:
– Termination. All non-faulty processors must give an output in V .
– Agreement. All non-faulty processors must give the same output.
– Validity. If all non-faulty processors have the same input v, then v must
be their common output.

The Byzantine Broadcast Problem. In the original papers in which Lamport,
Shostak and Pease introduced the Byzantine Agreement problem, they actually fo-
cussed on a variant of the problem which is now known as Byzantine Broadcast :

• We consider a set of n processors, of which at most f display Byzantine faults.
• One processor is designated the ‘broadcaster’. All processors are given the name
of the broadcaster.

• The broadcaster is given an input in some set V . The set V is told to all
processors.

• The protocol must satisfy the following conditions:
– Termination. All non-faulty processors must give an output in V .
– Agreement. All non-faulty processors must give the same output.
– Validity. If the broadcaster is not faulty and has input v, then all non-
faulty processors must output v.

1Recall from section ?? that processors are told n and f .
2A small detail (whose purpose will become clear later) is that we will assume V is given in such
a way that some generic algorithm allows all non-faulty processors to pick the same ‘default’ value
v 2 V given only V as input. This will be the case if V has a first element, or if all elements of V
are represented by finite binary codes, or if V is just given directly with a distinguished element. The
same assumption is also made for Byzantine Broadcast.

1

BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST
(BB)

ANDREW LEWIS-PYE

1. Byzantine Agreement (BA) and Byzantine Broadcast (BB)

Previously, we considered a binary version of the Byzantine Agreement Problem. Some-
times convenient to consider a more general form of the problem:

• We consider a set of n processors, of which at most f display Byzantine faults.
• For some set V , each processor is given an input in V (di↵erent processors
potentially receiving di↵erent inputs). V is told to the processors and could be
of any finite size � 2.

• The protocol must satisfy the following conditions:
– Termination. All non-faulty processors must give an output in V .
– Agreement. All non-faulty processors must give the same output.
– Validity. If all non-faulty processors have the same input v, then v must
be their common output.

The Byzantine Broadcast Problem. In the original papers in which Lamport,
Shostak and Pease introduced the Byzantine Agreement problem, they actually fo-
cussed on a variant of the problem which is now known as Byzantine Broadcast :

• We consider a set of n processors, of which at most f display Byzantine faults.
• One processor is designated the ‘broadcaster’. All processors are given the name
of the broadcaster.

• The broadcaster is given an input in some set V . The set V is told to all
processors.

• The protocol must satisfy the following conditions:
– Termination. All non-faulty processors must give an output in V .
– Agreement. All non-faulty processors must give the same output.
– Validity. If the broadcaster is not faulty and has input v, then all non-
faulty processors must output v.

What is the relationship between the Byzantine Agreement (BA) problem and the
Byzantine Broadcast (BB) problem? In paragraph ??, we noted that BA cannot be
solved when f � n/2. It is easy to see, though, that the argument given there does
not apply to BB (the reader is invited to check). In Section ?? we will see that, if a
PKI is given and we work in the synchronous setting, then BB can actually be solved
for any number of faulty processors. So, there are certainly scenarios in which BB can
be solved although BA cannot be.

1

BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST
(BB)

ANDREW LEWIS-PYE

1. Byzantine Agreement (BA) and Byzantine Broadcast (BB)

Previously, we considered a binary version of the Byzantine Agreement Problem. Some-
times convenient to consider a more general form of the problem:

• We consider a set of n processors, of which at most f display Byzantine faults.1

• For some set V , each processor is given an input in V (di↵erent processors
potentially receiving di↵erent inputs). V is told to the processors2 and could
be of any finite size � 2.

• The protocol must satisfy the following conditions:
– Termination. All non-faulty processors must give an output in V .
– Agreement. All non-faulty processors must give the same output.
– Validity. If all non-faulty processors have the same input v, then v must
be their common output.

The Byzantine Broadcast Problem. In the original papers in which Lamport,
Shostak and Pease introduced the Byzantine Agreement problem, they actually fo-
cussed on a variant of the problem which is now known as Byzantine Broadcast :

• We consider a set of n processors, of which at most f display Byzantine faults.
• One processor is designated the ‘broadcaster’. All processors are given the name
of the broadcaster.

• The broadcaster is given an input in some set V . The set V is told to all
processors.

• The protocol must satisfy the following conditions:
– Termination. All non-faulty processors must give an output in V .
– Agreement. All non-faulty processors must give the same output.
– Validity. If the broadcaster is not faulty and has input v, then all non-
faulty processors must output v.

1Recall from section ?? that processors are told n and f .
2A small detail (whose purpose will become clear later) is that we will assume V is given in such
a way that some generic algorithm allows all non-faulty processors to pick the same ‘default’ value
v 2 V given only V as input. This will be the case if V has a first element, or if all elements of V
are represented by finite binary codes, or if V is just given directly with a distinguished element. The
same assumption is also made for Byzantine Broadcast.

1

BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST
(BB)

ANDREW LEWIS-PYE

1. Byzantine Agreement (BA) and Byzantine Broadcast (BB)

Previously, we considered a binary version of the Byzantine Agreement Problem. Some-
times convenient to consider a more general form of the problem:

• We consider a set of n processors, of which at most f display Byzantine faults.
• For some set V , each processor is given an input in V (di↵erent processors
potentially receiving di↵erent inputs). V is told to the processors and could be
of any finite size � 2.

• The protocol must satisfy the following conditions:
– Termination. All non-faulty processors must give an output in V .
– Agreement. All non-faulty processors must give the same output.
– Validity. If all non-faulty processors have the same input v, then v must
be their common output.

The Byzantine Broadcast Problem. In the original papers in which Lamport,
Shostak and Pease introduced the Byzantine Agreement problem, they actually fo-
cussed on a variant of the problem which is now known as Byzantine Broadcast :

• We consider a set of n processors, of which at most f display Byzantine faults.
• One processor is designated the ‘broadcaster’. All processors are given the name
of the broadcaster.

• The broadcaster is given an input in some set V . The set V is told to all
processors.

• The protocol must satisfy the following conditions:
– Termination. All non-faulty processors must give an output in V .
– Agreement. All non-faulty processors must give the same output.
– Validity. If the broadcaster is not faulty and has input v, then all non-
faulty processors must output v.

What is the relationship between the Byzantine Agreement (BA) problem and the
Byzantine Broadcast (BB) problem? In paragraph ??, we noted that BA cannot be
solved when f � n/2. It is easy to see, though, that the argument given there does
not apply to BB (the reader is invited to check). In Section ?? we will see that, if a
PKI is given and we work in the synchronous setting, then BB can actually be solved
for any number of faulty processors. So, there are certainly scenarios in which BB can
be solved although BA cannot be.

1

BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST
(BB)

ANDREW LEWIS-PYE

1. Byzantine Agreement (BA) and Byzantine Broadcast (BB)

Previously, we considered a binary version of the Byzantine Agreement Problem. Some-
times convenient to consider a more general form of the problem:

• We consider a set of n processors, of which at most f display Byzantine faults.1

• For some set V , each processor is given an input in V (di↵erent processors
potentially receiving di↵erent inputs). V is told to the processors2 and could
be of any finite size � 2.

• The protocol must satisfy the following conditions:
– Termination. All non-faulty processors must give an output in V .
– Agreement. All non-faulty processors must give the same output.
– Validity. If all non-faulty processors have the same input v, then v must
be their common output.

The Byzantine Broadcast Problem. In the original papers in which Lamport,
Shostak and Pease introduced the Byzantine Agreement problem, they actually fo-
cussed on a variant of the problem which is now known as Byzantine Broadcast :

• We consider a set of n processors, of which at most f display Byzantine faults.
• One processor is designated the ‘broadcaster’. All processors are given the name
of the broadcaster.

• The broadcaster is given an input in some set V . The set V is told to all
processors.

• The protocol must satisfy the following conditions:
– Termination. All non-faulty processors must give an output in V .
– Agreement. All non-faulty processors must give the same output.
– Validity. If the broadcaster is not faulty and has input v, then all non-
faulty processors must output v.

1Recall from section ?? that processors are told n and f .
2A small detail (whose purpose will become clear later) is that we will assume V is given in such
a way that some generic algorithm allows all non-faulty processors to pick the same ‘default’ value
v 2 V given only V as input. This will be the case if V has a first element, or if all elements of V
are represented by finite binary codes, or if V is just given directly with a distinguished element. The
same assumption is also made for Byzantine Broadcast.

1

BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST
(BB)

ANDREW LEWIS-PYE

1. Byzantine Agreement (BA) and Byzantine Broadcast (BB)

Previously, we considered a binary version of the Byzantine Agreement Problem. Some-
times convenient to consider a more general form of the problem:

• We consider a set of n processors, of which at most f display Byzantine faults.
• For some set V , each processor is given an input in V (di↵erent processors
potentially receiving di↵erent inputs). V is told to the processors and could be
of any finite size � 2.

• The protocol must satisfy the following conditions:
– Termination. All non-faulty processors must give an output in V .
– Agreement. All non-faulty processors must give the same output.
– Validity. If all non-faulty processors have the same input v, then v must
be their common output.

The Byzantine Broadcast Problem. In the original papers in which Lamport,
Shostak and Pease introduced the Byzantine Agreement problem, they actually fo-
cussed on a variant of the problem which is now known as Byzantine Broadcast :

• We consider a set of n processors, of which at most f display Byzantine faults.
• One processor is designated the ‘broadcaster’. All processors are given the name
of the broadcaster.

• The broadcaster is given an input in some set V . The set V is told to all
processors.

• The protocol must satisfy the following conditions:
– Termination. All non-faulty processors must give an output in V .
– Agreement. All non-faulty processors must give the same output.
– Validity. If the broadcaster is not faulty and has input v, then all non-
faulty processors must output v.

What is the relationship between the Byzantine Agreement (BA) problem and the
Byzantine Broadcast (BB) problem? In paragraph ??, we noted that BA cannot be
solved when f � n/2. It is easy to see, though, that the argument given there does
not apply to BB (the reader is invited to check). In Section ?? we will see that, if a
PKI is given and we work in the synchronous setting, then BB can actually be solved
for any number of faulty processors. So, there are certainly scenarios in which BB can
be solved although BA cannot be.

1

BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST
(BB)

ANDREW LEWIS-PYE

1. Byzantine Agreement (BA) and Byzantine Broadcast (BB)

Previously, we considered a binary version of the Byzantine Agreement Problem. Some-
times convenient to consider a more general form of the problem:

• We consider a set of n processors, of which at most f display Byzantine faults.1

• For some set V , each processor is given an input in V (di↵erent processors
potentially receiving di↵erent inputs). V is told to the processors2 and could
be of any finite size � 2.

• The protocol must satisfy the following conditions:
– Termination. All non-faulty processors must give an output in V .
– Agreement. All non-faulty processors must give the same output.
– Validity. If all non-faulty processors have the same input v, then v must
be their common output.

The Byzantine Broadcast Problem. In the original papers in which Lamport,
Shostak and Pease introduced the Byzantine Agreement problem, they actually fo-
cussed on a variant of the problem which is now known as Byzantine Broadcast :

• We consider a set of n processors, of which at most f display Byzantine faults.
• One processor is designated the ‘broadcaster’. All processors are given the name
of the broadcaster.

• The broadcaster is given an input in some set V . The set V is told to all
processors.

• The protocol must satisfy the following conditions:
– Termination. All non-faulty processors must give an output in V .
– Agreement. All non-faulty processors must give the same output.
– Validity. If the broadcaster is not faulty and has input v, then all non-
faulty processors must output v.

1Recall from section ?? that processors are told n and f .
2A small detail (whose purpose will become clear later) is that we will assume V is given in such
a way that some generic algorithm allows all non-faulty processors to pick the same ‘default’ value
v 2 V given only V as input. This will be the case if V has a first element, or if all elements of V
are represented by finite binary codes, or if V is just given directly with a distinguished element. The
same assumption is also made for Byzantine Broadcast.

1

BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST
(BB)

ANDREW LEWIS-PYE

1. Byzantine Agreement (BA) and Byzantine Broadcast (BB)

Previously, we considered a binary version of the Byzantine Agreement Problem. Some-
times convenient to consider a more general form of the problem:

• We consider a set of n processors, of which at most f display Byzantine faults.
• For some set V , each processor is given an input in V (di↵erent processors
potentially receiving di↵erent inputs). V is told to the processors and could be
of any finite size � 2.

• The protocol must satisfy the following conditions:
– Termination. All non-faulty processors must give an output in V .
– Agreement. All non-faulty processors must give the same output.
– Validity. If all non-faulty processors have the same input v, then v must
be their common output.

The Byzantine Broadcast Problem. In the original papers in which Lamport,
Shostak and Pease introduced the Byzantine Agreement problem, they actually fo-
cussed on a variant of the problem which is now known as Byzantine Broadcast :

• We consider a set of n processors, of which at most f display Byzantine faults.
• One processor is designated the ‘broadcaster’. All processors are given the name
of the broadcaster.

• The broadcaster is given an input in some set V . The set V is told to all
processors.

• The protocol must satisfy the following conditions:
– Termination. All non-faulty processors must give an output in V .
– Agreement. All non-faulty processors must give the same output.
– Validity. If the broadcaster is not faulty and has input v, then all non-
faulty processors must output v.

What is the relationship between the Byzantine Agreement (BA) problem and the
Byzantine Broadcast (BB) problem? In paragraph ??, we noted that BA cannot be
solved when f � n/2. It is easy to see, though, that the argument given there does
not apply to BB (the reader is invited to check). In Section ?? we will see that, if a
PKI is given and we work in the synchronous setting, then BB can actually be solved
for any number of faulty processors. So, there are certainly scenarios in which BB can
be solved although BA cannot be.

1

BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST
(BB)

ANDREW LEWIS-PYE

1. Byzantine Agreement (BA) and Byzantine Broadcast (BB)

Previously, we considered a binary version of the Byzantine Agreement Problem. Some-
times convenient to consider a more general form of the problem:

• We consider a set of n processors, of which at most f display Byzantine faults.1

• For some set V , each processor is given an input in V (di↵erent processors
potentially receiving di↵erent inputs). V is told to the processors2 and could
be of any finite size � 2.

• The protocol must satisfy the following conditions:
– Termination. All non-faulty processors must give an output in V .
– Agreement. All non-faulty processors must give the same output.
– Validity. If all non-faulty processors have the same input v, then v must
be their common output.

The Byzantine Broadcast Problem. In the original papers in which Lamport,
Shostak and Pease introduced the Byzantine Agreement problem, they actually fo-
cussed on a variant of the problem which is now known as Byzantine Broadcast :

• We consider a set of n processors, of which at most f display Byzantine faults.
• One processor is designated the ‘broadcaster’. All processors are given the name
of the broadcaster.

• The broadcaster is given an input in some set V . The set V is told to all
processors.

• The protocol must satisfy the following conditions:
– Termination. All non-faulty processors must give an output in V .
– Agreement. All non-faulty processors must give the same output.
– Validity. If the broadcaster is not faulty and has input v, then all non-
faulty processors must output v.

1Recall from section ?? that processors are told n and f .
2A small detail (whose purpose will become clear later) is that we will assume V is given in such
a way that some generic algorithm allows all non-faulty processors to pick the same ‘default’ value
v 2 V given only V as input. This will be the case if V has a first element, or if all elements of V
are represented by finite binary codes, or if V is just given directly with a distinguished element. The
same assumption is also made for Byzantine Broadcast.

1

BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST
(BB)

ANDREW LEWIS-PYE

1. Byzantine Agreement (BA) and Byzantine Broadcast (BB)

Previously, we considered a binary version of the Byzantine Agreement Problem. Some-
times convenient to consider a more general form of the problem:

• We consider a set of n processors, of which at most f display Byzantine faults.
• For some set V , each processor is given an input in V (di↵erent processors
potentially receiving di↵erent inputs). V is told to the processors and could be
of any finite size � 2.

• The protocol must satisfy the following conditions:
– Termination. All non-faulty processors must give an output in V .
– Agreement. All non-faulty processors must give the same output.
– Validity. If all non-faulty processors have the same input v, then v must
be their common output.

The Byzantine Broadcast Problem. In the original papers in which Lamport,
Shostak and Pease introduced the Byzantine Agreement problem, they actually fo-
cussed on a variant of the problem which is now known as Byzantine Broadcast :

• We consider a set of n processors, of which at most f display Byzantine faults.
• One processor is designated the ‘broadcaster’. All processors are given the name
of the broadcaster.

• The broadcaster is given an input in some set V . The set V is told to all
processors.

• The protocol must satisfy the following conditions:
– Termination. All non-faulty processors must give an output in V .
– Agreement. All non-faulty processors must give the same output.
– Validity. If the broadcaster is not faulty and has input v, then all non-
faulty processors must output v.

What is the relationship between the Byzantine Agreement (BA) problem and the
Byzantine Broadcast (BB) problem? In paragraph ??, we noted that BA cannot be
solved when f � n/2. It is easy to see, though, that the argument given there does
not apply to BB (the reader is invited to check). In Section ?? we will see that, if a
PKI is given and we work in the synchronous setting, then BB can actually be solved
for any number of faulty processors. So, there are certainly scenarios in which BB can
be solved although BA cannot be.

1

BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST
(BB)

ANDREW LEWIS-PYE

1. Byzantine Agreement (BA) and Byzantine Broadcast (BB)

Previously, we considered a binary version of the Byzantine Agreement Problem. Some-
times convenient to consider a more general form of the problem:

• We consider a set of n processors, of which at most f display Byzantine faults.1

• For some set V , each processor is given an input in V (di↵erent processors
potentially receiving di↵erent inputs). V is told to the processors2 and could
be of any finite size � 2.

• The protocol must satisfy the following conditions:
– Termination. All non-faulty processors must give an output in V .
– Agreement. All non-faulty processors must give the same output.
– Validity. If all non-faulty processors have the same input v, then v must
be their common output.

The Byzantine Broadcast Problem. In the original papers in which Lamport,
Shostak and Pease introduced the Byzantine Agreement problem, they actually fo-
cussed on a variant of the problem which is now known as Byzantine Broadcast :

• We consider a set of n processors, of which at most f display Byzantine faults.
• One processor is designated the ‘broadcaster’. All processors are given the name
of the broadcaster.

• The broadcaster is given an input in some set V . The set V is told to all
processors.

• The protocol must satisfy the following conditions:
– Termination. All non-faulty processors must give an output in V .
– Agreement. All non-faulty processors must give the same output.
– Validity. If the broadcaster is not faulty and has input v, then all non-
faulty processors must output v.

1Recall from section ?? that processors are told n and f .
2A small detail (whose purpose will become clear later) is that we will assume V is given in such
a way that some generic algorithm allows all non-faulty processors to pick the same ‘default’ value
v 2 V given only V as input. This will be the case if V has a first element, or if all elements of V
are represented by finite binary codes, or if V is just given directly with a distinguished element. The
same assumption is also made for Byzantine Broadcast.

1

BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST
(BB)

ANDREW LEWIS-PYE

1. Byzantine Agreement (BA) and Byzantine Broadcast (BB)

Previously, we considered a binary version of the Byzantine Agreement Problem. Some-
times convenient to consider a more general form of the problem:

• We consider a set of n processors, of which at most f display Byzantine faults.
• For some set V , each processor is given an input in V (di↵erent processors
potentially receiving di↵erent inputs). V is told to the processors and could be
of any finite size � 2.

