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Intuitionism, Constructivism, and Type Theory

I Many di�erent philosophies: Brouwerian intuitionism, Heyting
arithmetic, Russian constructivism, Bishop-style mathematics,
etc. (see Stanford Encyclopedia of Philosophy entries)

I One common feature:
To prove that a mathematical object exists

you must show how to construct it.

I In particular, the details of the construction ma�er.
I Modern algebra: the structure of an isomorphism ma�ers.
I Martin-Löf Type Theory (MLTT) was created as a

formalization of Bishop-style constructive mathematics.
I Less focus on truth, more focus on proof.
I The law of the excluded middle (LEM) � _ ¬� is rejected.



Constructions
Let A,B, . . . be sets.

0 def
= ; 1 def

= {⇤}

A⇥ B def
= {(a, b) | a 2 A and b 2 B} A ! B def

= {f | f : A ! B}

A+ B def
= {(1, a) | a 2 A} [ {(2, b) | b 2 B}

Let ¬A def
= A ! 0.

Example

I (x, y) 7! x 2 (A⇥ B) ! A

I x 7! (y 7! (x, y)) 2 A ! (B ! A⇥ B)

I �x.�y. (x, y) 2 A ! (B ! A⇥ B)

I �(x, v).

(
(1, (x, b)) if v = (1, b)
(2, (x, c)) if v = (2, c)

2 A⇥(B+C) ! (A⇥B)+(A⇥C)

I �a.�f . f (a) 2 A ! ¬¬A



Dependence
Let (Ba)a2A be a family of sets.

(a : A)⇥ Ba
def
=

X

a2A
Ba

def
= {(a, b) | a 2 A and b 2 Ba}

(a : A) ! Ba
def
=

Y

a2A
Ba

def
=

(
f : A !

[

a2A
Ba | f (a) 2 Ba for all a 2 A

)

Given a constant family of sets (B)a2A we have

(a : A)⇥ B = A⇥ B (a : A) ! B = A ! B

Example

Let Pn
def
=

(
{⇤} if n is prime
; otherwise

I (11, ⇤) 2 (n : N)⇥ Pn, but (4, ⇤) 62 (n : N)⇥ Pn
I �n. if n is prime then (1, ⇤) else (2, id;) 2 (n : N) ! Pn + ¬Pn
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Martin-Löf Type Theory (MLTT)

I Invented by Per Martin-Löf in the late 1960s.
I A formal theory in natural deduction style.
I Every term in the theory needs to have a type.
I There are no propositions, only types.

Every term is a construction which proves its type.
types = predicates
terms = proofs

I ZFC: engine (first-order logic) + fuel (axioms)
MLTT: “engine and fuel all in one” (Pieter Hofstra, 1975–2022)



Judgements
Six distinct kinds of judgement:

� ctx � is a context
� ` A type A is a type in context �
� ` M : A M is a term of type A in context �

� ⌘ � ctx � and � are definitionally equal contexts
� ` A ⌘ B type A and B are definitionally equal types
� ` M ⌘ N : A M and N are definitionally equal terms

The equality judgements have rules that make them

I equivalence relations, e.g.
� ` A ⌘ B type
� ` B ⌘ A type

I congruences, e.g.

� ` A1 ⌘ A2 type �, x : A1 ` B1 ⌘ B2 type
� ` (x : A1) ! B1 ⌘ (x : A2) ! B2 type



Contexts, variables, conversion
A context is a list of variables and their types.

· ctx
� ctx � ` A type

�, x : A ctx

Variables stand for terms.
If I have a variable I can use it as a term:

�, x : A,� ctx
�, x : A,� ` x : A

We can always replace definitionally equals by equals.
The type conversion rule:

� ` M : A � ` A ⌘ B type
� ` M : B



What is a type?

It is a classifier of terms.

Terms of a certain type have an interface: a specification of how
they can be created and consumed.

