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Preface
The 13th Panhellenic Logic Symposium is taking place in Volos, Greece, July 6-10, 2022.

This the second and main part of the proceedings, the first having been published online in July 2021 for 
a meeting that did not happen due to the COVID epidemic. Here you will find the plenary talks, tutorials, 
special sessions and the contributed papers of the event physically taking place in Volos.

We would like to emphasize the character of the PLS meeting as an international symposium with local 
characteristics. There are no parallel sessions, and this year’s program is not particularly packed, 
allowing for increased interaction, discussion and understanding between researchers working different 
facets of logic. If everything went according to plan, you will probably not find many talks in your particular 
area of expertise. Take this opportunity to inquire, learn and discuss the concerns of researchers in 
different facets of logic, perhaps even allowing for some inspiration or ideas in your future work. This 
applies particularly with regard to our Computer Science special session, which includes topics and 
researchers that are not traditionally found in logic meetings.

Speakers have been encouraged to give accessible interactive presentations, so the remaining ingredient 
for a successful meeting is an inquisitive, dynamic and socially interactive open-minded audience. 

We thank the committees of the PLS13 and the referees for their work. Particular thanks go to the:

• Local organization by K. Hatzikyriakou and V. Papayiannakopoulou

• Web support by N. Papaspyrou

• Hands-on coordination by A. Kakas, P. Eleftheriou, T. Pheidas, Y. Stephanou

and all the participants for making it to Volos, despite the uncertain and often difficult traveling conditions 
these days. We also thank our sponsors for making this meeting possible. 

It’s good to be back together again. 

Giorgos Barmpalias & Kostas Tsaprounis
Program Chairs, PLS13
Chinese Academy of Sciences, Beijing
University of Aegean, Greece
July 6, 2022, Volos, Greece.
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Plenary

Speaker: Andrew Brooke-Taylor (University of Leeds, UK)
Title: Categorifying Borel reducibility
Abstract: The framework of Borel reducibility has had great success in showing that various 
classification programmes cannot be completed, in areas such as ergodic theory and C*-algebras.  
However, this framework ignores a crucial feature of many classification programmes: namely, that they 
are expected to be functorial.  I will talk about joint work in progress with Filippo Calderoni, introducing a 
categorified version of Borel reducibility, and noting some differences in consequences from the original 
framework.

Speaker: Vasileios Koutavas (Trinity College Dublin, Ireland)
Title: Program Equivalence from Theory to Practice
Abstract: Equivalence is a key concept in the area of programming language semantics as it can 
concisely express concepts such as modularity and abstraction and expose all the intentional and 
unintentional ways that different parts of a program can affect each other. There is a long history of 
theoretical techniques for proving equivalence in programming language semantics and related areas. 
More recently it has found applications in the verification of cryptographic protocols, compiler 
correctness and regression verification. In this talk we will overview the history of equivalence in 
programming language semantics, primarily focusing on the techniques of game semantics and 
bisimulation. We will show a new approach which combines these two theoretical techniques and leads 
to the development of a practical verification tool of equivalence in a programming language with 
functions and local state. This is a challenging setting, first studied in the semantics of ALGOL, which is 
quite common in modern programming languages. In this setting, verifying equivalence of even simple 
program expressions requires the exploration of infinite behaviours. Being able to reason within a 
verification tool about many cases of infinite behaviour, while still avoiding reporting any false-positives 
or false-negatives, has been the main success of this approach.

Speaker: Thanassis Pheidas (University of Crete, Greece)
Title: Definability in Number Theory, Algebra and Geometry and Hilbert’s Tenth Problem
Abstract: We survey developments on the questions of decidability (and related definability) of the 
existential (and first-order) theories of   rings of common use, eg. the rational integers and rational 
numbers and rings of polynomials and rational functions. The starting point of our questions is “Hilbert’s 
Tenth Problem”.



Tutorials

Speaker: Stathis Zachos (National Technical University of Athens, Greece)
Title: Introduction to Computational Complexity
Abstract: Complexity classes, Randomness, Interactivity, PCP, Counting. How to deal with NP-
completeness, Approximation algorithms, Search Complexity, Parameterized Complexity, Quantum 
Complexity, Counting revisited (#P, #PE, TotP),Nonuniform Circuit Families, Descriptive Complexity.

Speaker: Alex Kavvos (University of Bristol, UK)
Title: Type Theory and Homotopy
Abstract: This is a whirlwind tour of Martin-Loef's Type Theory. We explain some of the basic ideas 
underlying type-theoretic approaches to the foundations of mathematics, introduce the rules of MLTT, 
and present a few examples. We also provide a sketch of the recently  discovered connections to 
homotopy theory, the relationship with computer-assisted formalised mathematics, and point the 
audience to recent advances in the field.

Speaker: Nikos Leonardos (University of Athens, Greece)
Title: Bitcoin's backbone algorithm and the consensus problem
Abstract: The purpose of the tutorial is to study Bitcoin's protocol as a distributed algorithm. We will 
begin by discussing the core of the protocol in a simple model that is static and synchronous. We will 
prove two of its fundamental properties which we call common prefix and chain quality. Subsequently, 
we will discuss the Consensus problem. We will show that Bitcoin solves an interesting variant of this 
fundamental problem. Finally, we discuss attributes of the Bitcoin protocol that allow it to be secure in 
more realistic models (partially synchronous model, variable difficulty, timestamp rules).



