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Cryptography

Procedures that mitigate adversarial behavior

Public Key CryptographyOne Way Functions
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Blockchains

1) The problem: digital money transfer

2) The accounting: implement a ledger!

Transactio
ns:

…
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Blockchains

A Public Ledger or a Bulletin Board

Block #k

…

Block #k+1

…Genesis 
Block

Block #1

…… …

Block #k+2

Simple transactions Complex contracts
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Blockchains

A Public Ledger or a Bulletin Board

Block #k

…

Block #k+1

…Genesis 
Block

Block #1

…… …

Block #k+2

1) Content is provided by any user with sufficient funds
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Blockchains

A Public Ledger or a Bulletin Board

Block #k

…

Block #k+1

…Genesis 
Block

Block #1

…… …

Block #k+2

2) Anyone can read the current content of the ledger
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A Public Ledger or a Bulletin Board

Block #k

…

Block #k+1

…Genesis 
Block

Block #1

…… …

Block #k+2

3) No modifications of blockchain blocks possible

Blockchains
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A Public Ledger or a Bulletin Board

Block #k

…

Block #k+1

…Genesis 
Block

Block #1

…… …

Block #k+2

4) Update rate: New blocks created over time
Clock

functionality

Blockchains
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Distributed Ledger

§ Consistency: Everyone sees the same history
§ Liveness: Everyone can add new transactions
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Talk Outline

§ Proof-of-Work (PoW)-based Blockchains

§ Resource-Restricted Cryptography

§ PoWs in the “Standard” Model
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§ Parties (“miners”) have to do work in order to install a transaction
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PoW-based Blockchain Protocols (Bitcoin)
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§ Parties (“miners”) have to do work in order to install a transaction

§ Transactions are organized in chains of blocks

Proof of Work
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PoW-based Blockchain Protocols (Bitcoin)
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§ Then do “work”                                                                  
ctr := 0; while Hash(ctr; Hash(τ,tx)) > T do ctr++             

T: block’s “target” (difficulty level)
(T = 0000000000000000171A8B000000000000000000000000000000000000000000)

§ If while loop terminates "broadcast" (τ,ctr,tx)                                
(new “block”: state, counter, set of transactions)

§ Miners collect a set of transactions (“data”)                                                                  
tx =  (tx1, tx2, … ,txm) 
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SHA-256(·) 

PoW-based Blockchain Protocols (Bitcoin) (2)
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Last 10+ years:
§ PoW-based blockchain protocols  (e.g., Bitcoin [Nak08])

The Proof of Work Era 
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Proofs of Work (aka “Crypto Puzzles”)

§ “Moderately hard functions” [DN92,RSW96,Back97,JJ99,BN00,GMPY06,BGJPVW16, 
BRSV17/18…] 

I ran for a 
thousand steps!

Yeah, sure…

Prover

19

Verifier
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Q(·,·):  Polynomial-time predicate

Search for witness
takes long time (e.g., big-poly(d))

(a complexity lower bound
needs to be assumed/proved)

Proofs of Work (aka “Crypto Puzzles”)

witness
space

Q(x,·)

Challenge 
determines
work level d

Verification is easy!

§ “Moderately hard functions” [DN92,RSW96,Back97,JJ99,BN00,GMPY06,BGJPVW16, 
BRSV17/18…]

Successful only with 
some (small) probability!
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ctri-1
si-1

xi-1
G (   ) H(·)< T ctri

si

xi
G  (         )

§ Spam mitigation, Sybil attacks, denial of service protection, …

§ Most impactful application: Design of blockchain protocols such as Bitcoin

Hash(ctri-1; Hash(si-1, xi-1)) < T
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Proof of work

Proofs of Work (aka “Crypto Puzzles”)
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§ Parties (“miners”) always choose the longest chain they received
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PoW-based Blockchain Protocols (Bitcoin) (3)
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§ Parties (“miners”) always choose the longest chain they received

§ If party wants to erase a transaction, it has to find a longer chain!
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PoW-based Blockchain Protocols (Bitcoin) (3)
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§ Parties (“miners”) always choose the longest chain they received

§ If party wants to erase it transaction, it has to find a longer chain!