• The protocol must satisfy the following conditions:
– Termination. All non-faulty processors must give an output in V .
– Agreement. All non-faulty processors must give the same output.
– Validity. If all non-faulty processors have the same input v, then v must
be their common output.

The Byzantine Broadcast Problem. In the original papers in which Lamport,
Shostak and Pease introduced the Byzantine Agreement problem, they actually fo-
cussed on a variant of the problem which is now known as Byzantine Broadcast :

• We consider a set of n processors, of which at most f display Byzantine faults.
• One processor is designated the ‘broadcaster’. All processors are given the name
of the broadcaster.

• The broadcaster is given an input in some set V . The set V is told to all
processors.

• The protocol must satisfy the following conditions:
– Termination. All non-faulty processors must give an output in V .
– Agreement. All non-faulty processors must give the same output.
– Validity. If the broadcaster is not faulty and has input v, then all non-
faulty processors must output v.

What is the relationship between the Byzantine Agreement (BA) problem
and the Byzantine Broadcast (BB) problem? We saw BA cannot be solved when
f � n/2. It is easy to see, though, that the same argument doesn’t apply to BB – in
fact, we’ll see that, if a PKI is given and we work in the synchronous setting, then BB
can actually be solved for any number of faulty processors.

So, there are certainly scenarios in which BB can be solved although BA cannot be.
1

BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST
(BB)

ANDREW LEWIS-PYE

1. Byzantine Agreement (BA) and Byzantine Broadcast (BB)

Previously, we considered a binary version of the Byzantine Agreement Problem. Some-
times convenient to consider a more general form of the problem:

• We consider a set of n processors, of which at most f display Byzantine faults.1

• For some set V , each processor is given an input in V (di↵erent processors
potentially receiving di↵erent inputs). V is told to the processors2 and could
be of any finite size � 2.

• The protocol must satisfy the following conditions:
– Termination. All non-faulty processors must give an output in V .
– Agreement. All non-faulty processors must give the same output.
– Validity. If all non-faulty processors have the same input v, then v must
be their common output.

The Byzantine Broadcast Problem. In the original papers in which Lamport,
Shostak and Pease introduced the Byzantine Agreement problem, they actually fo-
cussed on a variant of the problem which is now known as Byzantine Broadcast :

• We consider a set of n processors, of which at most f display Byzantine faults.
• One processor is designated the ‘broadcaster’. All processors are given the name
of the broadcaster.

• The broadcaster is given an input in some set V . The set V is told to all
processors.

• The protocol must satisfy the following conditions:
– Termination. All non-faulty processors must give an output in V .
– Agreement. All non-faulty processors must give the same output.
– Validity. If the broadcaster is not faulty and has input v, then all non-
faulty processors must output v.

1Recall from section ?? that processors are told n and f .
2A small detail (whose purpose will become clear later) is that we will assume V is given in such
a way that some generic algorithm allows all non-faulty processors to pick the same ‘default’ value
v 2 V given only V as input. This will be the case if V has a first element, or if all elements of V
are represented by finite binary codes, or if V is just given directly with a distinguished element. The
same assumption is also made for Byzantine Broadcast.

1

BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST
(BB)

ANDREW LEWIS-PYE

1. Byzantine Agreement (BA) and Byzantine Broadcast (BB)

Previously, we considered a binary version of the Byzantine Agreement Problem. Some-
times convenient to consider a more general form of the problem:

• We consider a set of n processors, of which at most f display Byzantine faults.
• For some set V , each processor is given an input in V (di↵erent processors
potentially receiving di↵erent inputs). V is told to the processors and could be
of any finite size � 2.

• The protocol must satisfy the following conditions:
– Termination. All non-faulty processors must give an output in V .
– Agreement. All non-faulty processors must give the same output.
– Validity. If all non-faulty processors have the same input v, then v must
be their common output.

The Byzantine Broadcast Problem. In the original papers in which Lamport,
Shostak and Pease introduced the Byzantine Agreement problem, they actually fo-
cussed on a variant of the problem which is now known as Byzantine Broadcast :

• We consider a set of n processors, of which at most f display Byzantine faults.
• One processor is designated the ‘broadcaster’. All processors are given the name
of the broadcaster.

• The broadcaster is given an input in some set V . The set V is told to all
processors.

• The protocol must satisfy the following conditions:
– Termination. All non-faulty processors must give an output in V .
– Agreement. All non-faulty processors must give the same output.
– Validity. If the broadcaster is not faulty and has input v, then all non-
faulty processors must output v.

What is the relationship between the Byzantine Agreement (BA) problem
and the Byzantine Broadcast (BB) problem? We saw BA cannot be solved when
f � n/2. It is easy to see, though, that the same argument doesn’t apply to BB – in
fact, we’ll see that, if a PKI is given and we work in the synchronous setting, then BB
can actually be solved for any number of faulty processors.

So, there are certainly scenarios in which BB can be solved although BA cannot be.
1

BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST
(BB)

ANDREW LEWIS-PYE

1. Byzantine Agreement (BA) and Byzantine Broadcast (BB)

Previously, we considered a binary version of the Byzantine Agreement Problem. Some-
times convenient to consider a more general form of the problem:

• We consider a set of n processors, of which at most f display Byzantine faults.1

• For some set V , each processor is given an input in V (di↵erent processors
potentially receiving di↵erent inputs). V is told to the processors2 and could
be of any finite size � 2.

• The protocol must satisfy the following conditions:
– Termination. All non-faulty processors must give an output in V .
– Agreement. All non-faulty processors must give the same output.
– Validity. If all non-faulty processors have the same input v, then v must
be their common output.

The Byzantine Broadcast Problem. In the original papers in which Lamport,
Shostak and Pease introduced the Byzantine Agreement problem, they actually fo-
cussed on a variant of the problem which is now known as Byzantine Broadcast :

• We consider a set of n processors, of which at most f display Byzantine faults.
• One processor is designated the ‘broadcaster’. All processors are given the name
of the broadcaster.

• The broadcaster is given an input in some set V . The set V is told to all
processors.

• The protocol must satisfy the following conditions:
– Termination. All non-faulty processors must give an output in V .
– Agreement. All non-faulty processors must give the same output.
– Validity. If the broadcaster is not faulty and has input v, then all non-
faulty processors must output v.

1Recall from section ?? that processors are told n and f .
2A small detail (whose purpose will become clear later) is that we will assume V is given in such
a way that some generic algorithm allows all non-faulty processors to pick the same ‘default’ value
v 2 V given only V as input. This will be the case if V has a first element, or if all elements of V
are represented by finite binary codes, or if V is just given directly with a distinguished element. The
same assumption is also made for Byzantine Broadcast.

1

2 ANDREW LEWIS-PYE

On the other hand, if we work in the synchronous setting and if f < n/2 then the two
problems reduce to each other quite easily:

• If we can solve BB, then to solve BA we have all processors broadcast their
inputs using the protocol for BB (meaning that we carry out n simultaneous
executions of BB). Once a value is decided corresponding to each processor, pro-
cessors then decide by majority vote, breaking ties in some previously arranged
but arbitrary fashion.

• If we can solve BA, then to solve BB we have the broadcaster send their input
to all other processors at time 0. Each processor then takes the value received
at time 1 as their input value, choosing some arbitrary value in V if no value
is received from the broadcaster. We then have the processors carry out the
protocol for BA on those input values.

So far, it might seem that BB is strictly easier than BA. As a word of caution, we
will later see settings such as the partially synchronous and asynchronous settings, in
which BB is not possible although protocols do exist to solve BA. So, the two problems
are not strictly comparable in a general sense.
The research program. Given the formal framework outlined above, the questions
we now want to answer include:

• For which n and f do there exist protocols to solve Byzantine Agreement and
other variants of the problem?

• How does this depend on our assumptions regarding message reliability, i.e.
whether we are working in the synchronous setting or in a setting for which
message delivery is less reliable?

• Does this depend on the form of faulty behaviour (i.e. Byzantine or crash
faults)?

• Does the answer depend on whether a PKI is given?

The order in which we address these issues is as follows:

• We start in the synchronous setting.
• First of all, we consider Byzantine faults and we determine for which n and f
Byzantine Agreement is possible, depending on whether a PKI is given.

• Then we consider the same question for crash faults, before repeating all of
the same questions for settings that make weaker assumptions about message
delivery.

• Along the way, we will also consider two other variants of the Byzantine Agree-
ment problem, called ‘Byzantine Broadcast’ and ‘State Machine Replication’.

Message delay and the synchronous setting. To keep things simple, we start by
considering what is known as the synchronous setting. This means that if i sends j a
message at time t then j receives that message from i at time t+ 1.

How can dishonest generals behave?

BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST
(BB)

ANDREW LEWIS-PYE

1. Byzantine Agreement (BA) and Byzantine Broadcast (BB)

Previously, we considered a binary version of the Byzantine Agreement Problem. Some-
times convenient to consider a more general form of the problem:

• We consider a set of n processors, of which at most f display Byzantine faults.1

• For some set V , each processor is given an input in V (di↵erent processors
potentially receiving di↵erent inputs). V is told to the processors2 and could
be of any finite size � 2.

• The protocol must satisfy the following conditions:
– Termination. All non-faulty processors must give an output in V .
– Agreement. All non-faulty processors must give the same output.
– Validity. If all non-faulty processors have the same input v, then v must
be their common output.

The Byzantine Broadcast Problem. In the original papers in which Lamport,
Shostak and Pease introduced the Byzantine Agreement problem, they actually fo-
cussed on a variant of the problem which is now known as Byzantine Broadcast :

• We consider a set of n processors, of which at most f display Byzantine faults.
• One processor is designated the ‘broadcaster’. All processors are given the name
of the broadcaster.

• The broadcaster is given an input in some set V . The set V is told to all
processors.

• The protocol must satisfy the following conditions:
– Termination. All non-faulty processors must give an output in V .
– Agreement. All non-faulty processors must give the same output.
– Validity. If the broadcaster is not faulty and has input v, then all non-
faulty processors must output v.

1Recall from section ?? that processors are told n and f .
2A small detail (whose purpose will become clear later) is that we will assume V is given in such
a way that some generic algorithm allows all non-faulty processors to pick the same ‘default’ value
v 2 V given only V as input. This will be the case if V has a first element, or if all elements of V
are represented by finite binary codes, or if V is just given directly with a distinguished element. The
same assumption is also made for Byzantine Broadcast.

1

2 ANDREW LEWIS-PYE

On the other hand, if we work in the synchronous setting and if f < n/2 then the two
problems reduce to each other quite easily:

• If we can solve BB, then to solve BA we have all processors broadcast their
inputs using the protocol for BB (meaning that we carry out n simultaneous
executions of BB). Once a value is decided corresponding to each processor, pro-
cessors then decide by majority vote, breaking ties in some previously arranged
but arbitrary fashion.

• If we can solve BA, then to solve BB we have the broadcaster send their input
to all other processors at time 0. Each processor then takes the value received
at time 1 as their input value, choosing some arbitrary value in V if no value
is received from the broadcaster. We then have the processors carry out the
protocol for BA on those input values.

So far, it might seem that BB is strictly easier than BA. As a word of caution, we
will later see settings such as the partially synchronous and asynchronous settings, in
which BB is not possible although protocols do exist to solve BA. So, the two problems
are not strictly comparable in a general sense.
The research program. Given the formal framework outlined above, the questions
we now want to answer include:

• For which n and f do there exist protocols to solve Byzantine Agreement and
other variants of the problem?

• How does this depend on our assumptions regarding message reliability, i.e.
whether we are working in the synchronous setting or in a setting for which
message delivery is less reliable?

• Does this depend on the form of faulty behaviour (i.e. Byzantine or crash
faults)?

• Does the answer depend on whether a PKI is given?

The order in which we address these issues is as follows:

• We start in the synchronous setting.
• First of all, we consider Byzantine faults and we determine for which n and f
Byzantine Agreement is possible, depending on whether a PKI is given.

• Then we consider the same question for crash faults, before repeating all of
the same questions for settings that make weaker assumptions about message
delivery.

• Along the way, we will also consider two other variants of the Byzantine Agree-
ment problem, called ‘Byzantine Broadcast’ and ‘State Machine Replication’.

Message delay and the synchronous setting. To keep things simple, we start by
considering what is known as the synchronous setting. This means that if i sends j a
message at time t then j receives that message from i at time t+ 1.

How can dishonest generals behave?

BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST
(BB)

ANDREW LEWIS-PYE

1. BA and BB: Synchronous setting with PKI

We’ll prove the following:

Theorem. Consider the synchronous setting with PKI given. There exists a protocol

that solves the Byzantine Broadcast problem for any number of faulty processors.

This also deals with BA. By the reductions discussed before, the theorem also suf-
fices to show that we can solve BA when working in the synchronous setting with PKI
i↵ f < n/2.

Why isn’t it trivial?

• An obvious way to try solving BB when given a PKI would be to have the
broadcaster send out signed values of their input to each of the other processors.

• The processors could then repeatedly share all of the signed values they have
seen produced by the broadcaster.

• If they only ever see a single value produced, then they output that value. If
they ever see two di↵erent values produced, then they realise the broadcaster
is faulty, so they give some ‘default’ value as output.

• If the broadcaster is non-faulty then they will only produce a single signed value
and all non-faulty processors will output that. If the broadcaster produces two
di↵erent signed values and shows them to non-faulty processors then (the idea
is) everyone will eventually see those values and give the default output.

The problem. The problem with this approach is clear. At what point should the pro-
cessors stop sharing values and terminate? If they share until time t, then the adversary
can choose to show one signed value to all non-faulty processors until time t, and then
show some subset of the non-faulty processors a second signed value at time t (when it
is too late to share anymore), causing the ‘agreement’ requirement of BB to be violated.

The trick (informal). What we need is a clever mechanism to ensure that if any
non-faulty processor ‘recognises’ a certain signed value produced by the broadcaster,
then all non-faulty processors will also ‘recognise’ that value. That way, either they all
recognise a single value and give that as output, or they all recognise multiple values

1

BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST
(BB)

ANDREW LEWIS-PYE

1. BA and BB: Synchronous setting with PKI

We’ll prove the following:

Theorem. Consider the synchronous setting with PKI given. There exists a protocol

that solves the Byzantine Broadcast problem for any number of faulty processors.

This also deals with BA. By the reductions discussed before, the theorem also suf-
fices to show that we can solve BA when working in the synchronous setting with PKI
i↵ f < n/2.

Why isn’t it trivial?

• An obvious way to try solving BB when given a PKI would be to have the
broadcaster send out signed values of their input to each of the other processors.

• The processors could then repeatedly share all of the signed values they have
seen produced by the broadcaster.

• If they only ever see a single value produced, then they output that value. If
they ever see two di↵erent values produced, then they realise the broadcaster
is faulty, so they give some ‘default’ value as output.

• If the broadcaster is non-faulty then they will only produce a single signed value
and all non-faulty processors will output that. If the broadcaster produces two
di↵erent signed values and shows them to non-faulty processors then (the idea
is) everyone will eventually see those values and give the default output.

The problem. The problem with this approach is clear. At what point should the pro-
cessors stop sharing values and terminate? If they share until time t, then the adversary
can choose to show one signed value to all non-faulty processors until time t, and then
show some subset of the non-faulty processors a second signed value at time t (when it
is too late to share anymore), causing the ‘agreement’ requirement of BB to be violated.

The trick (informal). What we need is a clever mechanism to ensure that if any
non-faulty processor ‘recognises’ a certain signed value produced by the broadcaster,
then all non-faulty processors will also ‘recognise’ that value. That way, either they all
recognise a single value and give that as output, or they all recognise multiple values

1

BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST
(BB)

ANDREW LEWIS-PYE

1. BA and BB: Synchronous setting with PKI

We’ll prove the following:

Theorem. Consider the synchronous setting with PKI given. There exists a protocol

that solves the Byzantine Broadcast problem for any number of faulty processors.

This also deals with BA. By the reductions discussed before, the theorem also suf-
fices to show that we can solve BA when working in the synchronous setting with PKI
i↵ f < n/2.

Why isn’t it trivial?

• An obvious way to try solving BB when given a PKI would be to have the
broadcaster send out signed values of their input to each of the other processors.

• The processors could then repeatedly share all of the signed values they have
seen produced by the broadcaster.

• If they only ever see a single value produced, then they output that value. If
they ever see two di↵erent values produced, then they realise the broadcaster
is faulty, so they give some ‘default’ value as output.

• If the broadcaster is non-faulty then they will only produce a single signed value
and all non-faulty processors will output that. If the broadcaster produces two
di↵erent signed values and shows them to non-faulty processors then (the idea
is) everyone will eventually see those values and give the default output.

The problem. The problem with this approach is clear. At what point should the pro-
cessors stop sharing values and terminate? If they share until time t, then the adversary
can choose to show one signed value to all non-faulty processors until time t, and then
show some subset of the non-faulty processors a second signed value at time t (when it
is too late to share anymore), causing the ‘agreement’ requirement of BB to be violated.

The trick (informal). What we need is a clever mechanism to ensure that if any
non-faulty processor ‘recognises’ a certain signed value produced by the broadcaster,
then all non-faulty processors will also ‘recognise’ that value. That way, either they all
recognise a single value and give that as output, or they all recognise multiple values

1

BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST
(BB)

ANDREW LEWIS-PYE

1. BA and BB: Synchronous setting with PKI

We’ll prove the following:

Theorem. Consider the synchronous setting with PKI given. There exists a protocol

that solves the Byzantine Broadcast problem for any number of faulty processors.

This also deals with BA. By the reductions discussed before, the theorem also suf-
fices to show that we can solve BA when working in the synchronous setting with PKI
i↵ f < n/2.

Why isn’t it trivial?

• An obvious way to try solving BB when given a PKI would be to have the
broadcaster send out signed values of their input to each of the other processors.

• The processors could then repeatedly share all of the signed values they have
seen produced by the broadcaster.

• If they only ever see a single value produced, then they output that value. If
they ever see two di↵erent values produced, then they realise the broadcaster
is faulty, so they give some ‘default’ value as output.

• If the broadcaster is non-faulty then they will only produce a single signed value
and all non-faulty processors will output that. If the broadcaster produces two
di↵erent signed values and shows them to non-faulty processors then (the idea
is) everyone will eventually see those values and give the default output.

The problem. The problem with this approach is clear. At what point should the pro-
cessors stop sharing values and terminate? If they share until time t, then the adversary
can choose to show one signed value to all non-faulty processors until time t, and then
show some subset of the non-faulty processors a second signed value at time t (when it
is too late to share anymore), causing the ‘agreement’ requirement of BB to be violated.

The trick (informal). What we need is a clever mechanism to ensure that if any
non-faulty processor ‘recognises’ a certain signed value produced by the broadcaster,
then all non-faulty processors will also ‘recognise’ that value. That way, either they all
recognise a single value and give that as output, or they all recognise multiple values

1

BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST
(BB)

ANDREW LEWIS-PYE

1. BA and BB: Synchronous setting with PKI

We’ll prove the following:

Theorem. Consider the synchronous setting with PKI given. There exists a protocol

that solves the Byzantine Broadcast problem for any number of faulty processors.

This also deals with BA. By the reductions discussed before, the theorem also suf-
fices to show that we can solve BA when working in the synchronous setting with PKI
i↵ f < n/2.

Why isn’t it trivial?