Philosophical Logic Special Session

Speaker: Michael Glanzberg (joint work with Lorenzo Rossi) (Rutgers University, USA)
Title: Truth and Quantification
Abstract: Theories of self-applicable truth have been motivated in two main ways. First, if truth-
conditions provide the meaning of (many kinds of) natural language expressions, then self-applicable 
truth is instrumental to develop the semantics of natural languages. Second, a self-applicable truth 
predicate is required to express generalizations that would not be otherwise expressible in natural 
languages. In order to fulfill its semantic and expressive role, we argue, the truth predicate has to be 
studied in its interaction with constructs that are actually found in natural languages and extend beyond 
first-order logic---modals, indicative conditionals, arbitrary quantifiers, and more. Here, we focus on truth 
and quantification. We develop a Kripkean theory of self-applicable truth for the language of 
Generalized Quantifier Theory. More precisely, we show how to interpret a self-applicable truth 
predicate for the full class of type <1,1> (and type <1>) quantifiers to be found in natural languages. As 
a result, we can model sentences which are not expressible in theories of truth for first-order languages 
(such as `Most of what Jane's said is true', or `infinitely many theorems of T are untrue', and several 
others), thus expanding the scope of existing approaches to truth, both as a semantic and as an 
expressive device.

Speaker: Volker Halbach (University of Oxford, UK)
Title: Axiomatic Theories of Truth: A survey
Abstract: Axiomatic theories of truth are obtained by adding a unary predicate T to the language of 
arithmetic or another language in which syntax theory is usually developed. Then axioms for T are 
conjoined with the axioms of arithmetic (or another syntax theory). The liar and other paradoxes impose 
limits on which truth axioms can consistently be added. I survey some systems that have been seen as 
promising and interesting. There are several motivations for investigating axiomatic theories of truth. 
They are of philosophical interest not only because they give us a better understanding of the concept 
of truth, but also because, for instance, they can be used to reduce away commitment to second-order 
objects and express generalizations over sentences. They are also of purely mathematical interest. 
First, proof theorists have analyzed their strength and used them as intermediary systems for the 
analysis of subsystem of second-order arithmetic, but also set-theoretic systems. Some axiomatic 
theories of truth have also intriguing properties studied by model theorists.



Speaker: Elia Zardini (University of Lisbon, Portugal & HSE University, Russia)
Title: The Final Cut
Abstract: In a series of works, P. Cobreros, P. Égré, D. Ripley and R. van Rooij have proposed a 
nontransitive system (call it ‘K3LP’) as a basis for a solution to the semantic paradoxes. I critically 
consider that proposal at three levels. At the level of the background logic, I present a conception of 
classical logic on which K3LP fails to vindicate classical logic not only in terms of structural principles, 
but also in terms of operational ones. At the level of the theory of truth, I raise a cluster of philosophical 
difficulties for a K3LP-based system of naive truth, all variously related to the fact that such an 
extension proves things that would seem already by themselves jointly repugnant, even in the absence 
of transitivity. At the level of the theory of validity, I consider an extension of the K3LP-based system of 
naive validity that is supposed to certify that validity in that system does not fall short of naive validity, 
argue that such an extension is untenable in that its nontriviality depends on the inadmissibility of a 
certain irresistible instance of transitivity (whence the advertised “final cut”) and conclude on this basis 
that the K3LP-based system of naive validity cannot coherently be accepted either. At all these levels, a 
crucial role is played by certain metaentailments and by the extra strength they afford over the 
corresponding entailments: on the one hand, such strength derives from considerations that would 
seem just as compelling in a general nontransitive framework, but, on the other hand, such strength 
wreaks havoc in the particular setting of K3LP. 
Keywords: classical logic; naive truth; naive validity; nontransitive logics.

Philosophical Logic Special Session



CS Special Session

Speaker: Bruno Bauwens (HSE University, Russia)
Title: The algorithmic information distance
Abstract: The algorithmic information distance is a metric on bit-strings. In the machine-learning 
literature, it is defined as for bit-strings x and y as d(x,y) = max{K(x|y), K(y|x)} + c for some large c, 
where K(x|y) denotes the minimal length of a program that on input y produces x on an optimal prefix-
free machine. In some sense, this measure exploits all types of computable structure that can be found 
between 2 bit-strings. This optimality property can be formalized in a similar way as Kolmogorov 
complexity is optimal for measures of information content. The measure has inspired a few interesting 
machine-learning algorithms and we will briefly discuss some recent ones. The definition given above 
satisfies the triangle inequality, but it is rather technical. Therefore, the following characterization is 
usually mentioned: d(x,y) = min {|p| : U(p,x) = y and U(p, y) = x} + O(log |xy|). In fact, the minimum 
above was the historically first definition. Note that in this minimum, one considers programs p that are 
{\em bidirectional}: the program should simultaneously map x to y and map y to x. On the other hand, in 
the definition max{K(x|y), K(y|x)}, the conditional complexities only consider 1-directional programs that 
either map y to x for K(x|y) or x to y for K(y|x). Can we improve the precision from O(\log |xy|) to O(1)? It 
is known that for plain complexity this is indeed true. But the triangle inequality does not hold for plain 
complexity. For a long time, it was an open question whether whether the O(1) precision holds for 
prefix-free machines. Recently, it has been claimed in several places that the answer is yes, but these 
proofs are wrong.  Recently, I gave a counter example, for the equality with O(1) precision. This is 
remarkable, because many equalities that hold with O(log |xy|) precision for plain complexity can be 
transformed to inequalities that hold with O(1) for prefix-free complexity. A famous example is the 
Kolmogorov-Levin formula K(x,y) = K(x) + K(y | x, K(x)). For the first time, we have found an important 
(in)equality that holds with better precision for plain complexity. Even more mysteriously, the equality 
does hold with O(1) precision whenever d(x,y) > 6log |xy| and x and y are large, and the proof of this 
result is rather complex. 