§ If transaction is “sufficiently deep,” it cannot do this unless it has a 
“majority of hashing power” 24

PoW-based Blockchain Protocols (Bitcoin) (4)

Cryptography in the Blockchain Era



Basic Properties of the Blockchain [GKL15]
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§ Determine the parameters for which above properties (Common Prefix, 
Chain Quality, Chain Growth) hold with overwhelming probability (in the 
security parameter)

§ Then show how an application’s properties can be proven (in a black-box 
manner) using these properties

From Blockchain Properties to Applications [GKL15]
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§ Consensus
§ Robust transaction ledger (Bitcoin)
• Aka “ledger consensus,” “Nakamoto consensus”
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From Blockchain Properties to Applications [GKL15]
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...
vv v v

Consensus Protocol

v1
v3

...
vn

v2
n parties
t corrupted

vi Î V = {0,1}

Consensus (Byzantine Agreement) [PSL80, LSP82]

Adversary
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Broadcast (aka Byzantine Generals) [PSL80, LSP82]

Message v Sender (“Dealer”)

v1 v2 v3 vn-1…

n players
t corrupted

§ Validity: If dealer is honest, vi = v   
§ Agreement: vi = vj
§ Termination: Every player eventually outputs a value
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§ One of the most fundamental problems in fault-tolerant distributed 
computing

§ Fundamental MPC instance; important role in cryptographic protocols 
§ Renewed interest with the advent of blockchain protocols like Bitcoin 
• New protocol paradigms
• Wider research community
• Applications expanded to novel settings

Consensus/Broadcast
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Secure Multiparty Computation (MPC) [GMW87]:
§ n parties {P1, P2, …, Pn}: each Pi holds a private input xi;

t < n (maliciously) corrupted
§ One public function   f (x1,x2,…,xn)
§ All want to learn   y = f (x1,x2,…,xn)                    (Correctness)
§ Nobody wants to disclose his private input        (Privacy)

Secure 2-Party Computation (2PC) [Yao 82, Yao 86]:  n=2

31

Secure Multiparty Computation (MPC) [Yao86, GMW87,…]
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Impossibility of Broadcast with t ≥ n/3 (and no crypto) [PSL80, LSP82] 
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§ Can the bound on no. of corruptions be improved using cryptography? 
(And in particular, a Public Key Infrastructure (PKI) — called private 
(state) setup in next slide?)

§ Yes, but can’t do better than 

t < n/2
regardless of the resources available to the parties

On the Necessity of an Honest Majority for Consensus

33

§ Above impossibility (t ≥ n/3) assumes no cryptography (i.e., digital 
signatures) is used
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On the Necessity of an Honest Majority for Consensus (2)

§ Scenario [Fit03]: n parties equally divided with respect to their initial values  
∈ {0,1}. Adv. corrupts ∅, P0 and P1 uniformly at random:

1. With 1/3 prob. adversary corrupts no one
2. With 1/3 prob. adversary corrupts parties with input 0 
3. With 1/3 prob. adversary corrupts parties with input 1
In any case, the corrupted parties follow the protocol

§ Case 1 requires honest parties to converge to common output  (Agreement)
§ Case 2 & 3: Honest parties should output 1 (resp., 0)  (Validity)
§ But the three cases are indistinguishable in the view of the honest parties 
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Public vs Private State Setup

35

We know that:
• Private setup  + t  <  n/2 ⇒MPC [GMW87,RB89,PW92,CDDH99]
• Public setup   + t  ≥  n/3  ⇒ Broadcast impossible [LSP82, Bor96] 
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On the Necessity of a PKI (“Private-State Setup”) [Bor96]

36

Without a PKI, broadcast (consensus) is impossiblewhen t  ≥  n/3 
even if using cryptography
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On the Necessity of a PKI (“Private-State Setup”) [Bor96] (2)
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Public vs Private State Setup (2)
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We know that:
• Private setup  + t  <  n/2 ⇒MPC [GMW87,RB89,PW92,CDDH99]
• Public setup   + t  ≥  n/3  ⇒ Broadcast impossible [LSP82, Bor96] 
• Broadcast impossible ⇒ MPC impossible

In general:

These results were established over 20 years ago… 

Cryptography in the Blockchain Era

…but then Nakamoto showed up 



Nakamoto’s Consensus Protocol  [Nak08]

§ “The proof-of-work chain is a solution to the Byzantine Generals’ Problem…”
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§ Assume a public setup (e.g., “genesis” block) and an honest majority of 
computing power (i.e., t < n/2)

§ The n parties start building a blockchain inserting their input (that would 
be transaction included in a block)

§ If a party receives a longer blockchain, it switches to that one and 
switches its input

§ When the blockchain is long enough the party outputs the (unique) 
value that it contains

Nakamoto’s Consensus Protocol  [Nak08] (2)
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§ Assume a public setup (e.g., “genesis” block) and an honest majority of 
computing power (i.e., t < n/2)

§ The n parties start building a blockchain inserting their input (that would 
be transaction included in a block)

§ If a party receives a longer blockchain, it switches to that one and 
switches its input

§ When the blockchain is long enough the party outputs the (unique) 
value that it contains

Nakamoto’s Consensus Protocol  [Nak08] (3)
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§ Issue: If adv. finds a solution first, then honest parties will extend adv.’s 
solution and switch to adv.’s input → protocol doesn’t guarantee Validity
(with non-negligible probability)
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§ The n parties start building a blockchain inserting their inputs
§ If a party receives a longer blockchain switches to that one but keeps the 

same input
§ Once the blockchain is long enough (2k) the parties prune the last k

blocks and output the majority value in the prefix

First PoW-based Consensus Protocol [GKL15] 

§ We get:
• Agreement from the Common Prefix property
• Validity as long as adv. controls < ⅓ of the parties (tight, due to the Chain 

Quality property)
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§ Based on the basic Bitcoin backbone properties ─ CP, CQ, CG ─ we 
obtained a probabilistic solution for the consensus problem tolerating a 
1/3 fraction of corrupted parties

§ 1/3 is suboptimal
• Main obstacle: The blockchain (backbone) protocol does not provide 

sufficient chain quality

• We cannot guarantee we have enough blocks originating from honest 
parties

§ 1/2 can be achieved, using a more elaborate protocol ─ a technique we 
call 2-for-1 PoWs

Observations [GKL15]
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A Consensus Taxonomy [GK20]

44



Resource-Restr icted Cryptography



Impossibility with n = 3t [PSL80, LSP82] 

46



Resource-restricted Cryptography [GKOPZ20]
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Long history:
§ Moderately hard functions, key exchange, spam mitigation, time-released 

crypto, fair computation, PoWs [Mer76,DN92,RSW96,BN00,GMPY06,AD15, 
BGJPVW16, BRSV17/18,…]

§ Many different resources considered: (sequential) computational power, 
space, stake, ...

Resource-Restricted Cryptography

48

Abstract resource:  Network access
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Secure Multiparty Computation (MPC) [GMW87]:
§ n parties {P1, P2, …, Pn}: each Pi holds a private input xi;

t < n (maliciously) corrupted
§ One public function   f (x1,x2,…,xn)
§ All want to learn   y = f (x1,x2,…,xn)                    (Correctness)
§ Nobody wants to disclose his private input        (Privacy)

Secure 2-Party Computation (2PC) [Yao 82, Yao 86]:  n=2
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Secure Multiparty Computation (MPC) [Yao86, GMW87,…]
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Detour:
Simulation-based Security



51

Simulation-based Security: Ideal World [GMW87, C01,…]

“Ideal functionality” F
(arbitrary distributed 

computation)
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≈
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Simulation-based Security: Real vs Ideal [GMW87, C01,…]

Simulator S Adversary A
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Plato’s Theory of Forms



≈
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Simulation-based Security: Real vs Ideal [GMW87, C01,…]



§ Enables modular security proofs 
• Can prove secure a sub-task/protocol independently (i.e., the protocol realizes 

the corresponding ideal functionality), and then assume that the main protocol 
has access to this ideal resource
• This is called the hybrid model (more later)

§ Enables (universal) composition with other protocols [Canetti01,…]
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Long history:
§ Moderately hard functions, key exchange, spam mitigation, time-released crypto, fair 

computation, PoWs [Mer76,DN92,RSW96,BN00,GMPY06,AD15,BGJPVW16, 
BRSV17/18,…]

§ Many different resources considered: (sequential) computational power, space,
stake, ...

