
Program Equivalence
from Theory to Practice

Vasileios Koutavas

13th Panhellenic Logic Symposium

HOW DID IT
COME ABOUT?

IS IT USEFUL IN
PRACTICE?

WHAT ARE THE
CHALLENGES?

AN APPROACH
TO AUTOMATION

Program Equivalence

thesoftwareguild.com https://javaconceptoftheday.com/history-of-programming-languages/

hopl.info

The right tool for the job
The difficulty of programming has become the main difficulty in the use
of machines ... To make it easy, one must make coding comprehensible.
This may only be done by improving the notation of programming.
[Glennie 1952 – Autocode]

FORTRAN did not really grow out of some brainstorm about the beauty
of programming in mathematical notation; instead, it began with
recognition of a basic problem of economics: programming and
debugging costs already exceeded the cost of running a program, and as
computers became cheaper this imbalance would become more and
more intolerable. This prosaic economic insight, plus experience with the
drudgery of coding, plus an unusually lazy nature led to my continuing
interest in making programming easier. [Backus - Fortran 1953]

https://www.flickr.com/photos/ddebold/185160909/

[Landin, P. J. (1966)]

Programming Language Semantics

• Create a logical formalism able to express
”program behaviour”
• Map program expressions of a PL into this

formalism

Syntax:
Program

Expressions

Meaning:
Program
Behaviour

[Morris (1946). Signs, Language, and Behavior]

[Bakus (1959). ALGOL 58]

[Dijkstra (1961). On the Design of Machine Independent

Programming Languages]

[Landin (1966). A λ-Calculus Approach]

[Plotkin (1977). LCF considered as a programming language]

Programming Language Semantics
Motivation:
• Improve design of practical languages

eg: [Wilkes in (Gorn 1964)], [Backus 1964]

• Make sure compilers of high-level languages are
correct

eg: [Perlis in (Gorn 1964)], [Milne and Strachey 1976]

• Formal language mathematics make computing
theoretically possible

eg: [Mahoney 1988], [Milner 1993]

• Enable mathematical proofs about programs
eg: [McCarthy 1963], [Scott 1994]

Syntax:
Program

Expressions

Meaning:
Program
Behaviour

[Astarte (2019). Formalising Meaning: a History of Programming Language Semantics]
[Perlis (1981) and Naur (1981). History of Programming Languages]
[Alberts (2014). Annals of the History of Computing.]

Building + Understanding

Engineering Programming
Languages

• PL feature combinations
• Expressivity
• Conciseness
• Readability
• Modularity
• Linguistic style
…

Programming Language
Semantics

• PL models
• Syntax à Mathematical behaviour

• Properties
• Functional correctness
• Safety, Liveness, Fairness
• Security
• Program Equivalence
• …

• Proof Techniques
• Verification Techniques

Computing Science = Engineering + Mathematics
vectorstock..com

Syntax:
Program

Expressions

Meaning:
Program
Behaviour

Emergence of Program Equivalence (1/3)
• Scott, 1969:

The aim [of semantics] is to develop a theory for correctness, equivalence, and termination, for
a suitably rich language involving assignment, recursive procedures, and call by value

• Scott, 1970-73: seminal mathematical model of the λ calculus, based
of continuous functions.
• Collaboration with Strachey
• Birth of Domain Theory
• The semantics of programs can be formed by math and logic. Proofs about programs can be

made without using syntax & computations.

• Milner, Morris and Newey 1975: Logic of Computable Functions (LCF)
• Theorem prover based o Scott’s domain theory.
• Enabled the verification of simple compilers.
• Gave rise to the programming language ML.

Emergence of Program Equivalence (2/3)

Plotkin (1977) creates PCF, the basis for
typed functional languages like Haskell
and ML.

Abstract
… It turns out that a program denotes
⟘ iff it does not terminate.
From this it follows that if two terms
have the same denotation in one of
these semantics, they have the same
behaviour in all contexts. The
converse fails for all the semantics…

LAMBDA-CALCULUS MODELS OF PROGRAMMING LANGUAGES

by

JAMES HIRAM MORRIS, JR.

Submitted to the Alfred P. Sloan School of Management on December
13, 1968 in partial fulfillment of the requirements for the degree
of Doctor of Philosophy in Computer Science.