Speaker: Andy Lewis-Pye (London School of Economics, UK)
Title: Chained Fever — achieving optimal synchronisation for Hotstuff
Abstract: This will be a talk of two halves, to accommodate different backgrounds in the audience. 
First, I’ll give an easy introduction to consensus protocols, focussing on the classical ‘permissioned’ 
approach rather than Bitcoin, so that there should not be too much overlap with Leonardos’ tutorial. 
Then I’ll describe an improvement on the state-of-the-art in consensus protocols, which is a modification 
of ‘Hotstuff’ requiring only O(n) messages per `view change’, meaning O(n^2) message complexity to 
produce a confirmed block of transactions in the worst case. This improves on the previous best of 
O(n^3) message complexity for optimistically responsive protocols.



Speaker: Juan Garay (Texas A&M University)
Title: Cryptography in the Blockchain Era
Abstract: The advent of blockchain protocols such as Bitcoin has ignited much excitement, not only for 
their realization of novel financial instruments, but also for offering alternative solutions to classical 
problems in fault-tolerant distributed computing and cryptographic protocols. Underlying many of such 
protocols is a primitive known as "proof of work" (PoW), which for over 20 years has been liberally 
applied in the cryptography and security literature to a variety of settings, including spam mitigation, 
sybil attacks, and denial of service protection; its role in the design of blockchain-based protocols, 
however, is arguably its most impactful application. At a high level, the way PoWs enable such protocols 
is by slowing message passing for all parties indiscriminately, thus generating opportunities for honest 
parties' views to converge, under the assumption that their aggregate computational power exceeds 
that of the adversary. This talk comprises two parts. First, despite the evolution of our understanding of 
the PoW primitive, pinning down the exact properties sufficient to prove the security of Bitcoin and 
related protocols has been elusive. In this talk we identify such properties, and then construct protocols 
whose security can be reduced to them in the standard model, assuming a common reference string 
(CRS -- cf. a "genesis" block). All previous protocols rely on the "random oracle" methodology.Second, 
regarding the realizability of two important problems in the area of cryptographic protocols -- Byzantine 
agreement (BA) and secure multiparty computation (MPC) -- we show how PoW-based blockchains 
allow to realize them even in the presence of a minority of corrupted parties (i.e., t < n/2, where t is the 
number of corrupted parties and n is their total number) , as long as the majority of the computation 
resources remain in honest hands, while "classically" (i.e., no PoWs), protocols can only tolerate up to t 
< n/3 corruptions in the absence of a private trusted setup, such as a public-key infrastructure. We 
resolve this apparent contradiction with a new paradigm we call "Resource-Restricted Cryptography." 
The bulk of this talk is based on joint work with Marshall Ball, Aggelos Kiayias, Rafail Ostrovsky, 
Giorgos Panagiotakos and Vassilis Zikas. 

Speaker: Vasileios Zikas (Purdue University, USA & University of Edinburgh, UK)
Title: From Blockchain to Global-scale Trustworthy Infrastructure
Abstract: The wide adoption of global computer networks, such as the Internet, creates immense 
opportunities, and challenges the traditional centralized trust model. The idea of giving control of widely-
used critical infrastructure to its users is becoming ever more popular. Blockchain and Distributed 
Ledger Technology (DLT) promise to bring the decentralization ideas to reality and disrupt traditional 
strongholds of trust in the financial, digital, biomedical, and manufacturing sectors, as well as in 
governance. In this talk I will discuss blockchain – from its current structure to its vast potential for future 
applications. The talk will discuss novel design choices that go into blockchain-based DLT, and how 
these choices critically impact the security of the solutions and address implementation and deployment 
challenges.   It will also tease the potential of using reputation-based blockchain to enhance 
trustworthiness of decentralized worldwide systems.

CS Special Session
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In the remaining pages you will find:


• A survey article by one of our plenary speakers, Thanases Pheidas


• The contributed papers, ordered as in the table below.
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1 Introduction

This is a survey of some questions about the decidability of existential the-
ories of certain commonly used domains in Mathematics, i.e. analogues of
Hilbert’s Tenth Problem (HTP).The subjects include analogues of HTP for
the field of rational numbers, fields of rational functions of a variable z, such
as C(z) and rings of analytic or meromorphic functions of one variable. All
these are open problems. In this sense this is an e↵ort for continuing the
presentation of [43], partly complementing [22] - where the reader may find,
among other things, a nice exposition of the definition of Z in Q by Julia
Robinson and a comparison with the new improvements of [23]. A presenta-
tion of questions in Number Theory that I think that, if answered, will have
very important consequences in the subjects we are discussing may be found
in [35]. Surveys in closely related fields of research may be found in [3], [53]
and [45].

In the last twenty years the subjects around analogues of HTP have at-
tracted a relatively large number of researchers, coming both from a Logic as
well as a Number Theory background. This has led to a wealth of new knowl-
edge and results. My intention is to list problems that may interest young
logicians and questions in Number Theory which might produce progress to-
wards answering the logical problems. I will assume some familiarity with
[43] where the reader may find coordinates of most of the relative literature
up to 2000 - and I am including an updated (but certainly incomplete) list
of questions and known answers in the last Section.