Ingredients of a type
I a formation rule (when can I form this type?)
I an introduction rule (how do I make terms of this type?)
I an elimination rule (how do I use terms of this type?)
I a computation rule (how do I calculate with its elements?)
I a uniqueness rule (what do terms of this type look like?)

Sometimes computation rules are called � rules
and uniqueness rules ⌘ rules.



Dependent function types / ⇧ types

formation
�, x : A ` B type

� ` (x : A) ! B type

introduction
�, x : A ` M : B

� ` �x : A.M : (x : A) ! B

elimination
� ` M : (x : A) ! B � ` N : A

� ` M(N) : B[N/x]

computation
�, x : A ` M : B � ` N : A

� ` (�x : A.M)(N) ⌘ M[N/x] : B[N/x]

uniqueness
� ` M : (x : A) ! B

� ` M ⌘ �x : A.M(x) : (x : A) ! B



Dependent sum types / ⌃ types

formation
�, x : A ` B type

� ` (x : A)⇥ B type

introduction
�, x : A ` B type � ` M : A � ` N : B[M/x]

� ` (M,N) : (x : A)⇥ B

elimination
� ` M : (x : A)⇥ B
� ` pr1(M) : A

� ` M : (x : A)⇥ B
� ` pr2(M) : B[pr1(M)/x]

computation
�, x : A ` B type � ` M : A � ` N : B[M/x]

� ` pr1((M,N)) ⌘ M : A

�, x : A ` B type � ` M : A � ` N : B[M/x]
� ` pr2((M,N)) ⌘ N : B[M/x]

uniqueness
� ` M : (x : A)⇥ B

� ` M ⌘ (pr1(M), pr2(M)) : (x : A)⇥ B



Coproducts (disjoint unions)

form.
� ` A type � ` B type

� ` A+ B type

intro.
� ` M : A

� ` inl(M) : A+ B

� ` N : B

� ` inr(N) : A+ B

elim.

� ` M : A+ B �, c : A+ B ` C type
�, x : A ` P : C[inl(x)/c] �, y : B ` Q : C[inr(y)/c]

� ` case[c.C](M; x. P; y.Q) : C[M/c]

comp.

� ` M : A+ B
�, c : A+ B ` C type �, x : A ` P : C[inl(x)/c]

�, y : B ` Q : C[inr(y)/c] � ` E : A

� ` case[c.C](inl(E); x. P; y.Q) ⌘ P[E/x] : C[inl(E)/c]



Natural numbers

form.
� ` Nat type

intro.
� ` zero : Nat

� ` N : Nat
� ` succ(N) : Nat

elim.

� ` N : Nat �, n : Nat ` C type
� ` P : C[zero/n] �, n : Nat, c : C ` Q : C[succ(n)/n]

� ` rec[c.C](N ; P; n, c.Q) : C[N/n]

comp.
. . .

� ` rec[c.C](zero; P; n, c.Q) ⌘ P : C[zero/n]

. . .

� ` rec[c.C](succ(x); P; n, c.Q) ⌘ Q[x, rec(x; P; n, c.Q)/n, c] : C[succ(x)/n]



Metatheory (I)

Let J stand for either A type or M : A.

Theorem (Weakening)

The following rule is admissible:
�,� ` J � ` A type

�, x : A,� ` J

Theorem (Substitution / Cut)

The following rule is admissible:
� ` M : A �, x : A,� ` J

�,�[M/x] ` J [M/x]

Theorem
There is a set-theoretic model of MLTT with ⇧, ⌃, Nat, and + types.

The model can also be constructed in CZF (constructive ZF).
Corollary: the theory is consistent (if the ambient metatheory is).