• An obvious way to try solving BB when given a PKI would be to have the
broadcaster send out signed values of their input to each of the other processors.

• The processors could then repeatedly share all of the signed values they have
seen produced by the broadcaster.

• If they only ever see a single value produced, then they output that value. If
they ever see two di↵erent values produced, then they realise the broadcaster
is faulty, so they give some ‘default’ value as output.

• If the broadcaster is non-faulty then they will only produce a single signed value
and all non-faulty processors will output that. If the broadcaster produces two
di↵erent signed values and shows them to non-faulty processors then (the idea
is) everyone will eventually see those values and give the default output.

The problem. The problem with this approach is clear. At what point should the pro-
cessors stop sharing values and terminate? If they share until time t, then the adversary
can choose to show one signed value to all non-faulty processors until time t, and then
show some subset of the non-faulty processors a second signed value at time t (when it
is too late to share anymore), causing the ‘agreement’ requirement of BB to be violated.

The trick (informal). What we need is a clever mechanism to ensure that if any
non-faulty processor ‘recognises’ a certain signed value produced by the broadcaster,
then all non-faulty processors will also ‘recognise’ that value. That way, either they all
recognise a single value and give that as output, or they all recognise multiple values

1

BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST
(BB)

ANDREW LEWIS-PYE

1. BA and BB: Synchronous setting with PKI

We’ll prove the following:

Theorem. Consider the synchronous setting with PKI given. There exists a protocol

that solves the Byzantine Broadcast problem for any number of faulty processors.

This also deals with BA. By the reductions discussed before, the theorem also suf-
fices to show that we can solve BA when working in the synchronous setting with PKI
i↵ f < n/2.

Why isn’t it trivial?

• An obvious way to try solving BB when given a PKI would be to have the
broadcaster send out signed values of their input to each of the other processors.

• The processors could then repeatedly share all of the signed values they have
seen produced by the broadcaster.

• If they only ever see a single value produced, then they output that value. If
they ever see two di↵erent values produced, then they realise the broadcaster
is faulty, so they give some ‘default’ value as output.

• If the broadcaster is non-faulty then they will only produce a single signed value
and all non-faulty processors will output that. If the broadcaster produces two
di↵erent signed values and shows them to non-faulty processors then (the idea
is) everyone will eventually see those values and give the default output.

The problem. At what point should the processors stop sharing values and termi-
nate? If they share until time t, then the adversary can choose to show one signed
value to all non-faulty processors until time t, and then show some subset of the non-
faulty processors a second signed value at time t (when it is too late to share anymore),
causing the ‘agreement’ requirement of BB to be violated.

The trick (informal). What we need is a clever mechanism to ensure that if any
non-faulty processor ‘recognises’ a certain signed value produced by the broadcaster,
then all non-faulty processors will also ‘recognise’ that value. That way, either they all
recognise a single value and give that as output, or they all recognise multiple values

1

BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST
(BB)

ANDREW LEWIS-PYE

1. BA and BB: Synchronous setting with PKI

We’ll prove the following:

Theorem. Consider the synchronous setting with PKI given. There exists a protocol

that solves the Byzantine Broadcast problem for any number of faulty processors.

This also deals with BA. By the reductions discussed before, the theorem also suf-
fices to show that we can solve BA when working in the synchronous setting with PKI
i↵ f < n/2.

Why isn’t it trivial?

• An obvious way to try solving BB when given a PKI would be to have the
broadcaster send out signed values of their input to each of the other processors.

• The processors could then repeatedly share all of the signed values they have
seen produced by the broadcaster.

• If they only ever see a single value produced, then they output that value. If
they ever see two di↵erent values produced, then they realise the broadcaster
is faulty, so they give some ‘default’ value as output.

• If the broadcaster is non-faulty then they will only produce a single signed value
and all non-faulty processors will output that. If the broadcaster produces two
di↵erent signed values and shows them to non-faulty processors then (the idea
is) everyone will eventually see those values and give the default output.

The problem. The problem with this approach is clear. At what point should the pro-
cessors stop sharing values and terminate? If they share until time t, then the adversary
can choose to show one signed value to all non-faulty processors until time t, and then
show some subset of the non-faulty processors a second signed value at time t (when it
is too late to share anymore), causing the ‘agreement’ requirement of BB to be violated.

The trick (informal). What we need is a clever mechanism to ensure that if any
non-faulty processor ‘recognises’ a certain signed value produced by the broadcaster,
then all non-faulty processors will also ‘recognise’ that value. That way, either they all
recognise a single value and give that as output, or they all recognise multiple values

1

BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST
(BB)

ANDREW LEWIS-PYE

1. BA and BB: Synchronous setting with PKI

We’ll prove the following:

Theorem. Consider the synchronous setting with PKI given. There exists a protocol

that solves the Byzantine Broadcast problem for any number of faulty processors.

This also deals with BA. By the reductions discussed before, the theorem also suf-
fices to show that we can solve BA when working in the synchronous setting with PKI
i↵ f < n/2.

Why isn’t it trivial?

• An obvious way to try solving BB when given a PKI would be to have the
broadcaster send out signed values of their input to each of the other processors.

• The processors could then repeatedly share all of the signed values they have
seen produced by the broadcaster.

• If they only ever see a single value produced, then they output that value. If
they ever see two di↵erent values produced, then they realise the broadcaster
is faulty, so they give some ‘default’ value as output.

• If the broadcaster is non-faulty then they will only produce a single signed value
and all non-faulty processors will output that. If the broadcaster produces two
di↵erent signed values and shows them to non-faulty processors then (the idea
is) everyone will eventually see those values and give the default output.

The problem. At what point should the processors stop sharing values and termi-
nate? If they share until time t, then the adversary can choose to show one signed
value to all non-faulty processors until time t, and then show some subset of the non-
faulty processors a second signed value at time t (when it is too late to share anymore),
causing the ‘agreement’ requirement of BB to be violated.

The trick (informal). What we need is a clever mechanism to ensure that if any
non-faulty processor ‘recognises’ a certain signed value produced by the broadcaster,
then all non-faulty processors will also ‘recognise’ that value. That way, either they all
recognise a single value and give that as output, or they all recognise multiple values

1

BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST
(BB)

ANDREW LEWIS-PYE

1. BA and BB: Synchronous setting with PKI

We’ll prove the following:

Theorem. Consider the synchronous setting with PKI given. There exists a protocol

that solves the Byzantine Broadcast problem for any number of faulty processors.

This also deals with BA. By the reductions discussed before, the theorem also suf-
fices to show that we can solve BA when working in the synchronous setting with PKI
i↵ f < n/2.

Why isn’t it trivial?

• An obvious way to try solving BB when given a PKI would be to have the
broadcaster send out signed values of their input to each of the other processors.

• The processors could then repeatedly share all of the signed values they have
seen produced by the broadcaster.

• If they only ever see a single value produced, then they output that value. If
they ever see two di↵erent values produced, then they realise the broadcaster
is faulty, so they give some ‘default’ value as output.

• If the broadcaster is non-faulty then they will only produce a single signed value
and all non-faulty processors will output that. If the broadcaster produces two
di↵erent signed values and shows them to non-faulty processors then (the idea
is) everyone will eventually see those values and give the default output.

The problem. The problem with this approach is clear. At what point should the pro-
cessors stop sharing values and terminate? If they share until time t, then the adversary
can choose to show one signed value to all non-faulty processors until time t, and then
show some subset of the non-faulty processors a second signed value at time t (when it
is too late to share anymore), causing the ‘agreement’ requirement of BB to be violated.

The trick (informal). What we need is a clever mechanism to ensure that if any
non-faulty processor ‘recognises’ a certain signed value produced by the broadcaster,
then all non-faulty processors will also ‘recognise’ that value. That way, either they all
recognise a single value and give that as output, or they all recognise multiple values

1

BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST
(BB)

ANDREW LEWIS-PYE

1. BA and BB: Synchronous setting with PKI

We’ll prove the following:

Theorem. Consider the synchronous setting with PKI given. There exists a protocol

that solves the Byzantine Broadcast problem for any number of faulty processors.

This also deals with BA. By the reductions discussed before, the theorem also suf-
fices to show that we can solve BA when working in the synchronous setting with PKI
i↵ f < n/2.

Why isn’t it trivial?

• An obvious way to try solving BB when given a PKI would be to have the
broadcaster send out signed values of their input to each of the other processors.

• The processors could then repeatedly share all of the signed values they have
seen produced by the broadcaster.

• If they only ever see a single value produced, then they output that value. If
they ever see two di↵erent values produced, then they realise the broadcaster
is faulty, so they give some ‘default’ value as output.

• If the broadcaster is non-faulty then they will only produce a single signed value
and all non-faulty processors will output that. If the broadcaster produces two
di↵erent signed values and shows them to non-faulty processors then (the idea
is) everyone will eventually see those values and give the default output.

The problem. At what point should the processors stop sharing values and termi-
nate? If they share until time t, then the adversary can choose to show one signed
value to all non-faulty processors until time t, and then show some subset of the non-
faulty processors a second signed value at time t (when it is too late to share anymore),
causing the ‘agreement’ requirement of BB to be violated.

The trick (informal). What we need is a clever mechanism to ensure that if any
non-faulty processor ‘recognises’ a certain signed value produced by the broadcaster,
then all non-faulty processors will also ‘recognise’ that value. That way, either they all
recognise a single value and give that as output, or they all recognise multiple values

1

BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST
(BB)

ANDREW LEWIS-PYE

1. BA and BB: Synchronous setting with PKI

We’ll prove the following:

Theorem. Consider the synchronous setting with PKI given. There exists a protocol

that solves the Byzantine Broadcast problem for any number of faulty processors.

This also deals with BA. By the reductions discussed before, the theorem also suf-
fices to show that we can solve BA when working in the synchronous setting with PKI
i↵ f < n/2.

Why isn’t it trivial?

• An obvious way to try solving BB when given a PKI would be to have the
broadcaster send out signed values of their input to each of the other processors.

• The processors could then repeatedly share all of the signed values they have
seen produced by the broadcaster.

• If they only ever see a single value produced, then they output that value. If
they ever see two di↵erent values produced, then they realise the broadcaster
is faulty, so they give some ‘default’ value as output.

• If the broadcaster is non-faulty then they will only produce a single signed value
and all non-faulty processors will output that. If the broadcaster produces two
di↵erent signed values and shows them to non-faulty processors then (the idea
is) everyone will eventually see those values and give the default output.

The problem. The problem with this approach is clear. At what point should the pro-
cessors stop sharing values and terminate? If they share until time t, then the adversary
can choose to show one signed value to all non-faulty processors until time t, and then
show some subset of the non-faulty processors a second signed value at time t (when it
is too late to share anymore), causing the ‘agreement’ requirement of BB to be violated.

The trick (informal). What we need is a clever mechanism to ensure that if any
non-faulty processor ‘recognises’ a certain signed value produced by the broadcaster,
then all non-faulty processors will also ‘recognise’ that value. That way, either they all
recognise a single value and give that as output, or they all recognise multiple values

1

BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST
(BB)

ANDREW LEWIS-PYE

1. BA and BB: Synchronous setting with PKI

We’ll prove the following:

Theorem. Consider the synchronous setting with PKI given. There exists a protocol

that solves the Byzantine Broadcast problem for any number of faulty processors.

This also deals with BA. By the reductions discussed before, the theorem also suf-
fices to show that we can solve BA when working in the synchronous setting with PKI
i↵ f < n/2.

Why isn’t it trivial?

• An obvious way to try solving BB when given a PKI would be to have the
broadcaster send out signed values of their input to each of the other processors.

• The processors could then repeatedly share all of the signed values they have
seen produced by the broadcaster.

• If they only ever see a single value produced, then they output that value. If
they ever see two di↵erent values produced, then they realise the broadcaster
is faulty, so they give some ‘default’ value as output.

• If the broadcaster is non-faulty then they will only produce a single signed value
and all non-faulty processors will output that. If the broadcaster produces two
di↵erent signed values and shows them to non-faulty processors then (the idea
is) everyone will eventually see those values and give the default output.

The problem. At what point should the processors stop sharing values and termi-
nate? If they share until time t, then the adversary can choose to show one signed
value to all non-faulty processors until time t, and then show some subset of the non-
faulty processors a second signed value at time t (when it is too late to share anymore),
causing the ‘agreement’ requirement of BB to be violated.

The trick (informal). What we need is a clever mechanism to ensure that if any
non-faulty processor ‘recognises’ a certain signed value produced by the broadcaster,
then all non-faulty processors will also ‘recognise’ that value. That way, either they all
recognise a single value and give that as output, or they all recognise multiple values

1

BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST
(BB)

ANDREW LEWIS-PYE

1. BA and BB: Synchronous setting with PKI

We’ll prove the following:

Theorem. Consider the synchronous setting with PKI given. There exists a protocol

that solves the Byzantine Broadcast problem for any number of faulty processors.

This also deals with BA. By the reductions discussed before, the theorem also suf-
fices to show that we can solve BA when working in the synchronous setting with PKI
i↵ f < n/2.

Why isn’t it trivial?

• An obvious way to try solving BB when given a PKI would be to have the
broadcaster send out signed values of their input to each of the other processors.

• The processors could then repeatedly share all of the signed values they have
seen produced by the broadcaster.

• If they only ever see a single value produced, then they output that value. If
they ever see two di↵erent values produced, then they realise the broadcaster
is faulty, so they give some ‘default’ value as output.

• If the broadcaster is non-faulty then they will only produce a single signed value
and all non-faulty processors will output that. If the broadcaster produces two
di↵erent signed values and shows them to non-faulty processors then (the idea
is) everyone will eventually see those values and give the default output.

The problem. The problem with this approach is clear. At what point should the pro-
cessors stop sharing values and terminate? If they share until time t, then the adversary
can choose to show one signed value to all non-faulty processors until time t, and then
show some subset of the non-faulty processors a second signed value at time t (when it
is too late to share anymore), causing the ‘agreement’ requirement of BB to be violated.

The trick (informal). What we need is a clever mechanism to ensure that if any
non-faulty processor ‘recognises’ a certain signed value produced by the broadcaster,
then all non-faulty processors will also ‘recognise’ that value. That way, either they all
recognise a single value and give that as output, or they all recognise multiple values

1

BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST
(BB)

ANDREW LEWIS-PYE

1. BA and BB: Synchronous setting with PKI

We’ll prove the following:

Theorem. Consider the synchronous setting with PKI given. There exists a protocol

that solves the Byzantine Broadcast problem for any number of faulty processors.

This also deals with BA. By the reductions discussed before, the theorem also suf-
fices to show that we can solve BA when working in the synchronous setting with PKI
i↵ f < n/2.

Why isn’t it trivial?

• An obvious way to try solving BB when given a PKI would be to have the
broadcaster send out signed values of their input to each of the other processors.

• The processors could then repeatedly share all of the signed values they have
seen produced by the broadcaster.

• If they only ever see a single value produced, then they output that value. If
they ever see two di↵erent values produced, then they realise the broadcaster
is faulty, so they give some ‘default’ value as output.

• If the broadcaster is non-faulty then they will only produce a single signed value
and all non-faulty processors will output that. If the broadcaster produces two
di↵erent signed values and shows them to non-faulty processors then (the idea
is) everyone will eventually see those values and give the default output.

The problem. At what point should the processors stop sharing values and termi-
nate? If they share until time t, then the adversary can choose to show one signed
value to all non-faulty processors until time t, and then show some subset of the non-
faulty processors a second signed value at time t (when it is too late to share anymore),
causing the ‘agreement’ requirement of BB to be violated.

The trick (informal). What we need is a clever mechanism to ensure that if any
non-faulty processor ‘recognises’ a certain signed value produced by the broadcaster,
then all non-faulty processors will also ‘recognise’ that value. That way, either they all
recognise a single value and give that as output, or they all recognise multiple values

1

BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST
(BB)

ANDREW LEWIS-PYE

1. BA and BB: Synchronous setting with PKI

We’ll prove the following:

Theorem. Consider the synchronous setting with PKI given. There exists a protocol

that solves the Byzantine Broadcast problem for any number of faulty processors.

This also deals with BA. By the reductions discussed before, the theorem also suf-
fices to show that we can solve BA when working in the synchronous setting with PKI
i↵ f < n/2.

Why isn’t it trivial?

• An obvious way to try solving BB when given a PKI would be to have the
broadcaster send out signed values of their input to each of the other processors.

• The processors could then repeatedly share all of the signed values they have
seen produced by the broadcaster.

• If they only ever see a single value produced, then they output that value. If
they ever see two di↵erent values produced, then they realise the broadcaster
is faulty, so they give some ‘default’ value as output.

• If the broadcaster is non-faulty then they will only produce a single signed value
and all non-faulty processors will output that. If the broadcaster produces two
di↵erent signed values and shows them to non-faulty processors then (the idea
is) everyone will eventually see those values and give the default output.

The problem. When should processors stop sharing values and terminate? If they
share until time t, then the adversary can choose to show one signed value to all non-
faulty processors until time t, and then show some subset of the non-faulty processors
a second signed value at time t (when it is too late to share anymore), causing the
‘agreement’ requirement of BB to be violated.

The trick (informal). What we need is a clever mechanism to ensure that if any
non-faulty processor ‘recognises’ a certain signed value produced by the broadcaster,
then all non-faulty processors will also ‘recognise’ that value. That way, either they all
recognise a single value and give that as output, or they all recognise multiple values

1

BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST
(BB)

ANDREW LEWIS-PYE

1. BA and BB: Synchronous setting with PKI

We’ll prove the following:

Theorem. Consider the synchronous setting with PKI given. There exists a protocol

that solves the Byzantine Broadcast problem for any number of faulty processors.

This also deals with BA. By the reductions discussed before, the theorem also suf-
fices to show that we can solve BA when working in the synchronous setting with PKI
i↵ f < n/2.

Why isn’t it trivial?

• An obvious way to try solving BB when given a PKI would be to have the
broadcaster send out signed values of their input to each of the other processors.

• The processors could then repeatedly share all of the signed values they have
seen produced by the broadcaster.

• If they only ever see a single value produced, then they output that value. If
they ever see two di↵erent values produced, then they realise the broadcaster
is faulty, so they give some ‘default’ value as output.

• If the broadcaster is non-faulty then they will only produce a single signed value
and all non-faulty processors will output that. If the broadcaster produces two
di↵erent signed values and shows them to non-faulty processors then (the idea
is) everyone will eventually see those values and give the default output.

The problem. The problem with this approach is clear. At what point should the pro-
cessors stop sharing values and terminate? If they share until time t, then the adversary
can choose to show one signed value to all non-faulty processors until time t, and then
show some subset of the non-faulty processors a second signed value at time t (when it
is too late to share anymore), causing the ‘agreement’ requirement of BB to be violated.

The trick (informal). What we need is a clever mechanism to ensure that if any
non-faulty processor ‘recognises’ a certain signed value produced by the broadcaster,
then all non-faulty processors will also ‘recognise’ that value. That way, either they all
recognise a single value and give that as output, or they all recognise multiple values

1

2 ANDREW LEWIS-PYE

The trick. What we need is a clever mechanism to ensure that if any non-faulty
processor ‘recognises’ a certain signed value produced by the broadcaster, then all non-
faulty processors will also ‘recognise’ that value.

That way, either they all recognise a single value and give that as output, or they all
recognise multiple values and so give the default output.