I have included some questions in Number Theory which are, in my view,
interesting to logicians that work on this subject: a discussion of a derivation
on the integers and rationals (Section 3.1) and a problem of Grothendieck and
Katz for algebraic di↵erential equations (Section 3.2). I am also discussing
the question of detecting the varieties that have infinitely many points, ra-
tional over some number field, which may be found in [44].

I will leave out of my presentation several important developments, like
analogues of HTP for number rings and global fields of positive characteristic
- for these see [32], [53] and the references in [22].
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Trying to address this article to both logicians and number-theorists I
have tried to keep the terminology to a minimum - little more than S. Lang’s
Algebra, the beginning chapters of C. C. Chang and H. J. Keisler’s Model
Theory and elements of the theory of elliptic curves.

The last Section contains a short list of major open questions and bibli-
ography on related areas.

I would like to thank Hector Pasten, Xavier Vidaux and two referees of
the Proceedings of the Panhellenic Logic Symposium for contributing infor-
mation and very useful suggestions during the preparation of this article.

2 Diophantine Equations

A diophantine equation is one of the form

f(x1, . . . , xm) = 0

where f is a polynomial in the variables x1, . . . , xm, with integer coe�cients.
One wants to find integer and rational solutions.

The history of diophantine equations spans the era from Pyhtagoras, Eu-
clid and Diophantos of Classical Greece, to the Arabs, the Indians, Gauss
and Euler and continuously throughout our times. What may be surprising
is that many of even the most ancient problems remain unsolved. For a
sampler see [57] and [28].

A closely related question is to describe the sets over R, where R is any
of Z and Q, of the form

{x̄ 2 R
n | 9ȳ 2 R

m
f(x̄, ȳ) = 0}

where f(x̄, ȳ) = 0 is a diophantine equation in the n-tuple of variables x̄

and the m-tuple ȳ. These sets, geometrically, are projections (over Z or
Q) of algebraic sets over the ring under consideration. We will call them
diophantine sets and we will denote the class of these sets by DIO(Z) and
DIO(Q), accordingly. The question, what are the sets in DIO(Z)? has been
answered over Z in a quite satisfactory but also very surprising way. The
answer is

DIO(Z) = RE

i.e. the class of diophantine sets over Z coincides with the class RE of
recursively enumerable sets , which are all sets of tuples of integers which may

3



be listed - eventually- by some algorithm. And, because there are recursively
enumerable sets which are not recursive - recursive are the sets for which
there is an algorithm which tests membership in the set - we conclude that
there is no algorithm which, with input any diophantine equation, replies
whether or not the equation has solutions over Z. This is a negative answer
to Hilbert’s tenth problem (HTP):

Entscheidung der Lösbarkeit einer diophantischen Gleichung. Eine dio-
phantische Gleichung mit irgendwelchen Unbekannten und mit ganzen ratio-
nalen Zahlkoe�cienten sei vorgelegt: man soll ein Verfahren angeben, nach
welchen sich mittels einer endlichen Anzahl von Operationen entscheiden
lässt, ob die Gleichung in ganzen rationalen Zahlen lösbar ist.

translated into English
to find a process according to which one can determine in a finite number of
steps whether a polynomial equation with integer coe�cients has or does not
have integer solutions.
The problem was the 10th in a famous list of problems announced by Hilbert
at the World Congress of Mathematicians which was held in Sorbonne in
1900. It was solved in the negative in 1970:

Theorem 1 (Julia Robinson, Martin Davis, Hillary Putnam, Yuri Matija-
sevich - 1970)

DIO(Z) = RE, hence there is no such ‘process’.

Presentations of this and relevant questions from various points of view
may be found in [12], [27], [39], [47], [50] and [25].

The similar questions about Q are mostly open - but some facts are
known. For example the set of squares {x 2 Q | 9y 2 Q x = y

2} is obviously
diophantine over Q. What about its complement, i.e. the set of non-squares?
The answer is that this is also diophantine:

Theorem 2 (Bjorn Poonen) The set of non-squares {x 2 Q | 8y 2 Qx 6=
y
2} is diophantine over Q.

The proof uses deep knowledge from arithmetic algebraic geometry. It is
proved that for certain surfaces, the Brauer-Manin obstruction is the only
obstruction to the Hasse principle (we will not go into details). The same
result is proved in [23] by elementary means and generalised for n-th powers
in [6] and further in [16].
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Given a language L, a structure (model) an existential (resp. positive-
existential) formula of L is one of the form 9x̄�, where � is a boolean com-
bination (respectively positive boolean combination, i.e. with no negation
symbols) of atomic formulas of L. Given a structure (model) A of L, the ex-
istential theory (resp. positive existential theory) of A is the set of existential
(resp. positive existential) sentences of L which are true in A. A subset of a
power of the universe of A is existential (resp. positive existential) if it has
an existential (resp. positive existential) definition.

In general we will consider rings R and a subring R0. In this setting a
diophantine equation will be a polynomial equation with coe�cients in R0.
A diophantine set over R with coe�cients in R0 will be a set of the form
{x 2 R

n | 9y 2 R
m

f(x, y) = 0}, where f 2 R0[x̄, ȳ]. For simplicity, unless
we state otherwise, we will consider only the cases where R0 is Z or Z[z] -
the latter for rings of functions of the variable(s) z - and Fp[z] for rings of
functions of positive characteristic p.