A B S T R A C T

Two aspect of programming languages, recursive definitions and type
declarations are analyzed in detail. Church's %-calculus is used
as a model of a programming language for purposes of the analysis.

The main result on recursion is an analogue to Kleene's first recursion
theorem: If A = FA for any %-expressions A and F, then A is an extension
of YF in the sense that if E[YF], any expression containing YF, has a
normal form then E[YF] = E[A]. Y is Curry's paradoxical combinator. The
result is shown to be invariant for many different versions of Y.

A system of types and type declarations is developed for the %-calculus
and its semantic assumptions are identified. The system is shown to be
adequate in the sense that it permits a preprocessor to check formulae
prior to evaluation to prevent type errors. It is shown that any formula
with a valid assignment of types to all its subexpressions must have a
normal form.

Thesis Supervisor: John M. Wozencraft
Title: Professor of Electrical Engineering

An Extensional Theory of Contextual
Equivalence
• Two terms are equivalent if they

have the same behaviour inside
any program context.
• Bohm Trees as meanings to λ terms
• Theorem: Two λ-terms are cxt

equivalent when their Böhm trees
are equal up to small
transformations.
• It was later proven that Morris’ and

Scott’s models agree: they equate
the same λ-terms.

Emergence of Program Equivalence (3/3)
Morris 1969 PhD Thesis at MIT

Contextual Equivalence
M ≡ N if interchangeable inside any program context C

• Captures all functional & some non-functional behaviour of M,N
• Supports Compositional reasoning:

MC NCd diff

M1P M2 N1P N2≡if & thenN2≡M2N1≡M1

Contextual Equivalence
M ≡ N if interchangeable inside any program context C

• Captures all functional & some non-functional behaviour of M,N
• Supports Compositional reasoning:

MC NCterminates iff terminates

M1P M2 N1P N2≡if & thenN2≡M2N1≡M1

In fact
termination is

enough

Contextual Equivalence becomes core in Semantics
• Scott’s and Morris’ models of the lambda calculus
• They are “sound”:

• if two λ terms are mapped to the same semantics object è they are contextually
equivalent.

• But they are not “fully abstract” [Plotkin 1977]:
• if two λ terms are contextually equivalent è they may be distinguished by the

semantics.
• This turns out to mean: the semantics encompasses more than the behaviour

of λ terms. This is somewhat unsatisfactory.

“parallel-or”

• Contextually equivalent functions:
• no λ-calculus context can “see” a difference

• All early models of the λ-calculus distinguish the two (not fully abstract)
• If we add a “parallel or” operator in the λ calculus, then models become fully abstract
• Early models of the λ-calculus encompass exactly all λ-calculus behaviour + por

The search continued for fully
abstract models of

programming languages

Contextual equivalence
becomes core in PL semantics

≡

Game Semantics
[Abramsky,Jagadeesan,Malacaria’94][Hyland,Ong’95][Nickau’94]
• Mathematical objects: sequences of moves by a proponent and an opponent (plays)
• Meaning of terms = strategies of plays
• Achieved fully abstraction for the (typed) lambda calculus!*

• SIGLOG 2017 Alonzo Church award for the invention of Game Semantics

[Abramsky] * With some caveats

Operational Semantics
• Meaning of terms = the computation steps in an abstract machine
• Early models of equivalence
• Logical Relations
• Bisimulations [Milner 1980’s]
• Provide effective proof techniques of equivalence

HOW DID IT
COME ABOUT?

IS IT USEFUL IN
PRACTICE?

WHAT ARE THE
CHALLENGES?

AN APPROACH
TO AUTOMATION

Program Equivalence

Is Program Equivalence Useful?
• Significant contribution to research
• Equivalence has shaped a lot of PL semantics research (see previous slides)

• Applications areas include:
Compiler correctness

Verification of cryptographic protocols

Regression verification [Strichman] [Ulbrich]

General verification

Specification
≡

Implementation

Regression Verification

Regression Verification

Regression Verification

• Tried and tested
• Released to clients
• Becomes legacy

Regression Verification

Regression Verification

Regression Verification

Regression Verification

Version 1 Version 2
Has the diff introduced

any bugs?

Has the diff
changed the program

behaviour?

