Consensus

(And View Synchronisation)

Andrew Lewis-Pye, 28th June 2022



Joint work with Ittai Abraham:
The new result I'll talk about is a ‘view synchronisation’” method for 'optimistically

responsive’ blockchain protocols (like Hotstuff) which has O(n) communication com-
plexity per view in the worst case.



Joint work with Ittai Abraham:

The new result I'll talk about is a ‘view synchronisation’” method for ’optimistically
responsive’ blockchain protocols (like Hotstuff) which has O(n) communication com-
plexity per view in the worst case.

Combined with Hotstuff, this gives the first optimistically response blockchain proto-
col functioning in the partially synchronous setting which has:

e O(n) complexity per confirmed block in the optimistic case;
e O(n?) complexity per confirmed block in the worst case.



A LITTLE PUZZLE FOR THOSE WHO KNOW CONSENSUS

Consider the synchronous setting, authenticated channels, Byzantine faults, PKI. Can
you design a deterministic protocol to solve Byzantine Broadcast, in which each party

speaks at most once?

‘Speaking once’ means that each party can send multiple messages, but they must all
be sent at the same timeslot.



What is the problem a consensus protocol has to solve?



THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

Several divisions of the Byzantine army are camped outside an enemy city, each division
commanded by its own general. The generals can only communicate by messenger and
must carry out a protocol to decide on a common plan of action, either ‘retreat’ or
‘attack’. Initially, each general has their own private opinion as to the best plan of
action. The difficulty is that some unknown subset of the generals may be dishonest
traitors (and may deviate from the protocol). The protocol must satisfy:




THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

Several divisions of the Byzantine army are camped outside an enemy city, each division
commanded by its own general. The generals can only communicate by messenger and
must carry out a protocol to decide on a common plan of action, either ‘retreat’ or
‘attack’. Initially, each general has their own private opinion as to the best plan of
action. The difficulty is that some unknown subset of the generals may be dishonest
traitors (and may deviate from the protocol). The protocol must satisfy:

(1) Termination. Each honest general must eventually reach a decision (retreat
or attack).




THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

Several divisions of the Byzantine army are camped outside an enemy city, each division
commanded by its own general. The generals can only communicate by messenger and
must carry out a protocol to decide on a common plan of action, either ‘retreat’ or
‘attack’. Initially, each general has their own private opinion as to the best plan of
action. The difficulty is that some unknown subset of the generals may be dishonest
traitors (and may deviate from the protocol). The protocol must satisfy:

(1) Termination. Each honest general must eventually reach a decision (retreat

or attack).
(2) Agreement. All honest generals must reach the same decision.




THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

Several divisions of the Byzantine army are camped outside an enemy city, each division
commanded by its own general. The generals can only communicate by messenger and
must carry out a protocol to decide on a common plan of action, either ‘retreat’ or
‘attack’. Initially, each general has their own private opinion as to the best plan of
action. The difficulty is that some unknown subset of the generals may be dishonest
traitors (and may deviate from the protocol). The protocol must satisfy:

(1) Termination. Each honest general must eventually reach a decision (retreat

or attack).
(2) Agreement. All honest generals must reach the same decision.
(3) Validity. If all honest generals start with the same opinion, then that common

opinion must be the same as their final decision.




THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

Several divisions of the Byzantine army are camped outside an enemy city, each division
commanded by its own general. The generals can only communicate by messenger and
must carry out a protocol to decide on a common plan of action, either ‘retreat’ or
‘attack’. Initially, each general has their own private opinion as to the best plan of
action. The difficulty is that some unknown subset of the generals may be dishonest
traitors (and may deviate from the protocol). The protocol must satisfy:

(1) Termination. Each honest general must eventually reach a decision (retreat

or attack).
(2) Agreement. All honest generals must reach the same decision.
(3) Validity. If all honest generals start with the same opinion, then that common

/ opinion must be the same as their final decision.

Without validity requirement, it would be trivial.



THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

There are n parties (generals), of which at most f are dishonest. Each starts with their
own input. Must satisfy:

1) Termination. Each honest party gives an output.
) Agreement. All honest parties give the same output.

2
3) Validity. If all honest parties have the same input, this must be their output.

(
(
(




THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

There are n parties (generals), of which at most f are dishonest. Each starts with their
own input. Must satisfy:

1) Termination. Each honest party gives an output.
) Agreement. All honest parties give the same output.

2
3) Validity. If all honest parties have the same input, this must be their output.

(
(
(

For clarity, suppose the honest generals know f (but not which are the dishonest gen-
erals).




THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

There are n parties (generals), of which at most f are dishonest. Each starts with their
own input. Must satisfy:

1) Termination. Each honest party gives an output.
) Agreement. All honest parties give the same output.

2
3) Validity. If all honest parties have the same input, this must be their output.

(
(
(

If f =0 then the problem is trivial (just do majority vote).




THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

There are n parties (generals), of which at most f are dishonest. Each starts with their
own input. Must satisfy:

1) Termination. Each honest party gives an output.
) Agreement. All honest parties give the same output.

2
3) Validity. If all honest parties have the same input, this must be their output.

(
(
(

If f =0 then the problem is trivial (just do majority vote).

S0, 1t 1s clear that one of the basic questions we should be interested in is “what values
of n and f can a protocol handle?”.




THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

There are n parties (generals), of which at most f are dishonest. Each starts with their
own input. Must satisfy:

1) Termination. Each honest party gives an output.
) Agreement. All honest parties give the same output.

2
3) Validity. If all honest parties have the same input, this must be their output.

(
(
(

Not possible if f > n/2.



THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

There are n parties (generals), of which at most f are dishonest. Each starts with their
own input. Must satisfy:

1) Termination. Each honest party gives an output.
) Agreement. All honest parties give the same output.

2
3) Validity. If all honest parties have the same input, this must be their output.

(
(
(

Not possible if f > n/2.

Attack Retreat Output: Attack




THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

There are n parties (generals), of which at most f are dishonest. Each starts with their
own input. Must satisfy:

1) Termination. Each honest party gives an output.
) Agreement. All honest parties give the same output.

2
3) Validity. If all honest parties have the same input, this must be their output.

(
(
(

Not possible if f > n/2.

Attack Retreat Output: Attack

Retreat Retreat Output: Attack

/

Acts like honest general with input “Attack”.



THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

Is it trivial when f < n /27 Can we not just implement a majority vote argument?



THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

Is it trivial when f < n /27 Can we not just implement a majority vote argument?

The problem with this approach stems from the allowed form of communication be-
tween generals (which is intended to accurately reflect communication between proces-
sors in real world scenarios).



THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

Is it trivial when f < n /27 Can we not just implement a majority vote argument?

If the generals were standing in a circle and shouting out their votes — so that every-
body can see who is shouting out a vote and any vote heard by a single honest general

is immediately heard by all — then a simple majority vote approach would work. In

the setting described above, however, communication occurs by messenger between one
pair of generals at a time.




THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

Is it trivial when f < n /27 Can we not just implement a majority vote argument?

The problem now is that dishonest generals can tell different things to different gener-
als. Suppose n = 3 and f = 1. One honest general initially wants to attack, while the
other wants to retreat. If the dishonest general sends a ‘retreat’ message to the general
who wants to retreat and an ‘attack’ message to the general who wants to attack, then
the honest generals will see different majority votes.



THE BYZANTINE AGREEMENT PROBLEM (INFORMAL)

Is it trivial when f < n /27 Can we not just implement a majority vote argument?

In fact, we will see that (under a natural formalisation of the informal problem above)
the Byzantine Agreement problem is not solvable when f > n/3 unless we endow the
generals with certain extra abilities. So the problem is not as trivial as it might initially
seen.



THE FORMAL FRAMEWORK

The setup:

e We formalise each general as a processor.