Metatheory (II)

Theorem (Canonicity)
Let ` M : C. Then:
I if C ⌘ A+ B then either ` M ⌘ inl(P) : A+ B for some ` P : A

or ` N ⌘ inr(Q) : A+ B for some ` Q : B,
I if C ⌘ Nat then ` M ⌘ succn(zero) : Nat for some n 2 N
I if C ⌘ (x : A)⇥ B then ` M ⌘ (P,Q) : (x : A)⇥ B for some

` P : A and ` Q : B[P/x]

Moreover, finding the “canonical form” of such terms is computable.

Theorem (Normalization)
Given �, M, N and A, it is decidable whether � ` M ⌘ N : A.

Theorem (Decidability)
Given �, and any judgement J , it is decidable whether � ` J .

These properties give MLTT its computational flavour.
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Propositional constructions

Types are propositions. Terms are proofs.

Define:

^ def
= ⇥ _ def

= +

Given ` A,B type we have
I ` �x.�y. x : A ! B ! A
I ` �x.�y. (x, y) : A ! B ! A ^ B
I ` �p. (pr2(p), pr1(p)) : A ^ B ! B ^ A
I ` �u. case(u; x. inr(x); y. inl(y)) : A _ B ! B _ A

Theorem (Curry-Howard correspondence)
All intuitionistically valid formulas/types are inhabited.



Addition

Let � def
= x : Nat, y : Nat.

� ` x : Nat � ` y : Nat
�, n : Nat, c : Nat ` n : Nat

�, n : Nat, c : Nat ` succ(n) : Nat
� ` rec[ .Nat](x; y; n, c. succ(c)) : Nat

So we can define

` add = �x.�y. rec(x; y; n, c. succ(n)) : Nat ! Nat ! Nat

and compute

y : Nat ` add(zero)(y)⌘ y : Nat
y : Nat ` add(succ(zero))(y)⌘ succ(y) : Nat

and so on.



A familiar construction (I)

Let � ` A,B type, and x : A, y : B ` R(x, y) type. Then

x : A, y : B ` R(x, y) type
x : A ` (y : B)⇥ R(x, y) type

` (x : A) ! (y : B)⇥ R(x, y) type

This is essentially 8x : A. 9y : B. R(x, y).

Similarly, recalling that A ! B def
= (x : A) ! B, we have

...
f : A ! B, x : A ` R(x, f (x)) type

` (f : A ! B)⇥ ((x : A) ! R(x, f (x))) type

This is essentially 9f : A ! B. 8x : A. R(x, f (x)).



A familiar construction (II)
Let � ` A,B type, and x : A, y : B ` R(x, y) type. Then

` (x : A) ! (y : B)⇥ R(x, y) type

This is essentially 8x : A. 9y : B. R(x, y).
Similarly, recalling that A ! B def

= (x : A) ! B, we have

` (f : A ! B)⇥ ((x : A) ! R(x, f (x))) type

This is essentially 9f : A ! B. 8x : A. R(x, f (x)).

� ` ? : ((x : A) ! (y : B)⇥ R(x, y))

! ((f : A ! B)⇥ ((x : A) ! R(x, f (x))))

Indeed, this is the type-theoretic “axiom” of choice:

� ` �g. (�x. pr1(g(x)),�x. pr2(g(x))) : ((x : A) ! (y : B)⇥R(x, y))

! ((f : A ! B)⇥ ((x : A) ! R(x, f (x))))



A familiar construction (II)
Let � ` A,B type, and x : A, y : B ` R(x, y) type. Then

` (x : A) ! (y : B)⇥ R(x, y) type

This is essentially 8x : A. 9y : B. R(x, y).
Similarly, recalling that A ! B def

= (x : A) ! B, we have

` (f : A ! B)⇥ ((x : A) ! R(x, f (x))) type

This is essentially 9f : A ! B. 8x : A. R(x, f (x)).