Resource-Restricted Cryptography
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Abstract resource:  Network access
Cryptography in the Blockchain Era



Model restricted network access as a functionality wrapper
§ It models ability to “speak” only if party produces a PoW
§ Probabilistic access: New messages sent with probability p  
§ Bounded access: q Send attempts per round
§ Free forwarding
§ Can wrap different types of networks: authenticated, private,…

The Filtering Wrapper Functionality

57

Authenticated channels



Does the RR Crypto paradigm allow for MPC with an honest majority and 
public setup?

MPC Feasibility
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Does the RR Crypto paradigm allow for MPC with an honest majority and 
public setup?

MPC Feasibility
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Talk Outline

§ PoW-based Blockchains

§ Resource-Restricted Cryptography

§ PoWs in the “Standard” Model
• Based on hash-function properties
• Based on fine-grained complexity
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§ Most (many) blockchain protocols use hash-based PoWs
§ “Random-oracle” methodology: Replace hash function with an ideal

random function

The ”Random Oracle” Methodology [BR93]
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Proofs of Work (aka “Crypto Puzzles”)

§ “Moderately hard functions” [DN92,RSW96,Back97,JJ99,BN00,GMPY06,BGJPVW16, 
BRSV17/18…] 

I ran for a 
thousand steps!

Yeah, sure…

Prover

62

Verifier

Image credit: Marshall Ball
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§ Two algorithms: Prove, Verify

§ Basic properties:
• Prove is expensive (moderately hard)
• Verify is (much) easier
• Completeness

§ “Blockchain-friendly” properties:
• Amortization resistance
• High rate of success for unique honest prover
• Run-time independence
• …

§ Challenging to achieve (in the standard model)

Blockchain PoWs Formalization (Informal) [GKP17/20]
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§ Secure blockchain protocol assuming: 
• Hash function satisfies 3 simple properties: collision resistance, 

computational randomness extraction, iterated hardness
• NIZKs (Non-Interactive Zero-Knowledge Proofs)
• Adversary controls 1/3 of the computational power

Blockchains from Non-Idealized Hash Functions [GKP20]
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Topics

§ PoW-based Blockchains

§ Resource-Restricted Cryptography

§ PoWs in the “Standard” Model
• Based on hash-function properties
• Based on fine-grained complexity

Cryptography in the Blockchain Era
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Cryptography

Procedures that mitigate adversarial behavior

Public Key CryptographyOne Way Functions
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§ “Classical” adversary: Runs in: n, n2, n3, … , n100, …

§ “Fine-grained” adversary: Runs in n, n2, n3

• Cf. fine-grained complexity theory

§ “How to do cryptography when cryptography is not possible?”

Refined Adversarial Model
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arbitrary constant

fixed constant
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§ Observation: For many natural problems, “brute force” (time T), is 
essentially state of the art  (Ω(T1−ε), ∀ε > 0)

§ Conjectures: For many natural problems, brute force is essentially 
optimal

§ Examples: Orthogonal Vectors, All-Pairs Shortest Paths, 3Sum,…

Fine-Grained Complexity
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Orthogonal Vectors
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§ [BRSV17/18]: Assuming Orthogonal Vectors take n2−o(1) in the worst 
case, then n2-PoWs exist

§ [BGKP21]: Assuming Orthogonal Vectors conjecture, (permissionless) 
consensus is achievable with public setup tolerating a constant 
fraction of corruptions

• Cf. [AD15,GKLP18]

PoWs/Blockchains from Fine-Grained Complexity
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Summary

§ PoWs (basic blockchain enabler): Powerful primitive
• PoW-based protocols challenge long-established impossibility results

§ The Resource-Restricted Cryptography framework 
• Consensus/MPC with public setup tolerating  t < n/2

§ PoW realizations in the “standard” model

§ Future/On-going work:
• Revisit other lower bounds/impossibility results
• Implement “filtering wrappers” by restricting other resources
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Backup Sl ides
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“Quantum is Coming”

GCRI ─ Secure Computation
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Post-Quantum Security

GCRI ─ Secure Computation
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