THE FORMAL FRAMEWORK

The setup:

e We formalise each general as a processor.

e The execution of the protocol is divided into discrete timeslots, beginning at
ime t = 0. At each time ¢, each processor receives a certain set of messages
from other processors, and then carries out a finite set of instructions to decide
what messages to send to other processors at that timeslot.

N




THE FORMAL FRAMEWORK

The setup:

e We formalise each general as a processor.

e The execution of the protocol is divided into discrete timeslots, beginning at

ime t = 0. At each time ¢, each processor receives a certain set of messages

from other processors, and then carries out a finite set of instructions to decide

what messages to send to other processors at that timeslot.

e There are n processors given names 0 to n — 1. Each processor is told n as well
as their own name ¢, 1.e. this information is given as part of their input.

4k
I




THE FORMAL FRAMEWORK

Authenticated channels. There exists a two-way authenticated
communication channel {7, 7} for each pair of distinct processors i
and 7:

e Only 7 can send messages to 7 and only 5 can send messages
to ¢ on the channel {7, 7}, and;




THE FORMAL FRAMEWORK

Authenticated channels. There exists a two-way authenticated
communication channel {7, 7} for each pair of distinct processors i
and 7:

e Only 7 can send messages to 7 and only 5 can send messages
to ¢ on the channel {7, 7}, and;

e When 7 receives messages it is aware of the channel by which
the messages were sent, 1.e. the instructions for 2 can depend
not only on the messages received at any given timeslot but
also which channels the messages arrived on.




THE FORMAL FRAMEWORK

Authenticated channels. There exists a two-way authenticated
communication channel {7, 7} for each pair of distinct processors i
and 7:

e Only 7 can send messages to 7 and only 5 can send messages
to ¢ on the channel {7, 7}, and;

e When 7 receives messages it is aware of the channel by which
the messages were sent, 1.e. the instructions for 2 can depend
not only on the messages received at any given timeslot but
also which channels the messages arrived on.

At each timeslot, the instructions for processor ¢ determine which mes-
sages it should send along each of its channels {i, j}.



THE FORMAL FRAMEWORK

Public Key Infrastructure (PKI). Sometimes we’ll as-
sume given a PKI, sometimes not. If given a PKI, this means
each processor is provided with a (sk, pk) pair, and is told the
public key of each of the other processors.




THE FORMAL FRAMEWORK

Message delay and the synchronous setting. To keep things simple, we start by
considering what is known as the synchronous setting. This means that if ¢ sends 7 a
message at time t then 7 receives that message from ¢ at time ¢ + 1.



THE FORMAL FRAMEWORK

How can dishonest generals behave?

e Some of the processors may be faulty.



THE FORMAL FRAMEWORK

How can dishonest generals behave?

e Some of the processors may be faulty.
e [tach processor is given an upper bound f for the number of faulty processors
as part of its input.



THE FORMAL FRAMEWORK

How can dishonest generals behave?

e Some of the processors may be faulty.

e [tach processor is given an upper bound f for the number of faulty processors
as part of its input.

o Generally, we are most interested in analysing settings where the faulty proces-
sors can display arbitrary (and potentially malicious) behaviour. In this case,
we say that the processors display Byzantine faults. Formally, this means that
faulty processors can execute any arbitrary program.




THE FORMAL FRAMEWORK

How can dishonest generals behave?

e Some of the processors may be faulty.

e [tach processor is given an upper bound f for the number of faulty processors
as part of its input.

o Generally, we are most interested in analysing settings where the faulty proces-
sors can display arbitrary (and potentially malicious) behaviour. In this case,
we say that the processors display Byzantine faults. Formally, this means that
faulty processors can execute any arbitrary program.

Crash faults. Sometimes we will also be interested in a more benign form of faulty
behaviour known as crash faults. In the crash fault setting, faulty processors must
follow the protocol precisely until such a point as they crash, whereupon they execute
no further instructions.




BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST (BB)

Previously, we considered a binary version of the Byzantine Agreement Problem. Some-
times convenient to consider a more general form of the problem:




BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST (BB)

Previously, we considered a binary version of the Byzantine Agreement Problem. Some-
times convenient to consider a more general form of the problem:

e We consider a set of n processors, of which at most f display Byzantine faults.



BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST (BB)

Previously, we considerec

| a binary version of the Byzantine Agreement Problem. Some-

times convenilent to consi

e We consider a set
e For some set V,

der a more general form of the problem:

of n processors, of which at most f display Byzantine faults.
each processor is given an input in V (different processors

potentially receiving different inputs). V' is told to the processors and could be
of any finite size > 2.



BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST (BB)

Previously, we considered a binary version of the Byzantine Agreement Problem. Some-
times convenient to consider a more general form of the problem:

e We consider a set of n processors, of which at most f display Byzantine faults.
e For some set V', each processor is given an input in V (different processors

potentially receiving different inputs). V' is told to the processors and could be
of any finite size > 2.

e The protocol must satisty the following conditions:
— Termination. All non-faulty processors must give an output in V.
— Agreement. All non-faulty processors must give the same output.

— Validity. If all non-faulty processors have the same input v, then v must
be their common output.



BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST (BB)

The Byzantine Broadcast Problem. In the original papers in which Lamport,
Shostak and Pease introduced the Byzantine Agreement problem, they actually fo-
cussed on a variant of the problem which is now known as Byzantine Broadcast:



BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST (BB)

The Byzantine Broadcast Problem. In the original papers in which Lamport,
Shostak and Pease introduced the Byzantine Agreement problem, they actually fo-
cussed on a variant of the problem which is now known as Byzantine Broadcast:

e We consider a set of n processors, of which at most f display Byzantine faults.



BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST (BB)

The Byzantine Broadcast Problem. In the original papers in which Lamport,
Shostak and Pease introduced the Byzantine Agreement problem, they actually fo-
cussed on a variant of the problem which is now known as Byzantine Broadcast:

e We consider a set of n processors, of which at most f display Byzantine faults.
e One processor is designated the ‘broadcaster’. All processors are given the name
of the broadcaster.



BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST (BB)

The Byzantine Broadcast Problem. In the original papers in which Lamport,
Shostak and Pease introduced the Byzantine Agreement problem, they actually fo-
cussed on a variant of the problem which is now known as Byzantine Broadcast:

e We consider a set of n processors, of which at most f display Byzantine faults.

e One processor is designated the ‘broadcaster’. All processors are given the name
of the broadcaster.

e The broadcaster is given an input in some set V. The set V is told to all
Processors.



BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST (BB)

The Byzantine Broadcast Problem. In the original papers in which Lamport,
Shostak and Pease introduced the Byzantine Agreement problem, they actually fo-
cussed on a variant of the problem which is now known as Byzantine Broadcast:

e We consider a set of n processors, of which at most f display Byzantine faults.
e One processor is designated the ‘broadcaster’. All processors are given the name
of the broadcaster.

e The broadcaster is given an input in some set V. The set V is told to all
Processors.

e The protocol must satisty the following conditions:
— Termination. All non-faulty processors must give an output in V.
— Agreement. All non-faulty processors must give the same output.

— Validity. If the broadcaster is not faulty and has input v, then all non-
faulty processors must output v.




BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST (BB)

What is the relationship between the Byzantine Agreement (BA) problem
and the Byzantine Broadcast (BB) problem? We saw BA cannot be solved when
f >n/2. It is easy to see, though, that the same argument doesn’t apply to BB — in
fact, we'll see that, if a PKI is given and we work in the synchronous setting, then BB
can actually be solved for any number of faulty processors.




BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST (BB)

What is the relationship between the Byzantine Agreement (BA) problem
and the Byzantine Broadcast (BB) problem? We saw BA cannot be solved when
f >n/2. It is easy to see, though, that the same argument doesn’t apply to BB — in
fact, we'll see that, if a PKI is given and we work in the synchronous setting, then BB
can actually be solved for any number of faulty processors.

S0, there are certainly scenarios in which BB can be solved although BA cannot be.



BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST (BB)

On the other hand, if we work in the synchronous setting and if f < n/2 then the two
problems reduce to each other quite easily:

e If we can solve BB, then to solve BA we have all processors broadcast their
inputs using the protocol for BB (meaning that we carry out n simultaneous
executions of BB). Once a value is decided corresponding to each processor, pro-
cessors then decide by majority vote, breaking ties in some previously arranged
but arbitrary fashion.



BYZANTINE AGREEMENT (BA) AND BYZANTINE BROADCAST (BB)

On the other hand, if we work in the synchronous setting and if f < n/2 then the two
problems reduce to each other quite easily:

e If we can solve BB, then to solve BA we have all processors broadcast their
inputs using the protocol for BB (meaning that we carry out n simultaneous
executions of BB). Once a value is decided corresponding to each processor, pro-
cessors then decide by majority vote, breaking ties in some previously arranged
but arbitrary fashion.

o If we can solve BA, then to solve BB we have the broadcaster send their input
to all other processors at time 0. Each processor then takes the value received
at time 1 as their input value, choosing some arbitrary value in V' if no value
1s received from the broadcaster. We then have the processors carry out the
protocol for BA on those input values.



BA AND BB: SYNCHRONOUS SETTING WITH PKI

We'll prove the following:

Theorem. Consider the synchronous setting with PKI given. There exists a protocol
that solves the Byzantine Broadcast problem for any number of faulty processors.



BA AND BB: SYNCHRONOUS SETTING WITH PKI

We'll prove the following:

Theorem. Consider the synchronous setting with PKI given. There exists a protocol
that solves the Byzantine Broadcast problem for any number of faulty processors.

This also deals with BA. By the reductions discussed before, the theorem also suf-
fices to show that we can solve BA when working in the synchronous setting with PKI

iff f<n/2.



BA AND BB: SYNCHRONOUS SETTING WITH PKI

Why isn’t it trivial?

e An obvious way to try solving BB when given a PKI would be to have the
broadcaster send out signed values of their input to each of the other processors.




BA AND BB: SYNCHRONOUS SETTING WITH PKI

Why isn’t it trivial?

e An obvious way to try solving BB when given a PKI would be to have the

broad

e The processors could then repeatedly share all of the signed va.

caster send out signed values of their input to each of the ot.

ner processors.

seen produced by the broadcaster.

ues they have



BA AND BB: SYNCHRONOUS SETTING WITH PKI

Why isn’t it trivial?

e An obvious way to try solving BB when given a PKI would be to have the
broadcaster send out signed values of their input to each of the other processors.

e The processors could then repeatedly share all of the signed va.

seen produced by the broadcaster.

o [

o

hey ever see two different values produced, then they realise the broaa

is faulty, so they give some ‘default’ value as output.

" they only ever see a single value produced, then they output that va.

ues they have

ue. It

caster



BA AND BB: SYNCHRONOUS SETTING WITH PKI

Why isn’t it trivial?

e An O]

broad
e The processors could then repeatedly share all of the signed va.

seen produced by the broadcaster.
o If they only ever see a single value produced, then they output that value. It

is faulty, so they give some ‘default’ value as output
broadcaster is non-faulty then they will only produce a single signed value
and all non-faulty processors will output that. If the broadcaster produces two
different signed values and shows them to non-faulty processors
is) everyone will eventually see those values and give the default output.

e If the

ovious way to try solving BB when given a PKI would be to have the
caster send out signed values of their input to each of the ot.

ner processors.

ues they have

they ever see two different values produced, then they realise the broadcaster

then (the idea



BA AND BB: SYNCHRONOUS SETTING WITH PKI

Why isn’t it trivial?
e An obvious way to try solving BB when given a PKI would be to have the
broadcaster send out signed values of their input to each of the other processors.

e The processors could then repeatedly share all of the signed values they have
seen produced by the broadcaster.

e If they only ever see a single value produced, then they output that value. If

they ever see two different values produced, then they realise the broadcaster

is faulty, so they give some ‘default’ value as output.