The mechanism described by Dolev and Strong is quite elegant:

(1) At time 0 the broadcaster sends signed versions of their input to each processor.
(2) At time 1, the processors look to see whether they have received a signed value

from the broadcaster, and if so then they ‘recognise’ that value. Now though,
rather than just passing on that signed value, they attach their own signature
to the message so that now it has been signed twice – first by the broadcaster
and then secondly by them. Then they send this new version of the message to
all processors.

(3) Then we stipulate that if a processor is to ‘recognise’ a new value at any time
t, the message must have been signed by t distinct processors. If they recognise
a new value at time t, then they add their signature to the list and send that
message (now with t+ 1 distinct signatures) to all other processors.

(4) At time f + 1 we give the processors a last chance to recognise new values
(but not to share again) before either outputting the single value they have
recognised or else a default value.

Why does this approach work? We have to show that if any non-faulty processor
recognises a certain value v 2 V , then all non-faulty processors will also recognise that
value. There are two cases to consider:

• Case 1. Suppose that some non-faulty i first recognises v at a time t < f + 1.
In this case, i receives a message relaying the value v at time t which has t

distinct signatures attached. Processor i then adds their signature to form a
message with t+1 distinct signatures and sends this message to all processors.
This means all non-faulty processors will recognise v by time t+ 1 ( f + 1).

• Case 2. Suppose next that some non-faulty i first recognises v at time f + 1.
In this case, i receives a message relaying the value v at timeslot f + 1 which
has f + 1 distinct signatures attached. At least one of those signatures must
be from a non-faulty processor j (since there are at most f faulty processors),
meaning that Case 1 applies w.r.t. j.

A more formal description of the protocol. For v 2 V , and for distinct processors
i1, . . . , it, we let vi1,...,it be v signed by i1, . . . , it in order. Let Mt be the set of all
messages of the form vi1,...,it such that v 2 V and i1, . . . it are all distinct processors.
Each processor i maintains a set Oi, which can be thought of as the set of values that
i recognises, and which is initially empty. We let ? denote a ‘default’ element of V .
The instructions for processor i are as follows.

BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST
(BB)

ANDREW LEWIS-PYE

1. BA and BB: Synchronous setting with PKI

We’ll prove the following:

Theorem. Consider the synchronous setting with PKI given. There exists a protocol

that solves the Byzantine Broadcast problem for any number of faulty processors.

This also deals with BA. By the reductions discussed before, the theorem also suf-
fices to show that we can solve BA when working in the synchronous setting with PKI
i↵ f < n/2.

Why isn’t it trivial?

• An obvious way to try solving BB when given a PKI would be to have the
broadcaster send out signed values of their input to each of the other processors.

• The processors could then repeatedly share all of the signed values they have
seen produced by the broadcaster.

• If they only ever see a single value produced, then they output that value. If
they ever see two di↵erent values produced, then they realise the broadcaster
is faulty, so they give some ‘default’ value as output.

• If the broadcaster is non-faulty then they will only produce a single signed value
and all non-faulty processors will output that. If the broadcaster produces two
di↵erent signed values and shows them to non-faulty processors then (the idea
is) everyone will eventually see those values and give the default output.

The problem. The problem with this approach is clear. At what point should the pro-
cessors stop sharing values and terminate? If they share until time t, then the adversary
can choose to show one signed value to all non-faulty processors until time t, and then
show some subset of the non-faulty processors a second signed value at time t (when it
is too late to share anymore), causing the ‘agreement’ requirement of BB to be violated.

The trick (informal). What we need is a clever mechanism to ensure that if any
non-faulty processor ‘recognises’ a certain signed value produced by the broadcaster,
then all non-faulty processors will also ‘recognise’ that value. That way, either they all
recognise a single value and give that as output, or they all recognise multiple values

1

2 ANDREW LEWIS-PYE

The trick. What we need is a clever mechanism to ensure that if any non-faulty
processor ‘recognises’ a certain signed value produced by the broadcaster, then all non-
faulty processors will also ‘recognise’ that value.

That way, either they all recognise a single value and give that as output, or they all
recognise multiple values and so give the default output.

The mechanism described by Dolev and Strong is quite elegant:

(1) At time 0 the broadcaster sends signed versions of their input to each processor.
(2) At time 1, the processors look to see whether they have received a signed value

from the broadcaster, and if so then they ‘recognise’ that value. Now though,
rather than just passing on that signed value, they attach their own signature
to the message so that now it has been signed twice – first by the broadcaster
and then secondly by them. Then they send this new version of the message to
all processors.

(3) Then we stipulate that if a processor is to ‘recognise’ a new value at any time
t, the message must have been signed by t distinct processors. If they recognise
a new value at time t, then they add their signature to the list and send that
message (now with t+ 1 distinct signatures) to all other processors.

(4) At time f + 1 we give the processors a last chance to recognise new values
(but not to share again) before either outputting the single value they have
recognised or else a default value.

Why does this approach work? We have to show that if any non-faulty processor
recognises a certain value v 2 V , then all non-faulty processors will also recognise that
value. There are two cases to consider:

• Case 1. Suppose that some non-faulty i first recognises v at a time t < f + 1.
In this case, i receives a message relaying the value v at time t which has t

distinct signatures attached. Processor i then adds their signature to form a
message with t+1 distinct signatures and sends this message to all processors.
This means all non-faulty processors will recognise v by time t+ 1 ( f + 1).

• Case 2. Suppose next that some non-faulty i first recognises v at time f + 1.
In this case, i receives a message relaying the value v at timeslot f + 1 which
has f + 1 distinct signatures attached. At least one of those signatures must
be from a non-faulty processor j (since there are at most f faulty processors),
meaning that Case 1 applies w.r.t. j.

A more formal description of the protocol. For v 2 V , and for distinct processors
i1, . . . , it, we let vi1,...,it be v signed by i1, . . . , it in order. Let Mt be the set of all
messages of the form vi1,...,it such that v 2 V and i1, . . . it are all distinct processors.
Each processor i maintains a set Oi, which can be thought of as the set of values that
i recognises, and which is initially empty. We let ? denote a ‘default’ element of V .
The instructions for processor i are as follows.

BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST
(BB)

ANDREW LEWIS-PYE

1. BA and BB: Synchronous setting with PKI

We’ll prove the following:

Theorem. Consider the synchronous setting with PKI given. There exists a protocol

that solves the Byzantine Broadcast problem for any number of faulty processors.

This also deals with BA. By the reductions discussed before, the theorem also suf-
fices to show that we can solve BA when working in the synchronous setting with PKI
i↵ f < n/2.

Why isn’t it trivial?

• An obvious way to try solving BB when given a PKI would be to have the
broadcaster send out signed values of their input to each of the other processors.

• The processors could then repeatedly share all of the signed values they have
seen produced by the broadcaster.

• If they only ever see a single value produced, then they output that value. If
they ever see two di↵erent values produced, then they realise the broadcaster
is faulty, so they give some ‘default’ value as output.

• If the broadcaster is non-faulty then they will only produce a single signed value
and all non-faulty processors will output that. If the broadcaster produces two
di↵erent signed values and shows them to non-faulty processors then (the idea
is) everyone will eventually see those values and give the default output.

The problem. The problem with this approach is clear. At what point should the pro-
cessors stop sharing values and terminate? If they share until time t, then the adversary
can choose to show one signed value to all non-faulty processors until time t, and then
show some subset of the non-faulty processors a second signed value at time t (when it
is too late to share anymore), causing the ‘agreement’ requirement of BB to be violated.

The trick (informal). What we need is a clever mechanism to ensure that if any
non-faulty processor ‘recognises’ a certain signed value produced by the broadcaster,
then all non-faulty processors will also ‘recognise’ that value. That way, either they all
recognise a single value and give that as output, or they all recognise multiple values

1

2 ANDREW LEWIS-PYE

The trick. What we need is a clever mechanism to ensure that if any non-faulty
processor ‘recognises’ a certain signed value produced by the broadcaster, then all non-
faulty processors will also ‘recognise’ that value.

That way, either they all recognise a single value and give that as output, or they all
recognise multiple values and so give the default output.

The mechanism described by Dolev and Strong is quite elegant:

• At time 0 the broadcaster sends signed versions of their input to each processor.
• At time 1, the processors look to see whether they have received a signed value
from the broadcaster, and if so then they ‘recognise’ that value. Now though,
rather than just passing on that signed value, they attach their own signature
to the message so that now it has been signed twice – first by the broadcaster
and then secondly by them. Then they send this new version of the message to
all processors.

• Then we stipulate that if a processor is to ‘recognise’ a new value at any time
t, the message must have been signed by t distinct processors. If they recognise
a new value at time t, then they add their signature to the list and send that
message (now with t+ 1 distinct signatures) to all other processors.

• At time f + 1 we give the processors a last chance to recognise new values
(but not to share again) before either outputting the single value they have
recognised or else a default value.

Why does this approach work? We have to show that if any non-faulty processor
recognises a certain value v 2 V , then all non-faulty processors will also recognise that
value. There are two cases to consider:

• Case 1. Suppose that some non-faulty i first recognises v at a time t < f + 1.
In this case, i receives a message relaying the value v at time t which has t

distinct signatures attached. Processor i then adds their signature to form a
message with t+1 distinct signatures and sends this message to all processors.
This means all non-faulty processors will recognise v by time t+ 1 ( f + 1).

• Case 2. Suppose next that some non-faulty i first recognises v at time f + 1.
In this case, i receives a message relaying the value v at timeslot f + 1 which
has f + 1 distinct signatures attached. At least one of those signatures must
be from a non-faulty processor j (since there are at most f faulty processors),
meaning that Case 1 applies w.r.t. j.

A more formal description of the protocol. For v 2 V , and for distinct processors
i1, . . . , it, we let vi1,...,it be v signed by i1, . . . , it in order. Let Mt be the set of all
messages of the form vi1,...,it such that v 2 V and i1, . . . it are all distinct processors.
Each processor i maintains a set Oi, which can be thought of as the set of values that
i recognises, and which is initially empty. We let ? denote a ‘default’ element of V .
The instructions for processor i are as follows.

BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST
(BB)

ANDREW LEWIS-PYE

1. BA and BB: Synchronous setting with PKI

We’ll prove the following:

Theorem. Consider the synchronous setting with PKI given. There exists a protocol

that solves the Byzantine Broadcast problem for any number of faulty processors.

This also deals with BA. By the reductions discussed before, the theorem also suf-
fices to show that we can solve BA when working in the synchronous setting with PKI
i↵ f < n/2.

Why isn’t it trivial?

• An obvious way to try solving BB when given a PKI would be to have the
broadcaster send out signed values of their input to each of the other processors.

• The processors could then repeatedly share all of the signed values they have
seen produced by the broadcaster.

• If they only ever see a single value produced, then they output that value. If
they ever see two di↵erent values produced, then they realise the broadcaster
is faulty, so they give some ‘default’ value as output.

• If the broadcaster is non-faulty then they will only produce a single signed value
and all non-faulty processors will output that. If the broadcaster produces two
di↵erent signed values and shows them to non-faulty processors then (the idea
is) everyone will eventually see those values and give the default output.

The problem. The problem with this approach is clear. At what point should the pro-
cessors stop sharing values and terminate? If they share until time t, then the adversary
can choose to show one signed value to all non-faulty processors until time t, and then
show some subset of the non-faulty processors a second signed value at time t (when it
is too late to share anymore), causing the ‘agreement’ requirement of BB to be violated.

The trick (informal). What we need is a clever mechanism to ensure that if any
non-faulty processor ‘recognises’ a certain signed value produced by the broadcaster,
then all non-faulty processors will also ‘recognise’ that value. That way, either they all
recognise a single value and give that as output, or they all recognise multiple values

1

2 ANDREW LEWIS-PYE

The trick. What we need is a clever mechanism to ensure that if any non-faulty
processor ‘recognises’ a certain signed value produced by the broadcaster, then all non-
faulty processors will also ‘recognise’ that value.

That way, either they all recognise a single value and give that as output, or they all
recognise multiple values and so give the default output.

The mechanism described by Dolev and Strong is quite elegant:

• At time 0 the broadcaster sends signed versions of their input to each processor.
• At time 1, the processors look to see whether they have received a signed value
from the broadcaster, and if so then they ‘recognise’ that value. Now though,
rather than just passing on that signed value, they attach their own signature
to the message so that now it has been signed twice – first by the broadcaster
and then secondly by them. Then they send this new version of the message to
all processors.

• Then we stipulate that if a processor is to ‘recognise’ a new value at any time
t, the message must have been signed by t distinct processors. If they recognise
a new value at time t, then they add their signature to the list and send that
message (now with t+ 1 distinct signatures) to all other processors.

• At time f + 1 we give the processors a last chance to recognise new values
(but not to share again) before either outputting the single value they have
recognised or else a default value.

Why does this approach work? We have to show that if any non-faulty processor
recognises a certain value v 2 V , then all non-faulty processors will also recognise that
value. There are two cases to consider:

• Case 1. Suppose that some non-faulty i first recognises v at a time t < f + 1.
In this case, i receives a message relaying the value v at time t which has t

distinct signatures attached. Processor i then adds their signature to form a
message with t+1 distinct signatures and sends this message to all processors.
This means all non-faulty processors will recognise v by time t+ 1 ( f + 1).

• Case 2. Suppose next that some non-faulty i first recognises v at time f + 1.
In this case, i receives a message relaying the value v at timeslot f + 1 which
has f + 1 distinct signatures attached. At least one of those signatures must
be from a non-faulty processor j (since there are at most f faulty processors),
meaning that Case 1 applies w.r.t. j.

A more formal description of the protocol. For v 2 V , and for distinct processors
i1, . . . , it, we let vi1,...,it be v signed by i1, . . . , it in order. Let Mt be the set of all
messages of the form vi1,...,it such that v 2 V and i1, . . . it are all distinct processors.
Each processor i maintains a set Oi, which can be thought of as the set of values that
i recognises, and which is initially empty. We let ? denote a ‘default’ element of V .
The instructions for processor i are as follows.

BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST
(BB)

ANDREW LEWIS-PYE

1. BA and BB: Synchronous setting with PKI

We’ll prove the following:

Theorem. Consider the synchronous setting with PKI given. There exists a protocol

that solves the Byzantine Broadcast problem for any number of faulty processors.

This also deals with BA. By the reductions discussed before, the theorem also suf-
fices to show that we can solve BA when working in the synchronous setting with PKI
i↵ f < n/2.

Why isn’t it trivial?

• An obvious way to try solving BB when given a PKI would be to have the
broadcaster send out signed values of their input to each of the other processors.

• The processors could then repeatedly share all of the signed values they have
seen produced by the broadcaster.

• If they only ever see a single value produced, then they output that value. If
they ever see two di↵erent values produced, then they realise the broadcaster
is faulty, so they give some ‘default’ value as output.

• If the broadcaster is non-faulty then they will only produce a single signed value
and all non-faulty processors will output that. If the broadcaster produces two
di↵erent signed values and shows them to non-faulty processors then (the idea
is) everyone will eventually see those values and give the default output.

The problem. The problem with this approach is clear. At what point should the pro-
cessors stop sharing values and terminate? If they share until time t, then the adversary
can choose to show one signed value to all non-faulty processors until time t, and then
show some subset of the non-faulty processors a second signed value at time t (when it
is too late to share anymore), causing the ‘agreement’ requirement of BB to be violated.

The trick (informal). What we need is a clever mechanism to ensure that if any
non-faulty processor ‘recognises’ a certain signed value produced by the broadcaster,
then all non-faulty processors will also ‘recognise’ that value. That way, either they all
recognise a single value and give that as output, or they all recognise multiple values

1

2 ANDREW LEWIS-PYE

The trick. What we need is a clever mechanism to ensure that if any non-faulty
processor ‘recognises’ a certain signed value produced by the broadcaster, then all non-
faulty processors will also ‘recognise’ that value.

That way, either they all recognise a single value and give that as output, or they all
recognise multiple values and so give the default output.

The mechanism described by Dolev and Strong is quite elegant:

• At time 0 the broadcaster sends signed versions of their input to each processor.
• At time 1, the processors look to see whether they have received a signed value
from the broadcaster, and if so then they ‘recognise’ that value. Now though,
rather than just passing on that signed value, they attach their own signature
to the message so that now it has been signed twice – first by the broadcaster
and then secondly by them. Then they send this new version of the message to
all processors.

• Then we stipulate that if a processor is to ‘recognise’ a new value at any time
t, the message must have been signed by t distinct processors. If they recognise
a new value at time t, then they add their signature to the list and send that
message (now with t+ 1 distinct signatures) to all other processors.

• At time f + 1 we give the processors a last chance to recognise new values
(but not to share again) before either outputting the single value they have
recognised or else a default value.

Why does this approach work? We have to show that if any non-faulty processor
recognises a certain value v 2 V , then all non-faulty processors will also recognise that
value. There are two cases to consider:

• Case 1. Suppose that some non-faulty i first recognises v at a time t < f + 1.
In this case, i receives a message relaying the value v at time t which has t

distinct signatures attached. Processor i then adds their signature to form a
message with t+1 distinct signatures and sends this message to all processors.
This means all non-faulty processors will recognise v by time t+ 1 ( f + 1).

• Case 2. Suppose next that some non-faulty i first recognises v at time f + 1.
In this case, i receives a message relaying the value v at timeslot f + 1 which
has f + 1 distinct signatures attached. At least one of those signatures must
be from a non-faulty processor j (since there are at most f faulty processors),
meaning that Case 1 applies w.r.t. j.

A more formal description of the protocol. For v 2 V , and for distinct processors
i1, . . . , it, we let vi1,...,it be v signed by i1, . . . , it in order. Let Mt be the set of all
messages of the form vi1,...,it such that v 2 V and i1, . . . it are all distinct processors.
Each processor i maintains a set Oi, which can be thought of as the set of values that
i recognises, and which is initially empty. We let ? denote a ‘default’ element of V .
The instructions for processor i are as follows.

BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST
(BB)

ANDREW LEWIS-PYE

1. BA and BB: Synchronous setting with PKI

We’ll prove the following:

Theorem. Consider the synchronous setting with PKI given. There exists a protocol

that solves the Byzantine Broadcast problem for any number of faulty processors.

This also deals with BA. By the reductions discussed before, the theorem also suf-
fices to show that we can solve BA when working in the synchronous setting with PKI
i↵ f < n/2.

Why isn’t it trivial?

• An obvious way to try solving BB when given a PKI would be to have the
broadcaster send out signed values of their input to each of the other processors.

• The processors could then repeatedly share all of the signed values they have
seen produced by the broadcaster.

• If they only ever see a single value produced, then they output that value. If
they ever see two di↵erent values produced, then they realise the broadcaster
is faulty, so they give some ‘default’ value as output.

• If the broadcaster is non-faulty then they will only produce a single signed value
and all non-faulty processors will output that. If the broadcaster produces two
di↵erent signed values and shows them to non-faulty processors then (the idea
is) everyone will eventually see those values and give the default output.

The problem. The problem with this approach is clear. At what point should the pro-
cessors stop sharing values and terminate? If they share until time t, then the adversary
can choose to show one signed value to all non-faulty processors until time t, and then
show some subset of the non-faulty processors a second signed value at time t (when it
is too late to share anymore), causing the ‘agreement’ requirement of BB to be violated.