� ` ? : ((x : A) ! (y : B)⇥ R(x, y))

! ((f : A ! B)⇥ ((x : A) ! R(x, f (x))))

Indeed, this is the type-theoretic “axiom” of choice:

� ` �g. (�x. pr1(g(x)),�x. pr2(g(x))) : ((x : A) ! (y : B)⇥R(x, y))

! ((f : A ! B)⇥ ((x : A) ! R(x, f (x))))



The type-theoretic “axiom” of choice

Let � ` A,B type, and x : A, y : B ` R(x, y) type. Then

� ` �g. (�x. pr1(g(x)),�x. pr2(g(x))) : ((x : A) ! (y : B)⇥R(x, y))

! ((f : A ! B)⇥ ((x : A) ! R(x, f (x))))

Suppose g : (x : A) ! (y : B)⇥ R(x, y). Then clearly

fg
def
= �x : A. pr1(

(y:B)⇥R(x,y)z}|{
g(x) )

| {z }
B

: A ! B

hg
def
= �x : A. pr2(

(y:B)⇥R(x,y)z}|{
g(x) )

| {z }
R(x,pr1(g(x)))

: (x : A) ! R(x, pr1(g(x)))

But f (x) ⌘ pr1(g(x)), so this type is equal to (x : A) ! R(x, f (x)).
Hence �g. (fg, hg) has the right type.



Summary

I MLTT is a formal theory of constructions and dependence.
I It has very good metatheoretic and computational properties.
I It is inherently “constructive” (for some sense of the word).

Tomorrow: equality as a proposition/type.
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Equality

Recall that we could define

` add = �x.�y. rec(x; y; n, c. succ(n)) : Nat ! Nat ! Nat

and compute that

y : Nat ` add(zero)(y)⌘ y : Nat

It is not the case that

x : Nat ` add(x)(zero)⌘ x : Nat

⌘ only allows unfolding of definitions, not non-trivial theorems.

For that we need to introduce the identity type.
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Intensional Identity Types

form.
� ` M : A � ` N : A
� ` IdA(M,N) type

intro.
� ` M : A

� ` refl(M) : IdA(M,M)

elim.

�, x : A, y : A, p : IdA(x, y) ` B type
� ` P : IdA(M,N) �, z : A ` Q : B[z, z, refl(z)/x, y, p]

� ` J[x,y,p.B](P; z.Q) : B[M,N , P/x, y, p]

comp.

�, x : A, y : A, p : IdA(x, y) ` B type
�, z : A ` Q : B[z, z, refl(z)/x, y, p]

� ` J(refl(M); z.Q) ⌘ Q[M/z] : B[M,M, refl(M)/x, y, p]

Because of the type conversion and congruence rules we always have

� ` M ⌘ N : A
� ` refl(M) : IdA(M,N)



Some examples (I)

I Let ` A type and x : A ` P(x) type. We have:

x, y : A, p : IdA(x, y) ` transp(p)⌘ J(p; z.�w.w) : B(x) ! B(y)

Informally:
Let x, y : A and p : IdA(x, y). Wewant to construct a term of type
B(x) ! B(y). By elimination we may assume that x ⌘ y , so it
su�ices to give a term B(x) ! B(x). Take the identity function.

I Let x : A ` f (x) : B. Then x, y : A ` IdB(f (x), f (y)) type. We have

x, y : A, p : IdA(x, y) ` apf (p)⌘ J(p; x. refl(f (x))) : IdB(f (x), f (y))

Informally:
Let x, y : A and p : IdA(x, y). We want to show IdB(f (x), f (y)).
By elimination we may assume that x ⌘ y , so it su�ices to con-
struct a term of type IdB(f (x), f (x)). Take refl(f (x)).



Some examples (II)

Here is an informal proof that there is a term of type

x : Nat ` IdNat(add(x)(zero), x) type

We proceed by induction on x : Nat.
I If x ⌘ zero : Nat, then add(x)(zero)⌘ add(zero)(zero)⌘ zero.