The problem. When should processors stop sharing values and terminate? If they
share until time ¢, then the adversary can choose to show one signed value to all non-
faulty processors until time ¢, and then show some subset of the non-faulty processors
a second signed value at time ¢ (when it is too late to share anymore), causing the
‘agreement’ requirement of BB to be violated.




BA AND BB: SYNCHRONOUS SETTING WITH PKI

The trick. What we need is a clever mechanism to ensure that if any non-faulty
processor ‘recognises’ a certain signed value produced by the broadcaster, then all non-
faulty processors will also ‘recognise’ that value.



BA AND BB: SYNCHRONOUS SETTING WITH PKI

The trick. What we need is a clever mechanism to ensure that if any non-faulty
processor ‘recognises’ a certain signed value produced by the broadcaster, then all non-
faulty processors will also ‘recognise’ that value.

That way, either they all recognise a single value and give that as output, or they all
recognise multiple values and so give the default output.



BA AND BB: SYNCHRONOUS SETTING WITH PKI

The mechanism described by Dolev and Strong is quite elegant:

e At time O the broadcaster sends signed versions of their input to each processor.



BA AND BB: SYNCHRONOUS SETTING WITH PKI

The mechanism described by Dolev and Strong is quite elegant:

e At time O the broadcaster sends signed versions of their input to each processor.

e At time 1, the processors look to see whether they have received a signed value
from the broadcaster, and if so then they ‘recognise’ that value. Now though,
rather than just passing on that signed value, they attach their own signature
to the message so that now it has been signed twice — first by the broadcaster
and then secondly by them. Then they send this new version of the message to
all processors.




BA AND BB: SYNCHRONOUS SETTING WITH PKI

The mechanism described by Dolev and Strong is quite elegant:

e At time O the broadcaster sends signed versions of their input to each processor.

e At time 1, the processors look to see whether they have received a signed value
from the broadcaster, and if so then they ‘recognise’ that value. Now though,
rather than just passing on that signed value, they attach their own signature
to the message so that now it has been signed twice — first by the broadcaster
and then secondly by them. Then they send this new version of the message to
all processors.

e Then we stipulate that if a processor is to ‘recognise’ a new value at any time
t, the message must have been signed by ¢ distinct processors. If they recognise
a new value at time ¢, then they add their signature to the list and send that
message (now with ¢ + 1 distinct signatures) to all other processors.




BA AND BB: SYNCHRONOUS SETTING WITH PKI

The mechanism described by Dolev and Strong is quite elegant:

e At time O the broac

e Then we stipulate

t, the message mus

a new value at time ¢, then they add their signa

. have been signed by t distinc

caster sends signed versions of their input to each processor.
shat 1f a processor is to ‘recognise’ a new va.

ue at any time

, processors. I

" they recognise

oure to the list and send that

message (now with ¢ 4+ 1 distinct signatures) to all other processors.



BA AND BB: SYNCHRONOUS SETTING WITH PKI

The mechanism described by Dolev and Strong is quite elegant:

e At time O the broac
e Then we stipulate
t, the message mus

caster sends signed versions of their input to each processor.
chat if a processor is to ‘recognise’ a new value at any time
; have been signed by ¢ distinct processors. If they recognise

a new value at time ¢, then they add their signature to the list and send that
message (now with ¢ 4+ 1 distinct signatures) to all other processors.

o At 1

(but

recognisec

)

o share agai
or else a default value.

ime f + 1 we give the processors a last chance to recognise new values
not t

before either outputting the single value they have




BA AND BB: SYNCHRONOUS SETTING WITH PKI

Why does this approach work? We have to show that if any non-faulty processor
recognises a certain value v € V', then all non-faulty processors will also recognise that
value. There are two cases to consider:



BA AND BB: SYNCHRONOUS SETTING WITH PKI

Why does this approach work? We have to show that if any non-faulty processor
recognises a certain value v € V', then all non-faulty processors will also recognise that
value. There are two cases to consider:

e Case 1. Suppose that some non-faulty ¢ first recognises v at a time ¢t < f + 1.
In this case, 7 receives a message relaying the value v at time ¢ which has ¢
distinct signatures attached. Processor ¢ then adds their signature to form a

message with t + 1 ¢

This means all non-:

istinct signatures and sends this message to a.

| processors.

raulty processors will recognise v by time ¢ +

(< F+1).