The trick (informal). What we need is a clever mechanism to ensure that if any
non-faulty processor ‘recognises’ a certain signed value produced by the broadcaster,
then all non-faulty processors will also ‘recognise’ that value. That way, either they all
recognise a single value and give that as output, or they all recognise multiple values

1

2 ANDREW LEWIS-PYE

The trick. What we need is a clever mechanism to ensure that if any non-faulty
processor ‘recognises’ a certain signed value produced by the broadcaster, then all non-
faulty processors will also ‘recognise’ that value.

That way, either they all recognise a single value and give that as output, or they all
recognise multiple values and so give the default output.

The mechanism described by Dolev and Strong is quite elegant:

• At time 0 the broadcaster sends signed versions of their input to each processor.
• Then we stipulate that if a processor is to ‘recognise’ a new value at any time
t, the message must have been signed by t distinct processors. If they recognise
a new value at time t, then they add their signature to the list and send that
message (now with t+ 1 distinct signatures) to all other processors.

• At time f + 1 we give the processors a last chance to recognise new values
(but not to share again) before either outputting the single value they have
recognised or else a default value.

Why does this approach work? We have to show that if any non-faulty processor
recognises a certain value v 2 V , then all non-faulty processors will also recognise that
value. There are two cases to consider:

• Case 1. Suppose that some non-faulty i first recognises v at a time t < f + 1.
In this case, i receives a message relaying the value v at time t which has t

distinct signatures attached. Processor i then adds their signature to form a
message with t+1 distinct signatures and sends this message to all processors.
This means all non-faulty processors will recognise v by time t+ 1 ( f + 1).

• Case 2. Suppose next that some non-faulty i first recognises v at time f + 1.
In this case, i receives a message relaying the value v at timeslot f + 1 which
has f + 1 distinct signatures attached. At least one of those signatures must
be from a non-faulty processor j (since there are at most f faulty processors),
meaning that Case 1 applies w.r.t. j.

A more formal description of the protocol. For v 2 V , and for distinct processors
i1, . . . , it, we let vi1,...,it be v signed by i1, . . . , it in order. Let Mt be the set of all
messages of the form vi1,...,it such that v 2 V and i1, . . . it are all distinct processors.
Each processor i maintains a set Oi, which can be thought of as the set of values that
i recognises, and which is initially empty. We let ? denote a ‘default’ element of V .
The instructions for processor i are as follows.

Time 0. If i is the broadcaster and if i’s input is v, then i sends vi to all processors
and enumerates v into Oi.
Time t with 1  t  f + 1. Consider the set of messages m 2 Mt that i receives at
time t. For each such message m = vi1,...,it , if v /2 Oi, proceed as follows: Enumerate v

into Oi and if t < f + 1 send mi to all processors.

BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST
(BB)

ANDREW LEWIS-PYE

1. BA and BB: Synchronous setting with PKI

We’ll prove the following:

Theorem. Consider the synchronous setting with PKI given. There exists a protocol

that solves the Byzantine Broadcast problem for any number of faulty processors.

This also deals with BA. By the reductions discussed before, the theorem also suf-
fices to show that we can solve BA when working in the synchronous setting with PKI
i↵ f < n/2.

Why isn’t it trivial?

• An obvious way to try solving BB when given a PKI would be to have the
broadcaster send out signed values of their input to each of the other processors.

• The processors could then repeatedly share all of the signed values they have
seen produced by the broadcaster.

• If they only ever see a single value produced, then they output that value. If
they ever see two di↵erent values produced, then they realise the broadcaster
is faulty, so they give some ‘default’ value as output.

• If the broadcaster is non-faulty then they will only produce a single signed value
and all non-faulty processors will output that. If the broadcaster produces two
di↵erent signed values and shows them to non-faulty processors then (the idea
is) everyone will eventually see those values and give the default output.

The problem. The problem with this approach is clear. At what point should the pro-
cessors stop sharing values and terminate? If they share until time t, then the adversary
can choose to show one signed value to all non-faulty processors until time t, and then
show some subset of the non-faulty processors a second signed value at time t (when it
is too late to share anymore), causing the ‘agreement’ requirement of BB to be violated.

The trick (informal). What we need is a clever mechanism to ensure that if any
non-faulty processor ‘recognises’ a certain signed value produced by the broadcaster,
then all non-faulty processors will also ‘recognise’ that value. That way, either they all
recognise a single value and give that as output, or they all recognise multiple values

1

2 ANDREW LEWIS-PYE

The trick. What we need is a clever mechanism to ensure that if any non-faulty
processor ‘recognises’ a certain signed value produced by the broadcaster, then all non-
faulty processors will also ‘recognise’ that value.

That way, either they all recognise a single value and give that as output, or they all
recognise multiple values and so give the default output.

The mechanism described by Dolev and Strong is quite elegant:

• At time 0 the broadcaster sends signed versions of their input to each processor.
• Then we stipulate that if a processor is to ‘recognise’ a new value at any time
t, the message must have been signed by t distinct processors. If they recognise
a new value at time t, then they add their signature to the list and send that
message (now with t+ 1 distinct signatures) to all other processors.

• At time f + 1 we give the processors a last chance to recognise new values
(but not to share again) before either outputting the single value they have
recognised or else a default value.

Why does this approach work? We have to show that if any non-faulty processor
recognises a certain value v 2 V , then all non-faulty processors will also recognise that
value. There are two cases to consider:

• Case 1. Suppose that some non-faulty i first recognises v at a time t < f + 1.
In this case, i receives a message relaying the value v at time t which has t

distinct signatures attached. Processor i then adds their signature to form a
message with t+1 distinct signatures and sends this message to all processors.
This means all non-faulty processors will recognise v by time t+ 1 ( f + 1).

• Case 2. Suppose next that some non-faulty i first recognises v at time f + 1.
In this case, i receives a message relaying the value v at timeslot f + 1 which
has f + 1 distinct signatures attached. At least one of those signatures must
be from a non-faulty processor j (since there are at most f faulty processors),
meaning that Case 1 applies w.r.t. j.

A more formal description of the protocol. For v 2 V , and for distinct processors
i1, . . . , it, we let vi1,...,it be v signed by i1, . . . , it in order. Let Mt be the set of all
messages of the form vi1,...,it such that v 2 V and i1, . . . it are all distinct processors.
Each processor i maintains a set Oi, which can be thought of as the set of values that
i recognises, and which is initially empty. We let ? denote a ‘default’ element of V .
The instructions for processor i are as follows.

Time 0. If i is the broadcaster and if i’s input is v, then i sends vi to all processors
and enumerates v into Oi.
Time t with 1  t  f + 1. Consider the set of messages m 2 Mt that i receives at
time t. For each such message m = vi1,...,it , if v /2 Oi, proceed as follows: Enumerate v

into Oi and if t < f + 1 send mi to all processors.

BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST
(BB)

ANDREW LEWIS-PYE

1. BA and BB: Synchronous setting with PKI

We’ll prove the following:

Theorem. Consider the synchronous setting with PKI given. There exists a protocol

that solves the Byzantine Broadcast problem for any number of faulty processors.

This also deals with BA. By the reductions discussed before, the theorem also suf-
fices to show that we can solve BA when working in the synchronous setting with PKI
i↵ f < n/2.

Why isn’t it trivial?

• An obvious way to try solving BB when given a PKI would be to have the
broadcaster send out signed values of their input to each of the other processors.

• The processors could then repeatedly share all of the signed values they have
seen produced by the broadcaster.

• If they only ever see a single value produced, then they output that value. If
they ever see two di↵erent values produced, then they realise the broadcaster
is faulty, so they give some ‘default’ value as output.

• If the broadcaster is non-faulty then they will only produce a single signed value
and all non-faulty processors will output that. If the broadcaster produces two
di↵erent signed values and shows them to non-faulty processors then (the idea
is) everyone will eventually see those values and give the default output.

The problem. The problem with this approach is clear. At what point should the pro-
cessors stop sharing values and terminate? If they share until time t, then the adversary
can choose to show one signed value to all non-faulty processors until time t, and then
show some subset of the non-faulty processors a second signed value at time t (when it
is too late to share anymore), causing the ‘agreement’ requirement of BB to be violated.

The trick (informal). What we need is a clever mechanism to ensure that if any
non-faulty processor ‘recognises’ a certain signed value produced by the broadcaster,
then all non-faulty processors will also ‘recognise’ that value. That way, either they all
recognise a single value and give that as output, or they all recognise multiple values

1

2 ANDREW LEWIS-PYE

The trick. What we need is a clever mechanism to ensure that if any non-faulty
processor ‘recognises’ a certain signed value produced by the broadcaster, then all non-
faulty processors will also ‘recognise’ that value.

That way, either they all recognise a single value and give that as output, or they all
recognise multiple values and so give the default output.

The mechanism described by Dolev and Strong is quite elegant:

• At time 0 the broadcaster sends signed versions of their input to each processor.
• Then we stipulate that if a processor is to ‘recognise’ a new value at any time
t, the message must have been signed by t distinct processors. If they recognise
a new value at time t, then they add their signature to the list and send that
message (now with t+ 1 distinct signatures) to all other processors.

• At time f + 1 we give the processors a last chance to recognise new values
(but not to share again) before either outputting the single value they have
recognised or else a default value.

Why does this approach work? We have to show that if any non-faulty processor
recognises a certain value v 2 V , then all non-faulty processors will also recognise that
value. There are two cases to consider:

• Case 1. Suppose that some non-faulty i first recognises v at a time t < f + 1.
In this case, i receives a message relaying the value v at time t which has t

distinct signatures attached. Processor i then adds their signature to form a
message with t+1 distinct signatures and sends this message to all processors.
This means all non-faulty processors will recognise v by time t+ 1 ( f + 1).

• Case 2. Suppose next that some non-faulty i first recognises v at time f + 1.
In this case, i receives a message relaying the value v at timeslot f + 1 which
has f + 1 distinct signatures attached. At least one of those signatures must
be from a non-faulty processor j (since there are at most f faulty processors),
meaning that Case 1 applies w.r.t. j.

A more formal description of the protocol. For v 2 V , and for distinct processors
i1, . . . , it, we let vi1,...,it be v signed by i1, . . . , it in order. Let Mt be the set of all
messages of the form vi1,...,it such that v 2 V and i1, . . . it are all distinct processors.
Each processor i maintains a set Oi, which can be thought of as the set of values that
i recognises, and which is initially empty. We let ? denote a ‘default’ element of V .
The instructions for processor i are as follows.

Time 0. If i is the broadcaster and if i’s input is v, then i sends vi to all processors
and enumerates v into Oi.
Time t with 1  t  f + 1. Consider the set of messages m 2 Mt that i receives at
time t. For each such message m = vi1,...,it , if v /2 Oi, proceed as follows: Enumerate v

into Oi and if t < f + 1 send mi to all processors.

BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST
(BB)

ANDREW LEWIS-PYE

1. BA and BB: Synchronous setting with PKI

We’ll prove the following:

Theorem. Consider the synchronous setting with PKI given. There exists a protocol

that solves the Byzantine Broadcast problem for any number of faulty processors.

This also deals with BA. By the reductions discussed before, the theorem also suf-
fices to show that we can solve BA when working in the synchronous setting with PKI
i↵ f < n/2.

Why isn’t it trivial?

• An obvious way to try solving BB when given a PKI would be to have the
broadcaster send out signed values of their input to each of the other processors.

• The processors could then repeatedly share all of the signed values they have
seen produced by the broadcaster.

• If they only ever see a single value produced, then they output that value. If
they ever see two di↵erent values produced, then they realise the broadcaster
is faulty, so they give some ‘default’ value as output.

• If the broadcaster is non-faulty then they will only produce a single signed value
and all non-faulty processors will output that. If the broadcaster produces two
di↵erent signed values and shows them to non-faulty processors then (the idea
is) everyone will eventually see those values and give the default output.

The problem. The problem with this approach is clear. At what point should the pro-
cessors stop sharing values and terminate? If they share until time t, then the adversary
can choose to show one signed value to all non-faulty processors until time t, and then
show some subset of the non-faulty processors a second signed value at time t (when it
is too late to share anymore), causing the ‘agreement’ requirement of BB to be violated.

The trick (informal). What we need is a clever mechanism to ensure that if any
non-faulty processor ‘recognises’ a certain signed value produced by the broadcaster,
then all non-faulty processors will also ‘recognise’ that value. That way, either they all
recognise a single value and give that as output, or they all recognise multiple values

1

2 ANDREW LEWIS-PYE

The trick. What we need is a clever mechanism to ensure that if any non-faulty
processor ‘recognises’ a certain signed value produced by the broadcaster, then all non-
faulty processors will also ‘recognise’ that value.

That way, either they all recognise a single value and give that as output, or they all
recognise multiple values and so give the default output.

The mechanism described by Dolev and Strong is quite elegant:

• At time 0 the broadcaster sends signed versions of their input to each processor.
• Then we stipulate that if a processor is to ‘recognise’ a new value at any time
t, the message must have been signed by t distinct processors. If they recognise
a new value at time t, then they add their signature to the list and send that
message (now with t+ 1 distinct signatures) to all other processors.

• At time f + 1 we give the processors a last chance to recognise new values
(but not to share again) before either outputting the single value they have
recognised or else a default value.

Why does this approach work? We have to show that if any non-faulty processor
recognises a certain value v 2 V , then all non-faulty processors will also recognise that
value. There are two cases to consider:

• Case 1. Suppose that some non-faulty i first recognises v at a time t < f + 1.
In this case, i receives a message relaying the value v at time t which has t

distinct signatures attached. Processor i then adds their signature to form a
message with t+1 distinct signatures and sends this message to all processors.
This means all non-faulty processors will recognise v by time t+ 1 ( f + 1).

• Case 2. Suppose next that some non-faulty i first recognises v at time f + 1.
In this case, i receives a message relaying the value v at timeslot f + 1 which
has f + 1 distinct signatures attached. At least one of those signatures must
be from a non-faulty processor j (since there are at most f faulty processors),
meaning that Case 1 applies w.r.t. j.

A more formal description of the protocol. For v 2 V , and for distinct processors
i1, . . . , it, we let vi1,...,it be v signed by i1, . . . , it in order. Let Mt be the set of all
messages of the form vi1,...,it such that v 2 V and i1, . . . it are all distinct processors.
Each processor i maintains a set Oi, which can be thought of as the set of values that
i recognises, and which is initially empty. We let ? denote a ‘default’ element of V .
The instructions for processor i are as follows.

Time 0. If i is the broadcaster and if i’s input is v, then i sends vi to all processors
and enumerates v into Oi.
Time t with 1  t  f + 1. Consider the set of messages m 2 Mt that i receives at
time t. For each such message m = vi1,...,it , if v /2 Oi, proceed as follows: Enumerate v

into Oi and if t < f + 1 send mi to all processors.

BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST
(BB)

ANDREW LEWIS-PYE

1. BA and BB: Synchronous setting with PKI

We’ll prove the following:

Theorem. Consider the synchronous setting with PKI given. There exists a protocol

that solves the Byzantine Broadcast problem for any number of faulty processors.

This also deals with BA. By the reductions discussed before, the theorem also suf-
fices to show that we can solve BA when working in the synchronous setting with PKI
i↵ f < n/2.

Why isn’t it trivial?

• An obvious way to try solving BB when given a PKI would be to have the
broadcaster send out signed values of their input to each of the other processors.

• The processors could then repeatedly share all of the signed values they have
seen produced by the broadcaster.

• If they only ever see a single value produced, then they output that value. If
they ever see two di↵erent values produced, then they realise the broadcaster
is faulty, so they give some ‘default’ value as output.

• If the broadcaster is non-faulty then they will only produce a single signed value
and all non-faulty processors will output that. If the broadcaster produces two
di↵erent signed values and shows them to non-faulty processors then (the idea
is) everyone will eventually see those values and give the default output.

The problem. The problem with this approach is clear. At what point should the pro-
cessors stop sharing values and terminate? If they share until time t, then the adversary
can choose to show one signed value to all non-faulty processors until time t, and then
show some subset of the non-faulty processors a second signed value at time t (when it
is too late to share anymore), causing the ‘agreement’ requirement of BB to be violated.

The trick (informal). What we need is a clever mechanism to ensure that if any
non-faulty processor ‘recognises’ a certain signed value produced by the broadcaster,
then all non-faulty processors will also ‘recognise’ that value. That way, either they all
recognise a single value and give that as output, or they all recognise multiple values

1

2 ANDREW LEWIS-PYE

The trick. What we need is a clever mechanism to ensure that if any non-faulty
processor ‘recognises’ a certain signed value produced by the broadcaster, then all non-
faulty processors will also ‘recognise’ that value.

That way, either they all recognise a single value and give that as output, or they all
recognise multiple values and so give the default output.

The mechanism described by Dolev and Strong is quite elegant:

• At time 0 the broadcaster sends signed versions of their input to each processor.
• Then we stipulate that if a processor is to ‘recognise’ a new value at any time
t, the message must have been signed by t distinct processors. If they recognise
a new value at time t, then they add their signature to the list and send that
message (now with t+ 1 distinct signatures) to all other processors.

• At time f + 1 we give the processors a last chance to recognise new values
(but not to share again) before either outputting the single value they have
recognised or else a default value.

Why does this approach work? We have to show that if any non-faulty processor
recognises a certain value v 2 V , then all non-faulty processors will also recognise that
value. There are two cases to consider:

• Case 1. Suppose that some non-faulty i first recognises v at a time t < f + 1.
In this case, i receives a message relaying the value v at time t which has t

distinct signatures attached. Processor i then adds their signature to form a
message with t+1 distinct signatures and sends this message to all processors.
This means all non-faulty processors will recognise v by time t+ 1 ( f + 1).

• Case 2. Suppose next that some non-faulty i first recognises v at time f + 1.
In this case, i receives a message relaying the value v at timeslot f + 1 which
has f + 1 distinct signatures attached. At least one of those signatures must
be from a non-faulty processor j (since there are at most f faulty processors),
meaning that Case 1 applies w.r.t. j.

A more formal description of the protocol. For v 2 V , and for distinct processors
i1, . . . , it, we let vi1,...,it be v signed by i1, . . . , it in order. Let Mt be the set of all
messages of the form vi1,...,it such that v 2 V and i1, . . . it are all distinct processors.
Each processor i maintains a set Oi, which can be thought of as the set of values that
i recognises, and which is initially empty. We let ? denote a ‘default’ element of V .
The instructions for processor i are as follows.

Time 0. If i is the broadcaster and if i’s input is v, then i sends vi to all processors
and enumerates v into Oi.
Time t with 1  t  f + 1. Consider the set of messages m 2 Mt that i receives at
time t. For each such message m = vi1,...,it , if v /2 Oi, proceed as follows: Enumerate v

into Oi and if t < f + 1 send mi to all processors.

BACK TO THAT PUZZLE...

ANDREW LEWIS-PYE

Consider the synchronous setting, byzantine failures, authenticated channels, PKI.
The question is, ‘can we describe a deterministic protocol solving BB and in which
each party only speaks once?’

(1) If you consider the binary version of BB, it’s easy. Just run DS, but only with
respect to one of the two possible values (0 say). Then, either every honest
processor ‘recognises’ 0, or none do. If any honest processor recognises 0, it
outputs 0, otherwise it outputs 1.

(2) Then extending it to the general case is also easy, if one doesn’t care about
the number of stages. Run DS for the first value of V first. If you ‘recognise’
the first value at the end of that, stop there and output.

If not, then that means no honest processor (other than maybe the broad-
caster) has spoken yet. So, run DS for the second value, and so on.