Hence it su�ices to construct refl(zero) : IdNat(zero, zero).
I If x ⌘ succ(y) : Nat for some y : Nat, then

add(x)(zero)⌘ add(succ(y))(zero)⌘ succ(add(y)(zero))

By the IH we have p : IdNat(add(y)(zero), y). Hence

apsucc(�)(p) : IdNat(succ(add(y)(zero))| {z }
⌘ add(x)(zero)

, succ(y)| {z }
⌘ x

)

So we have shown the inductive step.



Metatheory

Theorem
The following rule is admissible.

` P : IdA(M,N)

` M ⌘ N : A

Any two propositionally equal terms in an empty context
are also definitionally equal. (Hence the name ‘intensional.’)

This did not apply to our previous proof because x : Nat was free.

Theorem
There is a set-theoretic model of MLTT with ⇧, ⌃, Id, Nat, and+ types.



Extensional Identity Types

One might argue that x : Nat ` . . . : IdNat(add(x)(zero), x) should
be promoted to a definitional equality

x : Nat ` add(x)(zero) ⌘ x : Nat

Add equality reflection rule:

� ` P : IdA(M,N)

� ` M ⌘ N : A

We then say we have extensional identity types. But then
I normalization is no longer decidable, and hence
I type checking is no longer decidable

So we are stuck with the ‘bureaucracy’ of intensional identity types.

But this is a fine type theory for computing by hand.
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Identity types are very mysterious

Let ` M,N : A. Construct ` IdA(M,N) type.

Now suppose ` P,Q : IdA(M,N).

What is the meaning of the following type?

` IdIdA(M,N)(P,Q) type

Should the following Uniqueness of Identity Proofs (UIP)
principle be inhabited for any type � ` A type?

` (x, y : A) ! (p, q : IdA(x, y)) ! IdIdA(x,y)(p, q) type (UIP)

It’s certainly true in the set-theoretic model!

Theorem (Hofmann-Streicher, 1998)
There is a model of MLTT in which the above principle of
uniqueness of identity proofs (UIP) is not true.



Groupoids

Definition
A groupoid G consists of
I a set of objects ob(G)
I for x, y 2 ob(G) a set of isomorphisms Hom(x, y)

We write f : x
⇠=�! y if f 2 Hom(x, y).

I for each x 2 ob(G) an identity 1x 2 Hom(x, x)
I for isos f : x

⇠=�! y and g : y
⇠=�! z a composite

g � f : x
⇠=�! z

I for each iso f : x
⇠=�! y and inverse iso f �1 : y

⇠=�! x , such that

f �1 � f = 1x : x
⇠=�! x f � f �1 = 1y : y

⇠=�! y

A one-object groupoid is . . .

a group!
If |Hom(x, y)|  1 a groupoid is . . . an equivalence relation!
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Groupoids

Definition
A groupoid G consists of
I a set of objects ob(G)
I for x, y 2 ob(G) a set of isomorphisms Hom(x, y)

We write f : x
⇠=�! y if f 2 Hom(x, y).

I for each x 2 ob(G) an identity 1x 2 Hom(x, x)
I for isos f : x

⇠=�! y and g : y
⇠=�! z a composite

g � f : x
⇠=�! z

I for each iso f : x
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⇠=�! x , such that

f �1 � f = 1x : x
⇠=�! x f � f �1 = 1y : y

⇠=�! y

A one-object groupoid is . . . a group!
If |Hom(x, y)|  1 a groupoid is . . . an equivalence relation!



The Hofmann-Streicher groupoid model of type theory

Hofmann and Streicher interpreted MLTT as follows:
I ` A type is interpreted by a groupoid JAK.
I A type family/dependent type x : A ` B type is interpreted by

a fibration JBK : JAK ! GPD of groupoids.
I A term of type x : A ` B type is a section of the fibration JBK.
I The identity type ` IdA(M,N) type is interpreted by the set of

isomorphisms of the groupoid JAK, i.e.

HomJAK(JMK, JNK)

In this model there are types with non-trivial identity types.

But where do groupoids come from?



Paths
Let X be a (topological) space.