2.1 The set Q \ Z is diophantine in Q.

A very surprising result, in my opinion, of the last 15 years has been that of
[23]:

Theorem 3 (Jochen Koenigsmann- 2016) The set Q \ Z is diophantine in
Q.

The proof involves heavily the Algebra of Quaternia. The methods signify
a very substantial improvement over the use of quadratic forms that Julia
Robinson used in her Thesis in order to define (first-order, with many alter-
ations of quantifiers) Z in Q.

So, what about the possibility that Z is diophantine in Q? This is an
outstanding question and open problem. There is a conjecture by Barry
Mazur, stating:

Conjecture 4 (Barry Mazur) The real topological closure of an algebraic
set over Q has only finitely many components.

This, if true, would imply that the projection of an algebraic set over Q
has only finitely many topological R-components (finitely many components
project onto finitely many components), hence Z could not be diophantine
over Q. There is also a p-adic version of the conjecture - cf [6].
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But be aware: The function-theoretic version of this conjecture is not
true. In particular the set {zpn | n 2 N} is diophantine over Fp(z) with
coe�cients in the ring of polynomials Fp[z] - we will discuss this in Section6.3
. Therefore, if proved correct, the Conjecture will give a concrete example in
which Q and the Fp(z) have di↵erent behaviour.

In [23] it is proved that the same statement (Z is not diophantine over Q)
follows from some strong version of the Bombieri-Lang Conjecture, cf. [22].

2.2 Injective rational polynomials

In order to achieve a structure theory for diophantine sets over the rationals,
one would like to have some sort of ‘pairing’ or ‘Goedel Numbering’, i.e., in
its simplest form, an algebraic way to associate pairs of rational numbers to
rational numbers. A natural question along these lines is:

Is there a polynomial f of two variables, over Q, which, as a function,
induces an injection from Q⇥Q into Q? A bijection?

This remains open. It was asked by Harvey Friedman. Don Zagier has
speculated that the polynomial

x
7 + 3y7

does induce an injection. Bjorn Poonen has shown that the Bombieri-Lang
Conjecture (an open conjecture in Arithmetic Algebraic Geometry) implies
the existence of a polynomial injection : Q⇥Q ! Q. On the other hand, in a
recent paper Giulio Bresciani has proved that the Bombieri-Lang Conjecture
implies that there can not be a polynomial bijection from Q ⇥ Q onto Q.
In [34] Hector Pasten proved that there is an a�ne surface X over Q and
a polynomial map f : X ! Q, defined over Q, such that the Q-rational
points of X are dense in X, and, nonetheless, f induces an injective function
X(Q) ! Q on Q-rational points (unconditionally, i.e. without using any
conjecture). The discussion on this is going on.

On a relevant subject, cf. the results of [48]. They are a generalisa-
tion of Lagrange’s Theorem, which states that every non-negative integer (or
rational) number is a sum of four squares.

3 Global Fields and Derivations

The following has been observed throughout time:
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When it comes to classes of diophantine equations, such as ‘of degree
two” or ‘elliptic curves’

• Properties of a class of diophantine equations over Z are similar to the
common properties of the analogous class over almost all rings Fp[z],
as p varies.

• Properties of a class of diophantine equations over Q are similar to the
common properties of the analogous class over almost all fields Fp(z),
as p varies.

The statement is vague but it has worked over time. The usual train
of arguments is: If some family of diophantine equations is examined for
the number and type of their solutions, first check the same equations for
function solutions (often for non-constant function solutions) and, according
to the answer, try to transfer knowledge to Z or Q (and finite extensions of
these).

An axiomatisation which is common to number fields (finite extensions of
Q) and global function fields (finite extensions of some Fp(z)) was first given
in [2] - they are the fields that posses a ‘product formula for valuations’ and
have a valuation with a specific property. The idea has been central to Andre
Weil’s Basic Number Theory. Much of Number Theory today is done along
these lines.

Here is an example: An old question, Fermat’s Last Theorem, asks for
the solutions of the equation

a
n + b

n = c
n

over the integers, where n � 3 is a natural number. The conjecture (‘The-
orem’) was that these equations have no non-trivial solutions (i.e. with
abc 6= 0). It was proved by Andrew Wiles in 1995. But the proof of a similar
statement over polynomial rings was known long before, it has actually been
a standard exercise in advanced algebra courses.

Theorem 5 Prove that, if F is a field of characteristic co-prime to the nat-
ural number n � 3, then the equation a

n + b
n = c

n has no non-constant
polynomial solutions a, b, c 2 F [z] (z is a variable) with abc 6= 0.

Proof Say n � 3 and (a, b, c) is a solution with a, b and c coprime
polynomials (if not then cancel common factors so that this hypothesis
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is satisfied). Di↵erentiate to obtain a
0
a
n�1 + b

0
b
n�1 = c

0
c
n�1. Consider

it as a linear system in the unknowns a
n�1 and b

n�1, solve and obtain
a
n�1(a0c � c

0
a) = b

n�1(c0b � b
0
c). Say that b has the maximum degree, h,

among a, b, c. Then, by the coprimality of a and b we have that bn�1 (which
has degree (n� 1)h) divides a0c� c

0
a, which has degree less than 2h� 1. So

(n� 1)h  2h� 1, which contradicts the fact that n � 3.

But the similar problem over Z took centuries to solve - observe that, here,
the problem of the equation having solutions over Z is considered similar to
the same equation having non-constant solutions over F [z].