Consider the synchronous setting, byzantine failures, authenticated channels, PKI.
The question is, ‘can we describe a deterministic protocol solving BB and in which
each party only speaks once?’

(1) If you consider the binary version of BB, it’s easy. Just run DS, but only with
respect to one of the two possible values (0 say). Then, either every honest processor
‘recognises’ 0, or none do. If any honest processor recognises 0, it outputs 0, otherwise
it outputs 1.

(2) Then extending it to the general case is also easy, if one doesn’t care about the
number of stages. Run DS for the first value of V first. If you ‘recognise’ the first
value at the end of that, stop there and output.

If not, then that means no honest processor (other than maybe the broadcaster)
has spoken yet. So, run DS for the second value, and so on.
The new result I’ll talk about (at the end) is a new ‘view synchronisation’ method
for ‘optimistically responsive’ blockchain protocols (like Hotstu↵), which has O(n)
communication complexity in the worst case.

Consider the synchronous setting, authenticated channels, Byzantine faults, PKI. Can
you design a deterministic protocol to solve Byzantine Broadcast, in which each party
speaks at most once?

‘Speaking once’ means that each party can send multiple messages, but they must all
be sent at the same timeslot.

• MA402 Game Theory
• MA408 Contemporary Discrete Mathematics
• MA409 Continuous Time Optimisation
• MA411 Probability and Measure
• MA414 Stochastic Analysis

1

BACK TO THAT PUZZLE...

ANDREW LEWIS-PYE

Consider the synchronous setting, byzantine failures, authenticated channels, PKI.
The question is, ‘can we describe a deterministic protocol solving BB and in which
each party only speaks once?’

(1) If you consider the binary version of BB, it’s easy. Just run DS, but only with
respect to one of the two possible values (0 say). Then, either every honest
processor ‘recognises’ 0, or none do. If any honest processor recognises 0, it
outputs 0, otherwise it outputs 1.

(2) Then extending it to the general case is also easy, if one doesn’t care about
the number of stages. Run DS for the first value of V first. If you ‘recognise’
the first value at the end of that, stop there and output.

If not, then that means no honest processor (other than maybe the broad-
caster) has spoken yet. So, run DS for the second value, and so on.

Consider the synchronous setting, byzantine failures, authenticated channels, PKI.
The question is, ‘can we describe a deterministic protocol solving BB and in which
each party only speaks once?’

(1) If you consider the binary version of BB, it’s easy. Just run DS, but only with
respect to one of the two possible values (0 say). Then, either every honest processor
‘recognises’ 0, or none do. If any honest processor recognises 0, it outputs 0, otherwise
it outputs 1.

(2) Then extending it to the general case is also easy, if one doesn’t care about the
number of stages. Run DS for the first value of V first. If you ‘recognise’ the first
value at the end of that, stop there and output.

If not, then that means no honest processor (other than maybe the broadcaster)
has spoken yet. So, run DS for the second value, and so on.
The new result I’ll talk about (at the end) is a new ‘view synchronisation’ method
for ‘optimistically responsive’ blockchain protocols (like Hotstu↵), which has O(n)
communication complexity in the worst case.

Consider the synchronous setting, authenticated channels, Byzantine faults, PKI. Can
you design a deterministic protocol to solve Byzantine Broadcast, in which each party
speaks at most once?

‘Speaking once’ means that each party can send multiple messages, but they must all
be sent at the same timeslot.

• MA402 Game Theory
• MA408 Contemporary Discrete Mathematics
• MA409 Continuous Time Optimisation
• MA411 Probability and Measure
• MA414 Stochastic Analysis

1

BACK TO THAT PUZZLE...

ANDREW LEWIS-PYE

Consider the synchronous setting, byzantine failures, authenticated channels, PKI.
The question is, ‘can we describe a deterministic protocol solving BB and in which
each party only speaks once?’

(1) If you consider the binary version of BB, it’s easy. Just run DS, but only with
respect to one of the two possible values (0 say). Then, either every honest
processor ‘recognises’ 0, or none do. If any honest processor recognises 0, it
outputs 0, otherwise it outputs 1.

(2) Then extending it to the general case is also easy, if one doesn’t care about
the number of stages. Run DS for the first value of V first. If you ‘recognise’
the first value at the end of that, stop there and output.

If not, then that means no honest processor (other than maybe the broad-
caster) has spoken yet. So, run DS for the second value, and so on.

Consider the synchronous setting, byzantine failures, authenticated channels, PKI.
The question is, ‘can we describe a deterministic protocol solving BB and in which
each party only speaks once?’

(1) If you consider the binary version of BB, it’s easy. Just run DS, but only with
respect to one of the two possible values (0 say). Then, either every honest processor
‘recognises’ 0, or none do. If any honest processor recognises 0, it outputs 0, otherwise
it outputs 1.

(2) Then extending it to the general case is also easy, if one doesn’t care about the
number of stages. Run DS for the first value of V first. If you ‘recognise’ the first
value at the end of that, stop there and output.

If not, then that means no honest processor (other than maybe the broadcaster)
has spoken yet. So, run DS for the second value, and so on.
The new result I’ll talk about (at the end) is a new ‘view synchronisation’ method
for ‘optimistically responsive’ blockchain protocols (like Hotstu↵), which has O(n)
communication complexity in the worst case.

Consider the synchronous setting, authenticated channels, Byzantine faults, PKI. Can
you design a deterministic protocol to solve Byzantine Broadcast, in which each party
speaks at most once?

‘Speaking once’ means that each party can send multiple messages, but they must all
be sent at the same timeslot.

• MA402 Game Theory
• MA408 Contemporary Discrete Mathematics
• MA409 Continuous Time Optimisation
• MA411 Probability and Measure
• MA414 Stochastic Analysis

1

BACK TO THAT PUZZLE...

ANDREW LEWIS-PYE

Consider the synchronous setting, byzantine failures, authenticated channels, PKI.
The question is, ‘can we describe a deterministic protocol solving BB and in which
each party only speaks once?’

(1) If you consider the binary version of BB, it’s easy. Just run DS, but only with
respect to one of the two possible values (0 say). Then, either every honest
processor ‘recognises’ 0, or none do. If any honest processor recognises 0, it
outputs 0, otherwise it outputs 1.

(2) Then extending it to the general case is also easy, if one doesn’t care about
the number of stages. Run DS for the first value of V first. If you ‘recognise’
the first value at the end of that, stop there and output.

If not, then that means no honest processor (other than maybe the broad-
caster) has spoken yet. So, run DS for the second value, and so on.

Consider the synchronous setting, byzantine failures, authenticated channels, PKI.
The question is, ‘can we describe a deterministic protocol solving BB and in which
each party only speaks once?’

(1) If you consider the binary version of BB, it’s easy. Just run DS, but only with
respect to one of the two possible values (0 say). Then, either every honest processor
‘recognises’ 0, or none do. If any honest processor recognises 0, it outputs 0, otherwise
it outputs 1.

(2) Then extending it to the general case is also easy, if one doesn’t care about the
number of stages. Run DS for the first value of V first. If you ‘recognise’ the first
value at the end of that, stop there and output.

If not, then that means no honest processor (other than maybe the broadcaster)
has spoken yet. So, run DS for the second value, and so on.
The new result I’ll talk about (at the end) is a new ‘view synchronisation’ method
for ‘optimistically responsive’ blockchain protocols (like Hotstu↵), which has O(n)
communication complexity in the worst case.

Consider the synchronous setting, authenticated channels, Byzantine faults, PKI. Can
you design a deterministic protocol to solve Byzantine Broadcast, in which each party
speaks at most once?

‘Speaking once’ means that each party can send multiple messages, but they must all
be sent at the same timeslot.

• MA402 Game Theory
• MA408 Contemporary Discrete Mathematics
• MA409 Continuous Time Optimisation
• MA411 Probability and Measure
• MA414 Stochastic Analysis

1

BACK TO THAT PUZZLE...

ANDREW LEWIS-PYE

Consider the synchronous setting, byzantine failures, authenticated channels, PKI.
The question is, ‘can we describe a deterministic protocol solving BB and in which
each party only speaks once?’

(1) If you consider the binary version of BB, it’s easy. Just run DS, but only with
respect to one of the two possible values (0 say). Then, either every honest
processor ‘recognises’ 0, or none do. If any honest processor recognises 0, it
outputs 0, otherwise it outputs 1.

(2) Then extending it to the general case is also easy, if one doesn’t care about
the number of stages. Run DS for the first value of V first. If you ‘recognise’
the first value at the end of that, stop there and output.

If not, then that means no honest processor (other than maybe the broad-
caster) has spoken yet. So, run DS for the second value, and so on.

Consider the synchronous setting, byzantine failures, authenticated channels, PKI.
The question is, ‘can we describe a deterministic protocol solving BB and in which
each party only speaks once?’

(1) If you consider the binary version of BB, it’s easy. Just run DS, but only with
respect to one of the two possible values (0 say). Then, either every honest processor
‘recognises’ 0, or none do. If any honest processor recognises 0, it outputs 0, otherwise
it outputs 1.

(2) Then extending it to the general case is also easy, if one doesn’t care about the
number of stages. Run DS for the first value of V first. If you ‘recognise’ the first
value at the end of that, stop there and output.

If not, then that means no honest processor (other than maybe the broadcaster)
has spoken yet. So, run DS for the second value, and so on.
The new result I’ll talk about (at the end) is a new ‘view synchronisation’ method
for ‘optimistically responsive’ blockchain protocols (like Hotstu↵), which has O(n)
communication complexity in the worst case.

Consider the synchronous setting, authenticated channels, Byzantine faults, PKI. Can
you design a deterministic protocol to solve Byzantine Broadcast, in which each party
speaks at most once?

‘Speaking once’ means that each party can send multiple messages, but they must all
be sent at the same timeslot.

• MA402 Game Theory
• MA408 Contemporary Discrete Mathematics
• MA409 Continuous Time Optimisation
• MA411 Probability and Measure
• MA414 Stochastic Analysis

1

BACK TO THAT PUZZLE...

ANDREW LEWIS-PYE

Consider the synchronous setting, byzantine failures, authenticated channels, PKI.
The question is, ‘can we describe a deterministic protocol solving BB and in which
each party only speaks once?’

(1) If you consider the binary version of BB, it’s easy. Just run DS, but only with
respect to one of the two possible values (0 say). Then, either every honest
processor ‘recognises’ 0, or none do. If any honest processor recognises 0, it
outputs 0, otherwise it outputs 1.

(2) Then extending it to the general case is also easy, if one doesn’t care about
the number of stages. Run DS for the first value of V first. If you ‘recognise’
the first value at the end of that, stop there and output.

If not, then that means no honest processor (other than maybe the broad-
caster) has spoken yet. So, run DS for the second value, and so on.

Consider the synchronous setting, byzantine failures, authenticated channels, PKI.
The question is, ‘can we describe a deterministic protocol solving BB and in which
each party only speaks once?’

(1) If you consider the binary version of BB, it’s easy. Just run DS, but only with
respect to one of the two possible values (0 say). Then, either every honest processor
‘recognises’ 0, or none do. If any honest processor recognises 0, it outputs 0, otherwise
it outputs 1.

(2) Then extending it to the general case is also easy, if one doesn’t care about the
number of stages. Run DS for the first value of V first. If you ‘recognise’ the first
value at the end of that, stop there and output.

If not, then that means no honest processor (other than maybe the broadcaster)
has spoken yet. So, run DS for the second value, and so on.
The new result I’ll talk about (at the end) is a new ‘view synchronisation’ method
for ‘optimistically responsive’ blockchain protocols (like Hotstu↵), which has O(n)
communication complexity in the worst case.

Consider the synchronous setting, authenticated channels, Byzantine faults, PKI. Can
you design a deterministic protocol to solve Byzantine Broadcast, in which each party
speaks at most once?

‘Speaking once’ means that each party can send multiple messages, but they must all
be sent at the same timeslot.

• MA402 Game Theory
• MA408 Contemporary Discrete Mathematics
• MA409 Continuous Time Optimisation
• MA411 Probability and Measure
• MA414 Stochastic Analysis

1

CONSIDER THE CASE n = 3, f = 1

ANDREW LEWIS-PYE

1. Recap

2. State Machine Replication

Very roughly, SMR is the problem that blockchain protocols are designed to solve:
Clients send in a sequence of transactions of their choosing and the processors imple-
menting the SMR protocol have to agree on an order in which to implement those
transactions.

Often, SMR is often treated somewhat informally in the literature, i.e. it is often
left unspecified precisely which formalisation is being used. We’ll give a particular
formulation here, but there are other approaches.
SMR protocols are (normally) considered in the context that a PKI is given. So, in
the case of SMR protocols, we will deal only with the case that a PKI is available.

(1) Two principal di↵erences between SMR and BA or BB are:
• SMR involves a second kind of protocol participant, referred to as clients.
Roughly, clients do not actively participate in the process of reaching con-
sensus, but are able to submit transactions (sometimes called requests) to
the processors carrying out the consensus protocol, and must be reliably in-
formed by the processors when those transactions have been implemented.

• SMR does not require processors to give a single output, but rather to
produce an output sequence that grows in length as clients submit more
transactions.

(2) SMR - the setup. Some of the choices below are somewhat arbitrary and
have little impact on the consensus problem defined.

• We consider two kinds of protocol participant: a set of n processors {0, . . . , n�
1} and a finite set of clients {0, . . . ,m� 1}.

• We assume given a PKI for the set of all clients and processors, i.e. each
client and each processor begins the protocol knowing the names and public
keys of all participants, together with their own private key.

• Processors and the authenticated communication channels between them
are formalised as before. All pairs of processors have communication chan-
nels between them.

1

CONSIDER THE CASE n = 3, f = 1

ANDREW LEWIS-PYE

1. Recap

2. State Machine Replication

Very roughly, SMR is the problem that blockchain protocols are designed to solve:
Clients send in a sequence of transactions of their choosing and the processors imple-
menting the SMR protocol have to agree on an order in which to implement those
transactions.

Often, SMR is often treated somewhat informally in the literature, i.e. it is often left
unspecified precisely which formalisation is being used. We’ll give a particular formu-
lation here, but there are other approaches.

SMR protocols are (normally) considered in the context that a PKI is given. So, in
the case of SMR protocols, we will deal only with the case that a PKI is available.

(1) Two principal di↵erences between SMR and BA or BB are:
• SMR involves a second kind of protocol participant, referred to as clients.
Roughly, clients do not actively participate in the process of reaching con-
sensus, but are able to submit transactions (sometimes called requests) to
the processors carrying out the consensus protocol, and must be reliably in-
formed by the processors when those transactions have been implemented.

• SMR does not require processors to give a single output, but rather to
produce an output sequence that grows in length as clients submit more
transactions.

(2) SMR - the setup. Some of the choices below are somewhat arbitrary and
have little impact on the consensus problem defined.

• We consider two kinds of protocol participant: a set of n processors {0, . . . , n�
1} and a finite set of clients {0, . . . ,m� 1}.

• We assume given a PKI for the set of all clients and processors, i.e. each
client and each processor begins the protocol knowing the names and public
keys of all participants, together with their own private key.

• Processors and the authenticated communication channels between them
are formalised as before. All pairs of processors have communication chan-
nels between them.

1

CONSIDER THE CASE n = 3, f = 1

ANDREW LEWIS-PYE

1. Recap

2. State Machine Replication

Very roughly, SMR is the problem that blockchain protocols are designed to solve:
Clients send in a sequence of transactions of their choosing and the processors imple-
menting the SMR protocol have to agree on an order in which to implement those
transactions.

Often, SMR is often treated somewhat informally in the literature, i.e. it is often
left unspecified precisely which formalisation is being used. We’ll give a particular
formulation here, but there are other approaches.
SMR protocols are (normally) considered in the context that a PKI is given. So, in
the case of SMR protocols, we will deal only with the case that a PKI is available.

(1) Two principal di↵erences between SMR and BA or BB are:
• SMR involves a second kind of protocol participant, referred to as clients.
Roughly, clients do not actively participate in the process of reaching con-
sensus, but are able to submit transactions (sometimes called requests) to
the processors carrying out the consensus protocol, and must be reliably in-
formed by the processors when those transactions have been implemented.

• SMR does not require processors to give a single output, but rather to
produce an output sequence that grows in length as clients submit more
transactions.

(2) SMR - the setup. Some of the choices below are somewhat arbitrary and
have little impact on the consensus problem defined.

• We consider two kinds of protocol participant: a set of n processors {0, . . . , n�
1} and a finite set of clients {0, . . . ,m� 1}.

• We assume given a PKI for the set of all clients and processors, i.e. each
client and each processor begins the protocol knowing the names and public
keys of all participants, together with their own private key.

• Processors and the authenticated communication channels between them
are formalised as before. All pairs of processors have communication chan-
nels between them.

1

BACK TO THAT PUZZLE...

ANDREW LEWIS-PYE

Even though Bitcoin exists, there is considerable interest in permissioned SMR pro-
tocols:

• Could be interested in implementation in the permissioned setting.
• Permissioned protocols can be implemented as permissionless protocols (PoS)

of a sort, and may be more e�cient.
• Can function in the partially synchronous setting (where message delivery is

less reliable).

A metric of interest is the communication compexity: How many bits have to be
exchanged per new block of transactions:

• Typically, the instructions are divided into ‘views’ (rounds), with a di↵erent
leader suggesting a block of transactions for agreement in each view.

• O(n) communication complexity inside each view was known, but;
• Best known complexity per view change was O(n2).
• New method gives O(n) view changes.

Consider the synchronous setting, byzantine failures, authenticated channels, PKI.
The question is, ‘can we describe a deterministic protocol solving BB and in which
each party only speaks once?’

(1) If you consider the binary version of BB, it’s easy. Just run DS, but only with
respect to one of the two possible values (0 say). Then, either every honest
processor ‘recognises’ 0, or none do. If any honest processor recognises 0, it
outputs 0, otherwise it outputs 1.

(2) Then extending it to the general case is also easy, if one doesn’t care about
the number of stages. Run DS for the first value of V first. If you ‘recognise’
the first value at the end of that, stop there and output.

If not, then that means no honest processor (other than maybe the broad-
caster) has spoken yet. So, run DS for the second value, and so on.

Consider the synchronous setting, byzantine failures, authenticated channels, PKI.
The question is, ‘can we describe a deterministic protocol solving BB and in which
each party only speaks once?’

(1) If you consider the binary version of BB, it’s easy. Just run DS, but only with
respect to one of the two possible values (0 say). Then, either every honest processor
‘recognises’ 0, or none do. If any honest processor recognises 0, it outputs 0, otherwise
it outputs 1.

(2) Then extending it to the general case is also easy, if one doesn’t care about the
number of stages. Run DS for the first value of V first. If you ‘recognise’ the first
value at the end of that, stop there and output.

If not, then that means no honest processor (other than maybe the broadcaster)
has spoken yet. So, run DS for the second value, and so on.

1

CONSIDER THE CASE n = 3, f = 1

ANDREW LEWIS-PYE

1. Recap

2. State Machine Replication

Very roughly, SMR is the problem that blockchain protocols are designed to solve:
Clients send in a sequence of transactions of their choosing and the processors imple-
menting the SMR protocol have to agree on an order in which to implement those
transactions.

Often, SMR is often treated somewhat informally in the literature, i.e. it is often
left unspecified precisely which formalisation is being used. We’ll give a particular
formulation here, but there are other approaches.
SMR protocols are (normally) considered in the context that a PKI is given. So, in
the case of SMR protocols, we will deal only with the case that a PKI is available.