BA AND BB: SYNCHRONOUS SETTING WITH PKI

Why does this approach work? We have to show that if any non-faulty processor
recognises a certain value v € V', then all non-faulty processors will also recognise that
value. There are two cases to consider:

e Case 1. Suppose that some non-faulty ¢ first recognises v at a time ¢t < f + 1.
In this case, 7 receives a message relaying the value v at time ¢ which has ¢
distinct signatures attached. Processor ¢ then adds their signature to form a
message with ¢t + 1 distinct signatures and sends this message to all processors.
This means all non-faulty processors will recognise v by time ¢t +1 (< f + 1).

e Case 2. Suppose next that some non-faulty ¢ first recognises v at time f + 1.
In this case, ¢ receives a message relaying the value v at timeslot f + 1 which

has f + 1 distinct signatures attached. At least one of those signatures must

be from a non-faulty processor j (since there are at most f faulty processors),

meaning that Case 1 applies w.r.t. j.




BACK TO THAT PUZZLE...

Consider the synchronous setting, byzantine failures, authenticated channels, PKI.
The question is, ‘can we describe a deterministic protocol solving BB and in which
each party only speaks once?’



BACK TO THAT PUZZLE...

Consider the synchronous setting, byzantine failures, authenticated channels, PKI.
The question is, ‘can we describe a deterministic protocol solving BB and in which

each party only speaks once?’
(1) If you consider the binary version of BB, it’s easy. Just run DS, but only with

respect to one of the two possible values (0 say). Then, either every honest
processor ‘recognises’ 0, or none do. If any honest processor recognises 0, it

outputs 0, otherwise it outputs 1.



BACK TO THAT PUZZLE...

Consider the synchronous setting, byzantine failures, authenticated channels, PKI.
The question is, ‘can we describe a deterministic protocol solving BB and in which
each party only speaks once?’

(1)

(2)

If you consider the binary version of BB, it’s easy. Just run DS, but only with
respect to one of the two possible values (0 say). Then, either every honest
processor ‘recognises’ 0, or none do. If any honest processor recognises 0, it
outputs 0, otherwise it outputs 1.
Then extending it to the general case is also easy, if one doesn’t care about
the number of stages. Run DS for the first value of V first. If you ‘recognise’
the first value at the end of that, stop there and output.

If not, then that means no honest processor (other than maybe the broad-
caster) has spoken yet. So, run DS for the second value, and so on.



STATE MACHINE REPLICATION

Very roughly, SMR is the problem that blockchain protocols are designed to solve:
Clients send in a sequence of transactions of their choosing and the processors imple-
menting the SMR protocol have to agree on an order in which to implement those
transactions.



STATE MACHINE REPLICATION

Even though Bitcoin exists, there is considerable interest in permissioned SMR pro-
tocols:

e Could be interested in implementation in the permissioned setting.



STATE MACHINE REPLICATION

Even though Bitcoin exists, there is considerable interest in permissioned SMR pro-
tocols:

e Could be interested in implementation in the permissioned setting.
e Permissioned protocols can be implemented as permissionless protocols (PoS)
of a sort, and may be more efficient.



STATE MACHINE REPLICATION

Even though Bitcoin exists, there is considerable interest in permissioned SMR pro-
tocols:

e Could be interested in implementation in the permissioned setting.

e Permissioned protocols can be implemented as permissionless protocols (PoS)
of a sort, and may be more efficient.

¢ Can function in the partially synchronous setting (where message delivery is
less reliable).



STATE MACHINE REPLICATION

A metric of interest is the communication compexity: How many bits have to be
exchanged per new block of transactions:



STATE MACHINE REPLICATION

A metric of interest is the communication compexity: How many bits have to be
exchanged per new block of transactions:

e Typically, the instructions are divided into ‘views’ (rounds), with a different
leader suggesting a block of transactions for agreement in each view.