Definition
A path in space X is a continuous function p : [0, 1] ! X .

Write p : x  y if p(0) = x and p(1) = y .

Given p : x  y let p�1 : y  x by p�1(t) def
= p(1� t).

Given p : x  y and q : y  z let

(p ⌅ q)(t) def
=

(
p(2t) if 0  t  1/2
q(2t � 1) if 1/2  t  1

�estion: given

p : x  y q : y  z r : z  w

is the following true?

(p ⌅ q) ⌅ r ?
= p ⌅ (q ⌅ r)



Homotopy
Let f , g : X ! Y be continuous functions.

Definition
A homotopy H from f to g is a continuous function

H : X ⇥ [0, 1] ! Y

such that H(�, 0) = f and H(�, 1) = g.

Write f ⇠ g if there is a homotopy from f to g.
⇠ is an equivalence relation.



Associativity and Homotopy
Given

p : x  y q : y  z r : z  w

we have that
(p ⌅ q) ⌅ r ⇠ p ⌅ (q ⌅ r) : x  w

If 1x : x  x and 1y : y  y are constant paths then p ⌅ 1y ⇠ p ⇠ 1x ⌅ p.



The Fundamental Groupoid

Let X be a space. Its fundamental groupoid ⇡(X) consists of
objects the points of X

isomorphisms equiv. classes [p] of paths p : x  y up to ⇠

Taking only equivalence classes of loops p : x  x at x 2 X gives
the fundamental group ⇡(X , x) of X at x .

These are essential algebraic invariants of the space X .

S1 def
= b

Theorem
⇡(S1, b) ⇠= Z



1-Groupoids
The fundamental insight:

Why quotient at all?

Definition
A groupoid G consists of
I a set of objects ob(G)
I for x, y 2 ob(G) a set of isomorphisms Hom(x, y)

...

Definition (sort of)
An 1-groupoid G consists of
I a set of 0-cells ob(G)
I for x, y 2 ob(G) an1-groupoid of 1-cells Hom(x, y)

...



The Fundamental1-Groupoid

Let X be a space. Its fundamental 1-groupoid ⇡1(X) consists of
0-cells) the points of X
1-cells) paths p : x  y between points
2-cells homotopies H : p ⇠ q between paths

...

Exact definition(s) tiresome to describe analytically.

Grothendieck’s (1928–2014) dream, aka the homotopy hypothesis:

1-groupoids = topological spaces up to homotopy



Identity Types and Homotopy

The intended pun:

types = spaces =1-groupoids
elements of the identity type = paths in the space

For example, given ` A type we can write down a term

⌅ : (x, y, z : A) ! IdA(x, y) ! IdA(y, z) ! IdA(x, z)

Informal proof: Suppose x, y, z : A, p : IdA(x, y), and q : IdA(y, z).
By the elimination rule we may assume that x ⌘ y and y ⌘ z , so it
su�ices to define a term of type IdA(x, x). Take refl(x).

Remember that because of the computation rule we have

refl(x) ⌅ refl(x)⌘ refl(x)



Associativity of path composition
Given x, y, z : A we can then define a term

assocxyz : (p : IdA(x, y)) ! (q : IdA(y, z)) ! (r : IdA(z,w)) !
IdIdA(x,w)((p ⌅ q) ⌅ r, p ⌅ (q ⌅ r))

Informal proof. Given p, q, r as above we may assume that x ⌘ y ⌘ z ⌘w
and p⌘ q ⌘ r ⌘ refl(x). Thus, we only need a term of type

IdIdA(x,x)((p ⌅ q) ⌅ r| {z }
⌘ refl(x)

, p ⌅ (q ⌅ r)| {z }
⌘ refl(x)

)

and for that we may take refl(refl(x)).

This can be taken to its logical conclusion—see HoTT book:

The elimination rule of the identity type
generates the structure of an1-groupoid.