Regression Verification

Version 1 Version 2
Has the diff introduced

any bugs?Version 1 Version 2

Has the diff changed
the behavior of

any affected program?

… …
Reality: between versions
• 1000s of diffs
• by 100s of developers
• affecting many products

Regression Verification

Version 1 Version 2

Approach 1:
Regression test every

program

… …

✘ Cost
✘ Resources
✘ Feedback delay
✘ Access to code

Approach 2:
Verify every program

Regression Verification

Version 1 Version 2

… …

✘ Cost (formal model)
✘ Resources
✘ Feedback delay
✘ Access to code

Approach 3:
Verify absence of
behaviour change

for every program pair

Regression Verification

Version 1 Version 2

… …

✘ Cost
✘ Resources (statespace)
✘ Feedback delay
✘ Access to code

Approach 4:
Regression Verification

Verify absence of
behaviour change for diff

Regression Verification

Version 1 Version 2

ü Cost (no formal spec)
ü Resources (smaller state-space)
ü Feedback delay
ü No need for full access to code

• Contextual equivalence

• Contextual refinement

Compiler Correctness
[Abadi 1998] noted that full abstraction relates to security in compilers

Programmer
Reasons at high-level

Attacker may discover
vulnerabilities at low-level

Such vulnerabilities have been identified in Java and .NET [Abadi ‘98], [Kennedy 2006]

High-level
pgm term 1

High-level
pgm term 2

compiles

Low level
term 1

Low-level
term 2

≡

compiles

≢

[Kennedy 2006]

Programmer’s expectation

C# code

Vulnerability: compiled code in .NET breaks the expectation

Verification of Security protocols
• Seminal work: [Abadi, Fournet 2001] The applied pi calculus
• Secrecy, privacy, anonymity properties can be expressed as

contextual equivalence queries
• Contexts: Dolev-Yao attackers

Protocol
[Secret]

Protocol
[Nonce]≡

Voting Machine
[Voter 1]
[Voter 2]

≡
Voting Machine

[Voter 2]
[Voter 1]

Smart Contract Verification
The infamous DAO vulnerability in Etherium led to $60M worth of Ether to be
stolen

private int balance := 100

public transfer (beneficiary, amount) :
if (balance >= amount)) then

old_balance := balance
beneficiary.send (m);
balance = balance - amount;
assert (balance == old_balance + amount)

public contract (address,…) :
… transfer(address, 1 Eth)…

≢

private int balance := 100

private transfer (beneficiary, amount) :
if (balance >= amount)) then

beneficiary.send (m);
balance := balance - amount;

public contract (address,…) :
… transfer(address, 1 Eth)…

Fix:

balance := balance - amount;
send (m);* Many similar Etherium SC vulnerabilities are being discovered each year.

Making Program Equivalence useful

Regression
Verification

Contextual
Equivalence
Verification
Technology

…

Existing
PL Semantics

Theory

Create
algorithms

Adapt to
Applications

Compiler
Correctness

Security

HOW DID IT
COME ABOUT?

IS IT USEFUL IN
PRACTICE?

WHAT ARE THE
CHALLENGES?

AN APPROACH
TO AUTOMATION

Program Equivalence

Challenges in Creating Equivalence Verification Tech.

• Existing techniques are theoretical
• Not made for practical verification

• The equivalence verification problem
• Is undecidable

• Involves infinities

• integers: infinite base type domains, reasoning about arithmetic

• Function closures: infinite higher type domains

• Infinite interactions between program and context

• …

HOW DID IT
COME ABOUT?

IS IT USEFUL IN
PRACTICE?

WHAT ARE THE
CHALLENGES?

AN APPROACH
TO AUTOMATION

Program Equivalence

The HOBBIT Approach
• Undecidability: Bounded exploration

• Arithmetic: symbolic execution + Z3 Theorem Prover

• Function Closures: Operational Game Semantics

• Infinite interactions with context: Bisimulation techniques

• Released tool for ML-like language:
https://github.com/LaifsV1/Hobbit

https://github.com/LaifsV1/Hobbit

Labelled Transition System
• Interface between program and context
• Two-player game
• Proponent: program
• Opponent: context

• Moves: Applications (app / app); Returns (ret / ret)
• Labelled Transition System: an abstract machine describing all

possible interractions between Proponent and Opponent

• Benefit of Game Semantics: we only need to enumerate all opponent
moves, not all opponent programs

Simple Examples
Equivalence:

Inequivalence:

Simple Examples
Equivalence:

Inequivalence:

Bounded Model Checking

• Precise exploration
• Exhaustive exploration up to bound
• Works well for verifying inequivalences

• Hobbit finds 68/68 inequivalences
• 0.3sec per inequivalence avg.
• Bound <203 app moves

But how can we
VERIFY EQUIVALENCES?