STATE MACHINE REPLICATION

A metric of interest is the communication compexity: How many bits have to be
exchanged per new block of transactions:

e Typically, the instructions are divided into ‘views’ (rounds), with a different
leader suggesting a block of transactions for agreement in each view.

¢ O(n) communication complexity inside each view was known, but;

e Best known complexity per view change was O(n?).



STATE MACHINE REPLICATION

A metric of interest is the communication compexity: How many bits have to be
exchanged per new block of transactions:

e Typically, the instructions are divided into ‘views’ (rounds), with a different
leader suggesting a block of transactions for agreement in each view.

¢ O(n) communication complexity inside each view was known, but;

e Best known complexity per view change was O(n?).

e New method gives O(n) view changes.

Joint work with Ittai Abraham



The underlying protocol. We suppose view synchronisation is required for some
underlying protocol (such as Hotstuff) with the following properties:

e Instructions are divided into views. KEach view v has a designated leader,
denoted lead(w).

e If the honest processors spend long enough in a view with an honest leader
when network conditions are good, the view will complete successfully, and
produce a ‘certificate’ (QC) signed by n — f processors.



The underlying protocol. We suppose view synchronisation is required for some
underlying protocol (such as Hotstuff) with the following properties:

e Instructions are divided into views. KEach view v has a designated leader,
denoted lead(w).

e If the honest processors spend long enough in a view with an honest leader
when network conditions are good, the view will complete successfully, and
produce a ‘certificate’ (QC) signed by n — f processors.

The view synchronisation task:

e We have to ensure that all non-faulty processors eventually spend long enough
in the same view that it completes successully.

e We also want a protocol which is optimistically responsive: i.e. can go as fast
as the network can handle.



Clock-times. To synchronise processors while maintaining optimistic responsiveness,
we have a predetermined ‘clock-time’ corresponding to each view: The clock-time cor-
responding to view v is t, := I'v. At certain points in the execution, a processor may
instantaneously forward their clock to some clock-time t,, and enter view v.



Clock-times. To synchronise processors while maintaining optimistic responsiveness,
we have a predetermined ‘clock-time’ corresponding to each view: The clock-time cor-
responding to view v is t, := I'v. At certain points in the execution, a processor may
instantaneously forward their clock to some clock-time t,, and enter view v.

The safety condition. We want to ensure that when processors forward their clocks
a certain safety condition is maintained: For some fixed I', and for each honest pro-
cessor, at least f other honest processors have their clocks at most I' behind.



Clock-times. To synchronise processors while maintaining optimistic responsiveness,
we have a predetermined ‘clock-time’ corresponding to each view: The clock-time cor-
responding to view v is t, := I'v. At certain points in the execution, a processor may
instantaneously forward their clock to some clock-time t,, and enter view v.

The safety condition. We want to ensure that when processors forward their clocks
a certain safety condition is maintained: For some fixed I', and for each honest pro-
cessor, at least f other honest processors have their clocks at most I' behind.

This will allow us to achieve view synchronisation. When an honest processor enters
a new view v, they send a message to the leader telling them. Once the leader receives
f 4+ 1 of these, it combines these into a ‘start view v’ message, telling other processors
to start the view. The condition above means this will happen in sufficient time.



HOW DO WE MAINTAIN THE SAFETY CONDITION?

We only forward a clock to ¢t in two cases:

e We see attestations from n — f processors that they are at most I' behind ¢
(we see a QC for the previous view).



HOW DO WE MAINTAIN THE SAFETY CONDITION?

We only forward a clock to ¢t in two cases:

e We see attestations from n — f processors that they are at most I' behind ¢
(we see a QC for the previous view).

e We see attestations from f 4 1 processors that their clock is > t (we see a
message saying we should start view v).

Inductively, it’s easy to see that the safety condition will never be violated.



Thanks for listening!