In other words, MLTT is a synthetic theory of1-groupoids.
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Summary

I Intensional identity types allow proofs of non-trivial,
non-definitional equalities in MLTT.

I Iterated identity types generate the structure of an
1-groupoid.

I That is why sometimes the elimination rule for the identity
type is known as path induction.

I MLTT can be seen as a synthetic theory of1-groupoids.
Tomorrow: homotopy levels; equivalence; higher inductive types.
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III. Equivalences, Univalence, and�otients
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Previously

Intensional identity types seem to support the following view:
I Types are spaces (up to homotopy).
I Terms are points.
I Elements of the identity type are paths.
I Everything given in a synthetic manner, not analytic.

This discovery is independently due to
I Awodey and Warren [Math. Proc. Camb. Philos. Soc. 2009]
I Vladimir Voevodsky (1966–2017) [Stanford lecture 2006]

Interpretation of TT into simplicial sets: Kapulkin and Lumsdaine,
with thanks to Voevodsky [J. Eur. Math. Soc. 2018].



I. H���������� ��������� �� �����



Homotopy Levels
Types are spaces; they have higher-dimensional structure.

Yet, some types do not. Let A be a type.

contractible isContr(A) def
= (c : A)⇥ ((x : A) ! IdA(c, x))

proposition isProp(A) def
= (x, y : A) ! IdA(x, y)

set isSet(A) def
= (x, y : A) ! (p, q : IdA(x, y)) ! Id(p, q)
...

In general, we define

is-(-2)-type(A) def
= isContr(A)

is-(n+1)-type(A) def
= (x, y : A) ! isContr(IdA(x, y))

Then

is-(-1)-type(A) ' isProp(A) is-0-type(A) ' isSet(A)



Propositions and Sets

Here is an unusual result:

Theorem (Hedberg, J. Func. Prog 1998)
Let A be a type. If identity is decidable, i.e. if we have

d : (x, y : A) ! IdA(x, y) + ¬IdA(x, y)

then A is a set, i.e. we have a proof of isSet(A).

Corollary
Nat is a set.

In some sense, all the maths we have done so far is 0-dimensional!
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Identity types are not good enough

Theorem (Jan Smith, J. Symb. Log. 1988)
The type correspondong to Peano’s fourth axiom, i.e.

n : Nat ` IdNat(0, succ(n)) ! 0 type

is not inhabited in MLTT with!, ⇥, and identity types.

Proof: construct a model of MLTT where types are subsingleton sets.

To prove Peano 4, we intuitively want to
1. construct a type family n : Nat ` B(n) type where

`B(zero) type is inhabited
n : Nat `B(succ(n)) type is empty, i.e.⌘ 0

2. assuming n : Nat ` P : IdNat(0, succ(n)) and ` M : B(zero),
obtain n : Nat ` transp(P)(M) : B(succ(n))⌘ 0

We cannot perform Step 1 because types are not terms.



Universes à la Russell

We introduce the universe, a type of all (small) types.

� ` U type
� ` A : U
� ` A type

plus one rule for each type constructor, e.g.

� ` A : U �, x : A ` B : U
� ` (x : A) ! B : U

Caution. We must avoid the following to avoid paradoxes:

� ` U : U

Types may then be constructed as terms of U (e.g. by induction).

If A : U then we say that A is a small type.



Homotopy equivalence

Definition
Two topological spaces X and Y are homotopy-equivalent if there
are continuous functions f : X ! Y and g : Y ! X such that

g � f ⇠ 1X f � g ⇠ 1Y

where 1X and 1Y are the identity functions on X and Y .

We can model this synthetically in MLTT.



Type-theoretic Equivalences

Definition (Voevodsky)
We say that f : A ! B is an equivalence just if

isEquiv(f ) def
= (y : B) ! isContr((x : A)⇥ IdB(f (x), y))

This is a homotopically well-behaved notion of isomorphism.