(1) Two principal di↵erences between SMR and BA or BB are:
• SMR involves a second kind of protocol participant, referred to as clients.
Roughly, clients do not actively participate in the process of reaching con-
sensus, but are able to submit transactions (sometimes called requests) to
the processors carrying out the consensus protocol, and must be reliably in-
formed by the processors when those transactions have been implemented.

• SMR does not require processors to give a single output, but rather to
produce an output sequence that grows in length as clients submit more
transactions.

(2) SMR - the setup. Some of the choices below are somewhat arbitrary and
have little impact on the consensus problem defined.

• We consider two kinds of protocol participant: a set of n processors {0, . . . , n�
1} and a finite set of clients {0, . . . ,m� 1}.

• We assume given a PKI for the set of all clients and processors, i.e. each
client and each processor begins the protocol knowing the names and public
keys of all participants, together with their own private key.

• Processors and the authenticated communication channels between them
are formalised as before. All pairs of processors have communication chan-
nels between them.

1

BACK TO THAT PUZZLE...

ANDREW LEWIS-PYE

Even though Bitcoin exists, there is considerable interest in permissioned SMR pro-
tocols:

• Could be interested in implementation in the permissioned setting.
• Permissioned protocols can be implemented as permissionless protocols (PoS)

of a sort, and may be more e�cient.
• Can function in the partially synchronous setting (where message delivery is

less reliable).

A metric of interest is the communication compexity: How many bits have to be
exchanged per new block of transactions:

• Typically, the instructions are divided into ‘views’ (rounds), with a di↵erent
leader suggesting a block of transactions for agreement in each view.

• O(n) communication complexity inside each view was known, but;
• Best known complexity per view change was O(n2).
• New method gives O(n) view changes.

Consider the synchronous setting, byzantine failures, authenticated channels, PKI.
The question is, ‘can we describe a deterministic protocol solving BB and in which
each party only speaks once?’

(1) If you consider the binary version of BB, it’s easy. Just run DS, but only with
respect to one of the two possible values (0 say). Then, either every honest
processor ‘recognises’ 0, or none do. If any honest processor recognises 0, it
outputs 0, otherwise it outputs 1.

(2) Then extending it to the general case is also easy, if one doesn’t care about
the number of stages. Run DS for the first value of V first. If you ‘recognise’
the first value at the end of that, stop there and output.

If not, then that means no honest processor (other than maybe the broad-
caster) has spoken yet. So, run DS for the second value, and so on.

Consider the synchronous setting, byzantine failures, authenticated channels, PKI.
The question is, ‘can we describe a deterministic protocol solving BB and in which
each party only speaks once?’

(1) If you consider the binary version of BB, it’s easy. Just run DS, but only with
respect to one of the two possible values (0 say). Then, either every honest processor
‘recognises’ 0, or none do. If any honest processor recognises 0, it outputs 0, otherwise
it outputs 1.

(2) Then extending it to the general case is also easy, if one doesn’t care about the
number of stages. Run DS for the first value of V first. If you ‘recognise’ the first
value at the end of that, stop there and output.

If not, then that means no honest processor (other than maybe the broadcaster)
has spoken yet. So, run DS for the second value, and so on.

1

CONSIDER THE CASE n = 3, f = 1

ANDREW LEWIS-PYE

1. Recap

2. State Machine Replication

Very roughly, SMR is the problem that blockchain protocols are designed to solve:
Clients send in a sequence of transactions of their choosing and the processors imple-
menting the SMR protocol have to agree on an order in which to implement those
transactions.

Often, SMR is often treated somewhat informally in the literature, i.e. it is often
left unspecified precisely which formalisation is being used. We’ll give a particular
formulation here, but there are other approaches.
SMR protocols are (normally) considered in the context that a PKI is given. So, in
the case of SMR protocols, we will deal only with the case that a PKI is available.

(1) Two principal di↵erences between SMR and BA or BB are:
• SMR involves a second kind of protocol participant, referred to as clients.
Roughly, clients do not actively participate in the process of reaching con-
sensus, but are able to submit transactions (sometimes called requests) to
the processors carrying out the consensus protocol, and must be reliably in-
formed by the processors when those transactions have been implemented.

• SMR does not require processors to give a single output, but rather to
produce an output sequence that grows in length as clients submit more
transactions.

(2) SMR - the setup. Some of the choices below are somewhat arbitrary and
have little impact on the consensus problem defined.

• We consider two kinds of protocol participant: a set of n processors {0, . . . , n�
1} and a finite set of clients {0, . . . ,m� 1}.

• We assume given a PKI for the set of all clients and processors, i.e. each
client and each processor begins the protocol knowing the names and public
keys of all participants, together with their own private key.

• Processors and the authenticated communication channels between them
are formalised as before. All pairs of processors have communication chan-
nels between them.

1

BACK TO THAT PUZZLE...

ANDREW LEWIS-PYE

Even though Bitcoin exists, there is considerable interest in permissioned SMR pro-
tocols:

• Could be interested in implementation in the permissioned setting.
• Permissioned protocols can be implemented as permissionless protocols (PoS)

of a sort, and may be more e�cient.
• Can function in the partially synchronous setting (where message delivery is

less reliable).

A metric of interest is the communication compexity: How many bits have to be
exchanged per new block of transactions:

• Typically, the instructions are divided into ‘views’ (rounds), with a di↵erent
leader suggesting a block of transactions for agreement in each view.

• O(n) communication complexity inside each view was known, but;
• Best known complexity per view change was O(n2).
• New method gives O(n) view changes.

Consider the synchronous setting, byzantine failures, authenticated channels, PKI.
The question is, ‘can we describe a deterministic protocol solving BB and in which
each party only speaks once?’

(1) If you consider the binary version of BB, it’s easy. Just run DS, but only with
respect to one of the two possible values (0 say). Then, either every honest
processor ‘recognises’ 0, or none do. If any honest processor recognises 0, it
outputs 0, otherwise it outputs 1.

(2) Then extending it to the general case is also easy, if one doesn’t care about
the number of stages. Run DS for the first value of V first. If you ‘recognise’
the first value at the end of that, stop there and output.

If not, then that means no honest processor (other than maybe the broad-
caster) has spoken yet. So, run DS for the second value, and so on.

Consider the synchronous setting, byzantine failures, authenticated channels, PKI.
The question is, ‘can we describe a deterministic protocol solving BB and in which
each party only speaks once?’

(1) If you consider the binary version of BB, it’s easy. Just run DS, but only with
respect to one of the two possible values (0 say). Then, either every honest processor
‘recognises’ 0, or none do. If any honest processor recognises 0, it outputs 0, otherwise
it outputs 1.

(2) Then extending it to the general case is also easy, if one doesn’t care about the
number of stages. Run DS for the first value of V first. If you ‘recognise’ the first
value at the end of that, stop there and output.

If not, then that means no honest processor (other than maybe the broadcaster)
has spoken yet. So, run DS for the second value, and so on.

1

CONSIDER THE CASE n = 3, f = 1

ANDREW LEWIS-PYE

1. Recap

2. State Machine Replication

Very roughly, SMR is the problem that blockchain protocols are designed to solve:
Clients send in a sequence of transactions of their choosing and the processors imple-
menting the SMR protocol have to agree on an order in which to implement those
transactions.

Often, SMR is often treated somewhat informally in the literature, i.e. it is often
left unspecified precisely which formalisation is being used. We’ll give a particular
formulation here, but there are other approaches.
SMR protocols are (normally) considered in the context that a PKI is given. So, in
the case of SMR protocols, we will deal only with the case that a PKI is available.

(1) Two principal di↵erences between SMR and BA or BB are:
• SMR involves a second kind of protocol participant, referred to as clients.
Roughly, clients do not actively participate in the process of reaching con-
sensus, but are able to submit transactions (sometimes called requests) to
the processors carrying out the consensus protocol, and must be reliably in-
formed by the processors when those transactions have been implemented.

• SMR does not require processors to give a single output, but rather to
produce an output sequence that grows in length as clients submit more
transactions.

(2) SMR - the setup. Some of the choices below are somewhat arbitrary and
have little impact on the consensus problem defined.

• We consider two kinds of protocol participant: a set of n processors {0, . . . , n�
1} and a finite set of clients {0, . . . ,m� 1}.

• We assume given a PKI for the set of all clients and processors, i.e. each
client and each processor begins the protocol knowing the names and public
keys of all participants, together with their own private key.

• Processors and the authenticated communication channels between them
are formalised as before. All pairs of processors have communication chan-
nels between them.

1

BACK TO THAT PUZZLE...

ANDREW LEWIS-PYE

Even though Bitcoin exists, there is considerable interest in permissioned SMR pro-
tocols:

• Could be interested in implementation in the permissioned setting.
• Permissioned protocols can be implemented as permissionless protocols (PoS)

of a sort, and may be more e�cient.
• Can function in the partially synchronous setting (where message delivery is

less reliable).

A metric of interest is the communication compexity: How many bits have to be
exchanged per new block of transactions:

• Typically, the instructions are divided into ‘views’ (rounds), with a di↵erent
leader suggesting a block of transactions for agreement in each view.

• O(n) communication complexity inside each view was known, but;
• Best known complexity per view change was O(n2).
• New method gives O(n) view changes.

Consider the synchronous setting, byzantine failures, authenticated channels, PKI.
The question is, ‘can we describe a deterministic protocol solving BB and in which
each party only speaks once?’

(1) If you consider the binary version of BB, it’s easy. Just run DS, but only with
respect to one of the two possible values (0 say). Then, either every honest
processor ‘recognises’ 0, or none do. If any honest processor recognises 0, it
outputs 0, otherwise it outputs 1.

(2) Then extending it to the general case is also easy, if one doesn’t care about
the number of stages. Run DS for the first value of V first. If you ‘recognise’
the first value at the end of that, stop there and output.

If not, then that means no honest processor (other than maybe the broad-
caster) has spoken yet. So, run DS for the second value, and so on.

Consider the synchronous setting, byzantine failures, authenticated channels, PKI.
The question is, ‘can we describe a deterministic protocol solving BB and in which
each party only speaks once?’

(1) If you consider the binary version of BB, it’s easy. Just run DS, but only with
respect to one of the two possible values (0 say). Then, either every honest processor
‘recognises’ 0, or none do. If any honest processor recognises 0, it outputs 0, otherwise
it outputs 1.

(2) Then extending it to the general case is also easy, if one doesn’t care about the
number of stages. Run DS for the first value of V first. If you ‘recognise’ the first
value at the end of that, stop there and output.

If not, then that means no honest processor (other than maybe the broadcaster)
has spoken yet. So, run DS for the second value, and so on.

1

CONSIDER THE CASE n = 3, f = 1

ANDREW LEWIS-PYE

1. Recap

2. State Machine Replication

Very roughly, SMR is the problem that blockchain protocols are designed to solve:
Clients send in a sequence of transactions of their choosing and the processors imple-
menting the SMR protocol have to agree on an order in which to implement those
transactions.

Often, SMR is often treated somewhat informally in the literature, i.e. it is often
left unspecified precisely which formalisation is being used. We’ll give a particular
formulation here, but there are other approaches.
SMR protocols are (normally) considered in the context that a PKI is given. So, in
the case of SMR protocols, we will deal only with the case that a PKI is available.

(1) Two principal di↵erences between SMR and BA or BB are:
• SMR involves a second kind of protocol participant, referred to as clients.
Roughly, clients do not actively participate in the process of reaching con-
sensus, but are able to submit transactions (sometimes called requests) to
the processors carrying out the consensus protocol, and must be reliably in-
formed by the processors when those transactions have been implemented.

• SMR does not require processors to give a single output, but rather to
produce an output sequence that grows in length as clients submit more
transactions.

(2) SMR - the setup. Some of the choices below are somewhat arbitrary and
have little impact on the consensus problem defined.

• We consider two kinds of protocol participant: a set of n processors {0, . . . , n�
1} and a finite set of clients {0, . . . ,m� 1}.

• We assume given a PKI for the set of all clients and processors, i.e. each
client and each processor begins the protocol knowing the names and public
keys of all participants, together with their own private key.

• Processors and the authenticated communication channels between them
are formalised as before. All pairs of processors have communication chan-
nels between them.

1

BACK TO THAT PUZZLE...

ANDREW LEWIS-PYE

Even though Bitcoin exists, there is considerable interest in permissioned SMR pro-
tocols:

• Could be interested in implementation in the permissioned setting.
• Permissioned protocols can be implemented as permissionless protocols (PoS)

of a sort, and may be more e�cient.
• Can function in the partially synchronous setting (where message delivery is

less reliable).

A metric of interest is the communication compexity: How many bits have to be
exchanged per new block of transactions:

• Typically, the instructions are divided into ‘views’ (rounds), with a di↵erent
leader suggesting a block of transactions for agreement in each view.

• O(n) communication complexity inside each view was known, but;
• Best known complexity per view change was O(n2).
• New method gives O(n) view changes.

Consider the synchronous setting, byzantine failures, authenticated channels, PKI.
The question is, ‘can we describe a deterministic protocol solving BB and in which
each party only speaks once?’

(1) If you consider the binary version of BB, it’s easy. Just run DS, but only with
respect to one of the two possible values (0 say). Then, either every honest
processor ‘recognises’ 0, or none do. If any honest processor recognises 0, it
outputs 0, otherwise it outputs 1.

(2) Then extending it to the general case is also easy, if one doesn’t care about
the number of stages. Run DS for the first value of V first. If you ‘recognise’
the first value at the end of that, stop there and output.

If not, then that means no honest processor (other than maybe the broad-
caster) has spoken yet. So, run DS for the second value, and so on.

Consider the synchronous setting, byzantine failures, authenticated channels, PKI.
The question is, ‘can we describe a deterministic protocol solving BB and in which
each party only speaks once?’

(1) If you consider the binary version of BB, it’s easy. Just run DS, but only with
respect to one of the two possible values (0 say). Then, either every honest processor
‘recognises’ 0, or none do. If any honest processor recognises 0, it outputs 0, otherwise
it outputs 1.

(2) Then extending it to the general case is also easy, if one doesn’t care about the
number of stages. Run DS for the first value of V first. If you ‘recognise’ the first
value at the end of that, stop there and output.

If not, then that means no honest processor (other than maybe the broadcaster)
has spoken yet. So, run DS for the second value, and so on.

1

CONSIDER THE CASE n = 3, f = 1

ANDREW LEWIS-PYE

1. Recap

2. State Machine Replication

Very roughly, SMR is the problem that blockchain protocols are designed to solve:
Clients send in a sequence of transactions of their choosing and the processors imple-
menting the SMR protocol have to agree on an order in which to implement those
transactions.

Often, SMR is often treated somewhat informally in the literature, i.e. it is often
left unspecified precisely which formalisation is being used. We’ll give a particular
formulation here, but there are other approaches.
SMR protocols are (normally) considered in the context that a PKI is given. So, in
the case of SMR protocols, we will deal only with the case that a PKI is available.

(1) Two principal di↵erences between SMR and BA or BB are:
• SMR involves a second kind of protocol participant, referred to as clients.
Roughly, clients do not actively participate in the process of reaching con-
sensus, but are able to submit transactions (sometimes called requests) to
the processors carrying out the consensus protocol, and must be reliably in-
formed by the processors when those transactions have been implemented.

• SMR does not require processors to give a single output, but rather to
produce an output sequence that grows in length as clients submit more
transactions.

(2) SMR - the setup. Some of the choices below are somewhat arbitrary and
have little impact on the consensus problem defined.

• We consider two kinds of protocol participant: a set of n processors {0, . . . , n�
1} and a finite set of clients {0, . . . ,m� 1}.

• We assume given a PKI for the set of all clients and processors, i.e. each
client and each processor begins the protocol knowing the names and public
keys of all participants, together with their own private key.

• Processors and the authenticated communication channels between them
are formalised as before. All pairs of processors have communication chan-
nels between them.

1

BACK TO THAT PUZZLE...

ANDREW LEWIS-PYE

Even though Bitcoin exists, there is considerable interest in permissioned SMR pro-
tocols:

• Could be interested in implementation in the permissioned setting.
• Permissioned protocols can be implemented as permissionless protocols (PoS)

of a sort, and may be more e�cient.
• Can function in the partially synchronous setting (where message delivery is

less reliable).

A metric of interest is the communication compexity: How many bits have to be
exchanged per new block of transactions:

• Typically, the instructions are divided into ‘views’ (rounds), with a di↵erent
leader suggesting a block of transactions for agreement in each view.

• O(n) communication complexity inside each view was known, but;
• Best known complexity per view change was O(n2).
• New method gives O(n) view changes.

Consider the synchronous setting, byzantine failures, authenticated channels, PKI.
The question is, ‘can we describe a deterministic protocol solving BB and in which
each party only speaks once?’

(1) If you consider the binary version of BB, it’s easy. Just run DS, but only with
respect to one of the two possible values (0 say). Then, either every honest
processor ‘recognises’ 0, or none do. If any honest processor recognises 0, it
outputs 0, otherwise it outputs 1.

(2) Then extending it to the general case is also easy, if one doesn’t care about
the number of stages. Run DS for the first value of V first. If you ‘recognise’
the first value at the end of that, stop there and output.

If not, then that means no honest processor (other than maybe the broad-
caster) has spoken yet. So, run DS for the second value, and so on.

Consider the synchronous setting, byzantine failures, authenticated channels, PKI.
The question is, ‘can we describe a deterministic protocol solving BB and in which
each party only speaks once?’

(1) If you consider the binary version of BB, it’s easy. Just run DS, but only with
respect to one of the two possible values (0 say). Then, either every honest processor
‘recognises’ 0, or none do. If any honest processor recognises 0, it outputs 0, otherwise
it outputs 1.

(2) Then extending it to the general case is also easy, if one doesn’t care about the
number of stages. Run DS for the first value of V first. If you ‘recognise’ the first
value at the end of that, stop there and output.

If not, then that means no honest processor (other than maybe the broadcaster)
has spoken yet. So, run DS for the second value, and so on.

1

CONSIDER THE CASE n = 3, f = 1

ANDREW LEWIS-PYE

1. Recap

2. State Machine Replication

Very roughly, SMR is the problem that blockchain protocols are designed to solve:
Clients send in a sequence of transactions of their choosing and the processors imple-
menting the SMR protocol have to agree on an order in which to implement those
transactions.

Often, SMR is often treated somewhat informally in the literature, i.e. it is often
left unspecified precisely which formalisation is being used. We’ll give a particular
formulation here, but there are other approaches.
SMR protocols are (normally) considered in the context that a PKI is given. So, in
the case of SMR protocols, we will deal only with the case that a PKI is available.

(1) Two principal di↵erences between SMR and BA or BB are:
• SMR involves a second kind of protocol participant, referred to as clients.
Roughly, clients do not actively participate in the process of reaching con-
sensus, but are able to submit transactions (sometimes called requests) to
the processors carrying out the consensus protocol, and must be reliably in-
formed by the processors when those transactions have been implemented.

• SMR does not require processors to give a single output, but rather to
produce an output sequence that grows in length as clients submit more
transactions.

(2) SMR - the setup. Some of the choices below are somewhat arbitrary and
have little impact on the consensus problem defined.

• We consider two kinds of protocol participant: a set of n processors {0, . . . , n�
1} and a finite set of clients {0, . . . ,m� 1}.