Why can not one find a ‘similar’ solution over Z? One answer is obvious:
One has di↵erentiation over F [z] - but no similar (nontrivial) operation over
Z. We will soon see a proposal towards a remedy of this. But before we do
so, let us state the

The abc Conjecture: Let a, b and c be coprime natural numbers such that
a + b = c. Then, for any " > 0 we have c  Rad(abc)1+" with only finitely
many exceptions. Here the radical of x, is Rad(x) = ⇧p|xp, the product of
all primes that divide the natural number x (each prime taken once). ⇤

The analogue of the abc-Conjecture for polynomials is with the inequality
meaning inequality of degrees and is known to be true with " = 0. The proof
uses di↵erentiation. At this point most experts agree that the Conjecture
is open, with the Japanese mathematician Shinichi Mochizuki claiming that
he has proved it. The abc-Conjecture has many consequences, for example
implies that Fermat’ Last Theorem is true for some exponent n and higher.

3.1 An arithmetic di↵erential

For x 2 N we write

(3.1) @(x) = x

X

p|x

vp

p
⇠p

where the sum is taken over all primes p which divide x and vp = ordp(x)
is the order of x at p. The ⇠p are variables, one for each prime p. We denote
by ⇠ = (⇠p) the vector of the ⇠p, say ordered by the size of p. We adopt the
convention that @(0) = 0.

Observe that, if ⌦ is the free Z-module generated by the variables ⇠p,
then @ : Z ! ⌦⌦Q.

8



It is easy to see that

@(xy) = x@(y) + @(x)y .

(the Leibnitz multiplication rule for derivatives holds)
and if g = (x, y) (the greatest common divisor) then

@(gx+ gy)� @(gx)� @(gy) = g · {@(x+ y)� @(x)� @(y)} .

We define the di↵erential of a natural number x to be @(x), - which is a
functional. For example @(27) = 27⇠3 and @(12) = 12⇠2 + 4⇠3. Notice
that if one applies the definition of the operation @ to polynomials in, say,
Fp[z] - instead of integers, where the ‘primes’ p are irreducible and monic
polynomials - then for the values ⇠p =

dp
dz the value of @(x) is

dx
dz (the derivative

of x). We intend to use the above as shown in the following example:
Say natural numbers a, b, c and n � 3 are given, with a

n+ b
n = c

n. Look
at the above proof of ‘Fermat’s Last Theorem for polynomials’ and replace
every occurrence of a derivative by @ (so replace a

0 by @(a) etc.). If one
knows that the resulting equation (in the unknowns ⇠p, one for each prime
that divides a or b or c) has small and suitable solutions ⇠p = ⇠̃p, then we
might be able to reproduce the proof for polynomials. This has not been
done so far (without resorting to conjectures) but in [36] the following is
proved:

Theorem 6 (Hector Pasten) The abc-Conjecture is equivalent to the follow-
ing statement:

There is an absolute constant ⌘ with 0 < ⌘ < 1 such that, for any triple
(a, b, c) of co-prime natural numbers, not of the form (1, N, q) with q a prime
(up to permutation) and such that a+ b = c, the following holds:
There are integer values ⇠̃p of the variables ⇠p, so that

@(a) + @(b) = @(c)

with @(x) as in (3.1) and such that a@(b) � @(a)b 6= 0 (‘the Wronskian of a
and b is non-zero’) and supp{|⇠̃p|} < c

⌘ (supp is the supremum norm).

Moreover it is proved that the operation @ is a universal object in a natural
category and this may be considered as an indication that @ is a ‘natural’ -
rather than ‘artificial’ - construction.
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Despite the fact that all this has not resulted so far in new mathematical
results - other than expressing old conjectures in new ways - I am quite
optimistic that it may present a new way to look into old problems, a way
that is closer to objects that we have encountered before successfully, such
as derivatives and solutions of linear systems of equations over Z (see for
instance Siegel’s Lemma). Note that the definition of the operation @ gives
no obvious clue for what a second di↵erential may be.

Before we go on we will state one more open problem:

Problem 7 (Buchi’s Problem)
Is the following true?
There is an absolute constant M such that any sequence of natural num-

bers (x̄) = (x0, . . . , xM�1) (with M terms), which has the property that the
second di↵erence of the squares of the x̄n is the constant sequence (2)0,...,M�1,
i.e. for n = 1, . . . ,M � 1 we have

(3.2) (x2
n+1 � x

2
n)� (x2

n � x
2
n�1) = 2 ,

is a sequence of successive squares (i.e. xn+1 = ±xn ± 1). Similarly for
rational - rather than natural numbers.

Numerical experimentation indicates that the Problem may have a posi-
tive answer for M = 5 for the natural numbers and M = 6 for the rationals.
Pasten has proved that a positive answer follows from the abc-Conjecture.

Analogues of this for rings and fields of functions, and for higher order
di↵erences have been established by, among others, Vojta, Vidaux, Pasten,
Wang (see [38] and the bibliography therein), but the original problem re-
mains open.