For A,B : U define the type of (type-theoretic) equivalences

A ' B def
= (f : A ! B)⇥ isEquiv(f )

We can use equivalences to decompose identity types.

E.g. for any A,B : U and p, q : A⇥ B:

IdA⇥B(p, q) ' IdA(pr1(p), pr1(q))⇥ IdB(pr2(p), pr2(q))

This can be done for most type formers of MLTT.



Univalence

�estion:

What is an identity between types?

Voevodsky proposed adding the univalence axiom to MLTT:

ua : (A,B : U) ! (A ' B) ' IdU(A,B)

This spoils the computational character of MLTT, but is a revolution:

isomorphic/equivalent types are identical

This principle is o�en used informally in maths (‘abuse of notation’).
E.g. the Cauchy reals and the Dedekind reals are “the same.”

Its soundness is validated by the simplicial model of type theory.
(The identity type elimination rule remains valid!)
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�otients
It is in general di�icult to form quotients in MLTT.

�otient types:

� ` A type �, x : A, y : A ` R type
� ` A/R type

� ` M : A � ` A/R type`
� ` [M] : A/R

� ` M,N : A �, x : A, y : A ` R type � ` P : R[M,N/x, y]
� ` Qax(P) : IdA/R([M], [N ])

and so on… but such types are not necessarily e�ective:

�, x : A, y : A ` R(x, y) type � ` P : IdA/R([M], [N ])
� ` �?(M,N , P) : R(M,N)

Worse:

Theorem (Maie�i 1999)
If quotient types are e�ective and UIP holds then A+ ¬A for small A.



Higher Inductive Types (HITs)

Idea:

When building a type, also specify some paths.

For example, to build a type Int of integers we may postulate:
I for each M : Nat a positive integer pos(M) : Int
I for each M : Nat a negative integer neg(M) : Int
I an identity pnZero : IdInt(pos(zero), int(zero))

This can be used to specify homotopical spaces synthetically.
E.g. a circle can be specified by postulating
I a base point base : S1

I a path loop : IdS1(base, base)
This leads to synthetic homotopy theory. E.g. there is a
machine-checked proof that ⇡4(S3) ' Z2.



Homotopy Type Theory (HoTT)

The results of Awodey/Warren/Voevodsky led to a flurry of results.
This culminated in a Special Year at the IAS in Princeton:

HoTT def
= MLTT+ univalence axiom+ some HITs
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50 Years of MLTT

Achievements:
I A number of well-behaved type theories. . .
I . . .with well-understood semantics.
I One industrial-strength proof assistant: Coq.

Many machine-checked proofs! Greatest hits:
I Four color theorem [Gonthier 2008]
I Feit-Thompson odd order theorem [Gonthier et al. 2013]
I CompCert, a verified C compiler [Leroy et al. 2005–2018]
I Iris, for verifying concurrent programs [Jung et al. 2018]

I Many ‘experimental’ proof assistants: Agda, Lean, Arend, . . .
Projects to keep an eye on:
I Kevin Buzzard’s Xena Project (in Lean) at Imperial
I the CMU Hoskinson Center for Formal Mathematics
I Tim Gowers’ project on automated theorem proving (not TT)

I A deep connection between homotopy theory and MLTT.

https://xenaproject.wordpress.com/
https://www.cmu.edu/news/stories/archives/2021/september/hoskinson-center-for-formal-mathematics.html
https://gowers.wordpress.com/2022/04/28/announcing-an-automatic-theorem-proving-project/


Where to go from here

Read the HoTT book!

Many directions of work. To name a few:
I Synthetic homotopy theory. Be�er, possibly computational,

calculations of homotopy groups of spheres and other spaces.
I New formalizations of mathematics. Constructive,

machine-checked proofs of known and new results from
mathematics.
Is there some secret higher-dimensional content?

I Improved or new type theories. Either adding more power,
or improving the computational behaviour of HoTT.
I cubical type theories
I modal type theories
I metatheory, in particular objective metatheory
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