• We assume given a PKI for the set of all clients and processors, i.e. each
client and each processor begins the protocol knowing the names and public
keys of all participants, together with their own private key.

• Processors and the authenticated communication channels between them
are formalised as before. All pairs of processors have communication chan-
nels between them.

1

BACK TO THAT PUZZLE...

ANDREW LEWIS-PYE

Even though Bitcoin exists, there is considerable interest in permissioned SMR pro-
tocols:

• Could be interested in implementation in the permissioned setting.
• Permissioned protocols can be implemented as permissionless protocols (PoS)

of a sort, and may be more e�cient.
• Can function in the partially synchronous setting (where message delivery is

less reliable).

A metric of interest is the communication compexity: How many bits have to be
exchanged per new block of transactions:

• Typically, the instructions are divided into ‘views’ (rounds), with a di↵erent
leader suggesting a block of transactions for agreement in each view.

• O(n) communication complexity inside each view was known, but;
• Best known complexity per view change was O(n2).
• New method gives O(n) view changes.

Consider the synchronous setting, byzantine failures, authenticated channels, PKI.
The question is, ‘can we describe a deterministic protocol solving BB and in which
each party only speaks once?’

(1) If you consider the binary version of BB, it’s easy. Just run DS, but only with
respect to one of the two possible values (0 say). Then, either every honest
processor ‘recognises’ 0, or none do. If any honest processor recognises 0, it
outputs 0, otherwise it outputs 1.

(2) Then extending it to the general case is also easy, if one doesn’t care about
the number of stages. Run DS for the first value of V first. If you ‘recognise’
the first value at the end of that, stop there and output.

If not, then that means no honest processor (other than maybe the broad-
caster) has spoken yet. So, run DS for the second value, and so on.

Consider the synchronous setting, byzantine failures, authenticated channels, PKI.
The question is, ‘can we describe a deterministic protocol solving BB and in which
each party only speaks once?’

(1) If you consider the binary version of BB, it’s easy. Just run DS, but only with
respect to one of the two possible values (0 say). Then, either every honest processor
‘recognises’ 0, or none do. If any honest processor recognises 0, it outputs 0, otherwise
it outputs 1.

(2) Then extending it to the general case is also easy, if one doesn’t care about the
number of stages. Run DS for the first value of V first. If you ‘recognise’ the first
value at the end of that, stop there and output.

If not, then that means no honest processor (other than maybe the broadcaster)
has spoken yet. So, run DS for the second value, and so on.

1

Joint work with Ittai Abraham

THE VIEW CHANGE PROTOCOL

ANDREW LEWIS-PYE

We use a standard setup:

• Communication is partially synchronous.
• Some unknown subset of f many processors may display Byzantine faults,

where n � 3f + 1.
• All processors have the same clock speeds and start at the same time with

clocks set to 0 (both of these assumptions can be relaxed).

The underlying protocol. We suppose view synchronisation is required for some
underlying protocol (such as Hotstu↵) with the following properties:

• Instructions are divided into views. Each view v has a designated leader,
denoted lead(v).

• If the honest processors spend long enough in a view with an honest leader
when network conditions are good, the view will complete successfully, and
produce a ‘certificate’ (QC) signed by n� f processors.

The view synchronisation task:

• We have to ensure that all non-faulty processors eventually spend long enough
in the same view that it completes successully.

• We also want a protocol which is optimistically responsive: i.e. can go as fast
as the network can handle.

1. Responsive Asynchronous Clock Synchronization

Clock-times. To synchronise processors while maintaining optimistic responsiveness,
we have a predetermined ‘clock-time’ corresponding to each view: The clock-time cor-
responding to view v is tv := �v. At certain points in the execution, a processor may
instantaneously forward their clock to some clock-time tv and enter view v.

The safety condition. We want to ensure that when processors forward their clocks
a certain safety condition is maintained: For some fixed �, and for each honest pro-
cessor, at least f other honest processors have their clocks at most � behind.

This will allow us to achieve view synchronisation. When an honest processor enters
a new view v, they send a message to the leader telling them. Once the leader receives
f +1 of these, it combines these into a ‘start view v’ message, telling other processors
to start the view. The condition above means this will happen in su�cient time.

To define the condition, let t(p) denote the value of processor p’s clock. At any
point e in an execution, let T (e) := {t(p) : p is non-faulty}. Our safety condition is:

(‡) Let e be any point in an execution. For any t 2 T (e):
1

THE VIEW CHANGE PROTOCOL

ANDREW LEWIS-PYE

We use a standard setup:

• Communication is partially synchronous.
• Some unknown subset of f many processors may display Byzantine faults,

where n � 3f + 1.
• All processors have the same clock speeds and start at the same time with

clocks set to 0 (both of these assumptions can be relaxed).

The underlying protocol. We suppose view synchronisation is required for some
underlying protocol (such as Hotstu↵) with the following properties:

• Instructions are divided into views. Each view v has a designated leader,
denoted lead(v).

• If the honest processors spend long enough in a view with an honest leader
when network conditions are good, the view will complete successfully, and
produce a ‘certificate’ (QC) signed by n� f processors.

The view synchronisation task:

• We have to ensure that all non-faulty processors eventually spend long enough
in the same view that it completes successully.

• We also want a protocol which is optimistically responsive: i.e. can go as fast
as the network can handle.

1. Responsive Asynchronous Clock Synchronization

Clock-times. To synchronise processors while maintaining optimistic responsiveness,
we have a predetermined ‘clock-time’ corresponding to each view: The clock-time cor-
responding to view v is tv := �v. At certain points in the execution, a processor may
instantaneously forward their clock to some clock-time tv and enter view v.

The safety condition. We want to ensure that when processors forward their clocks
a certain safety condition is maintained: For some fixed �, and for each honest pro-
cessor, at least f other honest processors have their clocks at most � behind.

This will allow us to achieve view synchronisation. When an honest processor enters
a new view v, they send a message to the leader telling them. Once the leader receives
f +1 of these, it combines these into a ‘start view v’ message, telling other processors
to start the view. The condition above means this will happen in su�cient time.

To define the condition, let t(p) denote the value of processor p’s clock. At any
point e in an execution, let T (e) := {t(p) : p is non-faulty}. Our safety condition is:

(‡) Let e be any point in an execution. For any t 2 T (e):
1

THE VIEW CHANGE PROTOCOL

ANDREW LEWIS-PYE

We use a standard setup:

• Communication is partially synchronous.
• Some unknown subset of f many processors may display Byzantine faults,

where n � 3f + 1.
• All processors have the same clock speeds and start at the same time with

clocks set to 0 (both of these assumptions can be relaxed).

The underlying protocol. We suppose view synchronisation is required for some
underlying protocol (such as Hotstu↵) with the following properties:

• Instructions are divided into views. Each view v has a designated leader,
denoted lead(v).

• If the honest processors spend long enough in a view with an honest leader
when network conditions are good, the view will complete successfully, and
produce a ‘certificate’ (QC) signed by n� f processors. itemize

The view synchronisation task:

• We have to ensure that all non-faulty processors eventually spend long enough
in the same view that it completes successully.

• We also want a protocol which is optimistically responsive: i.e. can go as fast
as the network can handle.

1. Responsive Asynchronous Clock Synchronization

Clock-times. To synchronise processors while maintaining optimistic responsiveness,
we have a predetermined ‘clock-time’ corresponding to each view: The clock-time cor-
responding to view v is tv := �v. At certain points in the execution, a processor may
instantaneously forward their clock to some clock-time tv and enter view v.

The safety condition. We want to ensure that when processors forward their clocks
a certain safety condition is maintained: For some fixed �, and for each honest pro-
cessor, at least f other honest processors have their clocks at most � behind.

This will allow us to achieve view synchronisation. When an honest processor enters
a new view v, they send a message to the leader telling them. Once the leader receives
f +1 of these, it combines these into a ‘start view v’ message, telling other processors
to start the view. The condition above means this will happen in su�cient time.

To define the condition, let t(p) denote the value of processor p’s clock. At any
point e in an execution, let T (e) := {t(p) : p is non-faulty}. Our safety condition is:

(‡) Let e be any point in an execution. For any t 2 T (e):
1

THE VIEW CHANGE PROTOCOL

ANDREW LEWIS-PYE

We use a standard setup:

• Communication is partially synchronous.
• Some unknown subset of f many processors may display Byzantine faults,

where n � 3f + 1.
• All processors have the same clock speeds and start at the same time with

clocks set to 0 (both of these assumptions can be relaxed).

The underlying protocol. We suppose view synchronisation is required for some
underlying protocol (such as Hotstu↵) with the following properties:

• Instructions are divided into views. Each view v has a designated leader,
denoted lead(v).

• If the honest processors spend long enough in a view with an honest leader
when network conditions are good, the view will complete successfully, and
produce a ‘certificate’ (QC) signed by n� f processors. itemize

The view synchronisation task:

• We have to ensure that all non-faulty processors eventually spend long enough
in the same view that it completes successully.

• We also want a protocol which is optimistically responsive: i.e. can go as fast
as the network can handle.

1. Responsive Asynchronous Clock Synchronization

Clock-times. To synchronise processors while maintaining optimistic responsiveness,
we have a predetermined ‘clock-time’ corresponding to each view: The clock-time cor-
responding to view v is tv := �v. At certain points in the execution, a processor may
instantaneously forward their clock to some clock-time tv and enter view v.

The safety condition. We want to ensure that when processors forward their clocks
a certain safety condition is maintained: For some fixed �, and for each honest pro-
cessor, at least f other honest processors have their clocks at most � behind.

This will allow us to achieve view synchronisation. When an honest processor enters
a new view v, they send a message to the leader telling them. Once the leader receives
f +1 of these, it combines these into a ‘start view v’ message, telling other processors
to start the view. The condition above means this will happen in su�cient time.

To define the condition, let t(p) denote the value of processor p’s clock. At any
point e in an execution, let T (e) := {t(p) : p is non-faulty}. Our safety condition is:

(‡) Let e be any point in an execution. For any t 2 T (e):
1

THE VIEW CHANGE PROTOCOL

ANDREW LEWIS-PYE

We use a standard setup:

• Communication is partially synchronous.
• Some unknown subset of f many processors may display Byzantine faults,

where n � 3f + 1.
• All processors have the same clock speeds and start at the same time with

clocks set to 0 (both of these assumptions can be relaxed).

The underlying protocol. We suppose view synchronisation is required for some
underlying protocol (such as Hotstu↵) with the following properties:

• Instructions are divided into views. Each view v has a designated leader,
denoted lead(v).

• If the honest processors spend long enough in a view with an honest leader
when network conditions are good, the view will complete successfully, and
produce a ‘certificate’ (QC) signed by n� f processors. itemize

The view synchronisation task:

• We have to ensure that all non-faulty processors eventually spend long enough
in the same view that it completes successully.

• We also want a protocol which is optimistically responsive: i.e. can go as fast
as the network can handle.

1. Responsive Asynchronous Clock Synchronization

Clock-times. To synchronise processors while maintaining optimistic responsiveness,
we have a predetermined ‘clock-time’ corresponding to each view: The clock-time cor-
responding to view v is tv := �v. At certain points in the execution, a processor may
instantaneously forward their clock to some clock-time tv and enter view v.

The safety condition. We want to ensure that when processors forward their clocks
a certain safety condition is maintained: For some fixed �, and for each honest pro-
cessor, at least f other honest processors have their clocks at most � behind.

This will allow us to achieve view synchronisation. When an honest processor enters
a new view v, they send a message to the leader telling them. Once the leader receives
f +1 of these, it combines these into a ‘start view v’ message, telling other processors
to start the view. The condition above means this will happen in su�cient time.

To define the condition, let t(p) denote the value of processor p’s clock. At any
point e in an execution, let T (e) := {t(p) : p is non-faulty}. Our safety condition is:

(‡) Let e be any point in an execution. For any t 2 T (e):
1

HOW DO WE MAINTAIN THE SAFETY CONDITION?

ANDREW LEWIS-PYE

We only forward a clock to t in two cases:

• We see attestations from n � f processors that they are at most � behind t
(we see a QC for the previous view).

• We see attestations from f + 1 processors that their clock is � t (we see a
message saying we should start view v).

Inductively, it’s easy to see that the safety condition will never be violated.
We use a standard setup:

• Communication is partially synchronous.
• Some unknown subset of f many processors may display Byzantine faults,

where n � 3f + 1.
• All processors have the same clock speeds and start at the same time with

clocks set to 0 (both of these assumptions can be relaxed).

The underlying protocol. We suppose view synchronisation is required for some
underlying protocol (such as Hotstu↵) with the following properties:

• Instructions are divided into views. Each view v has a designated leader,
denoted lead(v).

• If the honest processors spend long enough in a view with an honest leader
when network conditions are good, the view will complete successfully, and
produce a ‘certificate’ (QC) signed by n� f processors.

The view synchronisation task:

• We have to ensure that all non-faulty processors eventually spend long enough
in the same view that it completes successully.

• We also want a protocol which is optimistically responsive: i.e. can go as fast
as the network can handle.

1. Responsive Asynchronous Clock Synchronization

Clock-times. To synchronise processors while maintaining optimistic responsiveness,
we have a predetermined ‘clock-time’ corresponding to each view: The clock-time cor-
responding to view v is tv := �v. At certain points in the execution, a processor may
instantaneously forward their clock to some clock-time tv and enter view v.

The safety condition. We want to ensure that when processors forward their clocks
a certain safety condition is maintained: For some fixed �, and for each honest pro-
cessor, at least f other honest processors have their clocks at most � behind.

This will allow us to achieve view synchronisation. When an honest processor enters
a new view v, they send a message to the leader telling them. Once the leader receives
f +1 of these, it combines these into a ‘start view v’ message, telling other processors

1

HOW DO WE MAINTAIN THE SAFETY CONDITION?

ANDREW LEWIS-PYE

We only forward a clock to t in two cases:

• We see attestations from n � f processors that they are at most � behind t
(we see a QC for the previous view).

• We see attestations from f + 1 processors that their clock is � t (we see a
message saying we should start view v).

Inductively, it’s easy to see that the safety condition will never be violated.
We use a standard setup:

• Communication is partially synchronous.
• Some unknown subset of f many processors may display Byzantine faults,

where n � 3f + 1.
• All processors have the same clock speeds and start at the same time with

clocks set to 0 (both of these assumptions can be relaxed).

The underlying protocol. We suppose view synchronisation is required for some
underlying protocol (such as Hotstu↵) with the following properties:

• Instructions are divided into views. Each view v has a designated leader,
denoted lead(v).

• If the honest processors spend long enough in a view with an honest leader
when network conditions are good, the view will complete successfully, and
produce a ‘certificate’ (QC) signed by n� f processors.

The view synchronisation task:

• We have to ensure that all non-faulty processors eventually spend long enough
in the same view that it completes successully.

• We also want a protocol which is optimistically responsive: i.e. can go as fast
as the network can handle.

1. Responsive Asynchronous Clock Synchronization

Clock-times. To synchronise processors while maintaining optimistic responsiveness,
we have a predetermined ‘clock-time’ corresponding to each view: The clock-time cor-
responding to view v is tv := �v. At certain points in the execution, a processor may
instantaneously forward their clock to some clock-time tv and enter view v.

The safety condition. We want to ensure that when processors forward their clocks
a certain safety condition is maintained: For some fixed �, and for each honest pro-
cessor, at least f other honest processors have their clocks at most � behind.

This will allow us to achieve view synchronisation. When an honest processor enters
a new view v, they send a message to the leader telling them. Once the leader receives
f +1 of these, it combines these into a ‘start view v’ message, telling other processors

1

HOW DO WE MAINTAIN THE SAFETY CONDITION?

ANDREW LEWIS-PYE

We only forward a clock to t in two cases:

• We see attestations from n � f processors that they are at most � behind t
(we see a QC for the previous view).

• We see attestations from f + 1 processors that their clock is � t (we see a
message saying we should start view v).

Inductively, it’s easy to see that the safety condition will never be violated.
We use a standard setup:

• Communication is partially synchronous.
• Some unknown subset of f many processors may display Byzantine faults,

where n � 3f + 1.
• All processors have the same clock speeds and start at the same time with

clocks set to 0 (both of these assumptions can be relaxed).

The underlying protocol. We suppose view synchronisation is required for some
underlying protocol (such as Hotstu↵) with the following properties:

• Instructions are divided into views. Each view v has a designated leader,
denoted lead(v).

• If the honest processors spend long enough in a view with an honest leader
when network conditions are good, the view will complete successfully, and
produce a ‘certificate’ (QC) signed by n� f processors.

The view synchronisation task:

• We have to ensure that all non-faulty processors eventually spend long enough
in the same view that it completes successully.

• We also want a protocol which is optimistically responsive: i.e. can go as fast
as the network can handle.

1. Responsive Asynchronous Clock Synchronization

Clock-times. To synchronise processors while maintaining optimistic responsiveness,
we have a predetermined ‘clock-time’ corresponding to each view: The clock-time cor-
responding to view v is tv := �v. At certain points in the execution, a processor may
instantaneously forward their clock to some clock-time tv and enter view v.

The safety condition. We want to ensure that when processors forward their clocks
a certain safety condition is maintained: For some fixed �, and for each honest pro-
cessor, at least f other honest processors have their clocks at most � behind.

This will allow us to achieve view synchronisation. When an honest processor enters
a new view v, they send a message to the leader telling them. Once the leader receives
f +1 of these, it combines these into a ‘start view v’ message, telling other processors

1

HOW DO WE MAINTAIN THE SAFETY CONDITION?

ANDREW LEWIS-PYE

We only forward a clock to t in two cases:

• We see attestations from n � f processors that they are at most � behind t
(we see a QC for the previous view).

• We see attestations from f + 1 processors that their clock is � t (we see a
message saying we should start view v).

Inductively, it’s easy to see that the safety condition will never be violated.
We use a standard setup:

• Communication is partially synchronous.
• Some unknown subset of f many processors may display Byzantine faults,

where n � 3f + 1.
• All processors have the same clock speeds and start at the same time with

clocks set to 0 (both of these assumptions can be relaxed).

The underlying protocol. We suppose view synchronisation is required for some
underlying protocol (such as Hotstu↵) with the following properties:

• Instructions are divided into views. Each view v has a designated leader,
denoted lead(v).

• If the honest processors spend long enough in a view with an honest leader
when network conditions are good, the view will complete successfully, and
produce a ‘certificate’ (QC) signed by n� f processors.

The view synchronisation task:

• We have to ensure that all non-faulty processors eventually spend long enough
in the same view that it completes successully.

• We also want a protocol which is optimistically responsive: i.e. can go as fast
as the network can handle.

1. Responsive Asynchronous Clock Synchronization

Clock-times. To synchronise processors while maintaining optimistic responsiveness,
we have a predetermined ‘clock-time’ corresponding to each view: The clock-time cor-
responding to view v is tv := �v. At certain points in the execution, a processor may
instantaneously forward their clock to some clock-time tv and enter view v.

The safety condition. We want to ensure that when processors forward their clocks
a certain safety condition is maintained: For some fixed �, and for each honest pro-
cessor, at least f other honest processors have their clocks at most � behind.

This will allow us to achieve view synchronisation. When an honest processor enters
a new view v, they send a message to the leader telling them. Once the leader receives
f +1 of these, it combines these into a ‘start view v’ message, telling other processors

1

Thanks for listening!