An application of a positive answer to the Problem, known to Buchi,
is that, if true, it has as a consequence the following: in the structure of
the integers with addition, constant symbols for 0 and 1 and a predicate
symbol which is interpreted as ‘x is a square ’ multiplication is diophantine
and therefore the positive existential theory of this structure is undecidable
(an improvement over the negative answer to Hilbert’s Tenth Problem). A
relevant question is

Problem 8 (asked by Leonard Lipshitz) Is the positive existential theory of
the structure (Z,+, ‘x is a square 0

, ‘x is a cube 0
, 0, 1) undecidable?
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There is an extensive bibliography on extensions of the group-theory of
Z by various predicates, in many directions, for example compare [33] and
the references in [7] - the intuition here is that ‘unstable structures are very
likely to have undecidable theories’. The decidability result for the theory of
the structures (N,+, {2n | n 2 N}, 0, 1), by Semenov, has been extended to
(Fp[z],+, {zn | n 2 N}, 0, 1, z) in [54] but the - much stronger - similar result
for (N,+, n 7! 2n, 0, 1) has no clear analogue in the case of polynomials. We
ask:

Problem 9 Is the theory of the structure
(Fp[z],+, {zn | n 2 N}, (zn, x) 7! z

n
x, 0, 1, z) decidable?

3.2 A problem of Grothendieck

Grothendieck’s Problem for linear and homogeneous algebraic di↵erential equa-
tions, which is also known as the Grothendieck-Katz p-curvature conjecture
asks whether the following is true:

Conjecture 10 (Grothendieck-Katz)
Consider a linear and homogeneous algebraic di↵erential equation

(3.3) anx
(n) + · · ·+ a1x

(1) + a0x = 0

with all ak 2 Z[z] (z is a variable) and with x
(k) being the k-th derivative of

x with respect to z.
Assume that the reduction of (3.2) modulo almost any (any but a finite

number) prime number, has n solutions in Fp((z)), linearly independent over
the field of constants of di↵erentiation (i.e. Fp((zp))). Then (3.3) has n

many solutions over the Puiseu series over C((z)), linearly independent over
C and they are all algebraic over C(z).

It has come from Geometry. It has been proved for large classes of equa-
tions but the general problem remains open. As an indicative example, the
equation 2(1 + z)x(1) = x, with p an odd prime, has the polynomial solution

x = (1 + z)
p+1
2 over Fp(z) and over C(z) the algebraic solution x = (1 + z)

1
2 .

The case of equations of order one is shown in [20] to be equivalent to Cheb-
otarev’s Density Theorem and be true. The ‘Puiseu series’ may be substituted
by ‘power series’ if one considers only di↵erential equations in which z = 0
is not a zero of the highest-order coe�cient an.
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I think that, if it is correct, it would be a very good example of a ”Trans-
fer Principle” among characteristics, i.e. a statement that, if it holds true
for almost all positive characteristics then it remains true in characteristic
zero. An example of an application of this principle is the Ax-Grothendieck
Thorem, which states that a polynomial map f : Cn ! Cn which is injective
is also surjective; its proof by Ax proves it over finite fields (instead of C)
and transfers it over C by methods of Model Theory. From Logic’s point of
view, and asked when an in (3.3) is not divisible by z, Problem 3.2 seems
to require the study of an ultra-power of Fp[[z]] over a non-principal ultrafil-
ter, in a language that should contain, at the least, symbols for addition, +,
di↵erentiation, D, the function x 7! zx and the operation of multiplication
among constants of di↵erentiation (the elements x for which D(x) = 0) - in
order to be able to state that the constants of di↵erentiation constitute a
field.

Problem 11 Study the ultrapowers ⇧UFp[[z]] over non-principal ultrafilters
U on the set of prime integers, as models of the language described above and
extensions of it.

4 Diophantine Equations with infinitely many
solutions over some number field

We outline the presentation of Part B of [44].
A question similar to Hilbert’s Tenth Problem is whether there is an

algorithm to determine whether any given diophantine equation over Z has
or does not have infinitely many solutions over any of Z and Q. On this
Martin Davis has proved:

The problem of whether a diophantine equation has infinitely many solu-
tions over Z or not is undecidable, even given an oracle which determines
the solvability of any given diophantine equation over Z.

The similar problem over Q is an open problem.
A question similar to Hilbert’s Tenth Problem but in a qualitative sense

would be:

Problem 12 a) Is there an algorithm which, given any variety over Q, the
algorithm determines whether it has an infinite number of points over some
number field?
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b) Similarly, over some number ring (i.e. the ring of elements of a number
field, integral over Z)?

The following is a conjecture of Serge Lang

Conjecture 13 (Serge Lang) For a variety V , defined over the rationals,
the following are equivalent:

• V has infinitely many points in some number field.

• There is a non-constant analytic function f : C ! V .

Applied to curves the Conjecture is known to hold true, by Falting’s proof
of the ‘Mordell Conjecture’ (generalised to global fields of positive character-
istic by Ehud Hrushovski using model theoretic methods). For example the
fact that the circle X

2 + Y
2 = Q, with Q a rational number, has infinitely

many points over some number field is associated to the fact that there is a
non-constant analytic function f(z) = ( 1p

Q
cos z, 1p

Q
sin z) (for Q 6= 0) from

C. Similarly, any elliptic curve is parametrised by its Weierstrass }-function
and its derivative. But irreducible curves of genus � 2 admit no analytic
parametrisation - this has been known long ago - and, due to Falting’s The-
orem, they may not have an infinite number of points over any number field.
The Conjecture of Lang has been generalised and made much more accu-
rate by Paul Vojta - but the experts think that for the moment it seems
inaccessible.

If Lang’s Conjecture is true then Problem (12) is reduced to the following
question:

Problem 14 Is there an algorithm which, for any variety V defined over Q,
determines whether there is a non-constant analytic function f : C ! V ?