Verifying equivalence: dealing with infinities
• Opponent may sequence calls to the same function (inf. trace)

• Opponent may nest calls to the same function (inf. trace & call stack)

x=0 x=1

Finitising the exploration: loop detection
• Memoisation: loop exists if same configuration reached twice

• Normalisation: configurations identical up to permutations, α-equiv.

• Garbage Collection: configurations identical up to unused locations
• Normalisation and GC expressed as bisimulation up-to techniques.

Bisimulation up-to techniques
Bisimulation:
C1 ≈ C2 iff
• C1 ⇒ C1’ implies ∃C2’. C2 ⇒ C2’ and C1’ ≈ C2’
• Vice-versa

Bisimulation up to normalization and GC:

C1 ≈ C2 iff
• C1 ⇒ C1’ implies ∃C2’. C2 ⇒ C2’ and norm(gc(C1’)) ≈ norm(gc(C2’))
• Vice-versa

α α

α α

[Theory of bisimulation enhancements by Pous, Sangiorgi]

Bisimulation up-to techniques

• Many existing up-to techniques more useful in manual proofs but

hard to implement (e.g. up to context)

• LTS with symbolic higher-order arguments an implementable

alternative to some advanced up-to techniques (e.g. up to context)

• Some standard up-to techniques (GC, normalisation) still important.

• BUT more techniques needed to address infinite LTSs in many

examples
• In our work we invent 3 new up-to techniques

Up to Separation
• Intuition: function calls that explore different parts of the state can be explored independently

• Corollary: calls to functions without shared state need not be sequenced by opponent

Up to Separation
• Intuition: function calls that explore different parts of the state can be explored independently

• Corollary: calls to functions without shared state need not be sequenced by opponent

In many examples removes
infinite traces due to:
• Sequencing function calls
• Nesting function calls

Easily implementable:
• Separate functions based on

shared memory footprint

Up to Reentry
• Intuition: skip nested calls if functions do not observably modify shared state

Up to Reentry
• Intuition: skip nested calls if functions do not observably modify shared state

Removes infinite traces due
to nesting function calls in
even more examples

User guided:
• User indicates to which functions to apply
• Used incorrectly it can fail in equivalences
• If it fails, reverify without it to weed out false-negatives

Up to State Invariants
• Intuition: use predicates over symbolic values to abstract concrete shared state

Up to State Invariants
• Intuition: use predicates over symbolic values to abstract concrete shared state

• Removes infinite traces due to
state change in many examples

• Can describe relational invariants

User guided:
• User provides invariants (no inference atm)
• Used incorrectly it can fail in equivalences
• If it fails, reverify without it to weed out false-negatives

HOBBIT: Higher Order Bounded BIsimulation Tool
All techniques implemented in HOBBIT.
• Only reports true positive, true negative, bound exhausted

What can we verify with these techniques?
• 68/68 inequivalences [20sec]
• 72/105 equivalences [5.6sec]
• Only 32 [1623sec] without up to separation
• Only 57 [178sec] without up to reentry
• Only 47 [178sec] without up to invariants
• Only 3 [2098sec] without any up-to techniques!

https://github.com/LaifsV1/Hobbit

HOBBIT: Higher Order Bounded BIsimulation Tool
• We can verify all [Meyer-Sieber ‘88] example equivalences
• Benchmark examples for equivalence proof techniques

• Many but not all example equivalences from the literature
• Well-bracketed examples [Jaber – SyTeCi]
• Internal recursion examples [Ulbrich et. al – Reve] [Strichman et. al – RVT]

Future Work
• Handle all example equivalences from the literature for this deterministic

programming language

• Extend the approach to non-deterministic and concurrent languages, purely

functional (λ calculus)

• Apply to real-world settings such as regression verification

New theory and verification techniques required!

Thank you!