This sort of an analogue of Hilbert’s Tenth Problem may be expressed
for the structure of meromorphic functions with addition, multiplication, a
predicate symbol meaning ‘x is a non-constant meromorphic function’ and
symbols for 0 and 1. At this point the problem seems inaccessible.
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5 A program for proving that the existential
theory of Q is undecidable

Regarding the decidability properties of the existential theory of Q, over time
there have been expressed both possibilities - decidable and undecidable. The
main argument for decidability is that, over the rationals, varieties may be
embedded in varieties which have additional structure, such as the abelian
varieties. For the possibility of undecidability there are some more concrete
plans. I will present a sort of ‘program’ which seems to me to have some
promise towards proving that the existential theory of Q is undecidable (if it
is).

The beginning of it is in [40] (some familiarity with the basic theory of
elliptic curves is assumed). Consider an elliptic curve E over Q of rank one.
One may change coordinates so that the curve has the form

(5.1) (x̃3
1 + ↵x̃1 + �)Y 2 = X

3 + ↵X + �

with (x̃1, 1) being a base point, i.e. the points of E are torsion points plus
some Pn = n · (x̃1, 1). It is known that, for n 2 Z \ {0}, there are rational
functions of one variable xn and yn so that for any point (x, y) of E, rational
over Q, we have n · (x, y) = (xn(x), yyn(x)), where · is meant with respect
to addition on E. So Pn = (xn(x̃1), yn(x̃1)). It is well known how, from
this, to produce a diophantine definition of the the set of points Pn (for
elliptic curves without complex multiplication). Elliptic curves satisfying all
the above are known to exist - and be ‘many’. The points Pn are taken to be
a model of the rational integers - see [43] for a concrete discussion of this).
Addition of points of E is quantifier-free, therefore the graph of addition
of points of E is diophantine. If one achieves giving a diophantine (over Q)
definition of the graph of multiplication, i.e. of the set {(Pm, Pn, Pmn) |m,n 2
Z \ {0}} then one will have proved undecidability of the existential theory
of Q. But no one knows how to perform the last step. Instead, one may try
to define (in a diophantine way) divisibility among points of E, i.e. the set
{(Pm, Pn) | m divides n}. If one succeeds one will have a model of addition
and divisibility over Z encoded in a diophantine way into the diophantine
theory of Q. But this will not su�ce (in order to prove undecidability of the
diophantine theory of Q), because Leonard Lipshitz has proved that addition
and divisibility over Z has a decidable existential theory. The problem of
defining positive-existentially divisibility of points of E remains unsolved.
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But here is something that may help in this: In [40] is proved an existential
divisibility lemma, which gives a diophantine (over Q) definition of a relation
between two rational numbers, u and v, that, roughly, states

any prime number p ⌘ �1 (mod 4) which divides the denominator of u
to an odd order, divides also the numerator or denominator of v to an odd
order.

So one is able to express the following property |⇤ between points Pn =
(x̃n, ỹn), above:

(Existential Divisibility) Pm|⇤Pn if and only if every prime
p ⌘ �1 mod (4) that divides the denominator of x̃m divides also the numer-
ator or denominator of x̃n.

And, for suitable elliptic curves E - having all the above properties - this
may be equivalent to

m divides n.
And for our purpose it would su�ce that the last equivalence holds only

for m and n in an infinite ideal of Z (e.g. the even integers).

Problem 15 Are there any elliptic curves having the properties assumed of
E so far (in particular, satisfying the last condition)?

From discussions with experts in Number Theory I have gotten the im-
pression that this is very likely, and there should be many such curves. One
heuristic reason is that the denominator of the rational function xm divides
teh denominator of xmn and the fact that the rational functions xn and yn

have only irreducible factors (of their numerators and denominators) with
multiplicities bounded by 2, so one might expect that something similar may
happen for their values at the rational x̃1 - in a way reminiscent of Hilbert’s
Irreducibility Theorem. Note that the ‘Existential Divisibility Lemma’ has
been generalised for many sets of primes, instead of the primes p ⌘ �1 (mod
4) in [14].

But, as explained above, this will not su�ce for our task (proving unde-
cidability of the existential theory of Q). But the following twist of the above
train of thought may have some chance of success. It is due to Gunther Cor-
nelissen: There are abelian varieties with real multiplication, i.e whose points
(apart from a finite set of torsion points) are given as Pn = n · P1, where
n ranges in a ring of real quadratic integers, e.g. in Z[

p
5]. What if one

may do the above - give a definition of divisibility of the indices n in a way
which is diophantine over Q? Then one would code in the diophantine theory
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of Q a model of, say, Z[
p
5], with addition and divisibility (both meant in

Z[
p
5]). And Leonard Lipshitz has proved that the positive existential theory

of addition and divisibility in Z[
p
5] (and any real quadratic number ring) is

undecidable. At the time that Cornelissen expressed this idea these abelian
varieties were a new finding. And the problem of giving a diophantine defini-
tion of ‘a point dividing another’ seemed to be much more complicated than
for elliptic curves. But maybe new knowledge for these varieties is enough
to change this. So I ask:

Problem 16 Consider an abelian variety V whose Q-rational points are tor-
sion plus a group of points isomorphic to an order of Q[

p
`] where ` is a

positive integer. Is the relation ‘the point P divides the point Q’ diophantine
over Q?

Of course a far aim in this investigation would be an analogue of DIO =
RE (over the integers) over Q:

Problem 17 Is there a purely algorithmic characterisation of the diophan-
tine subsets of Q and finite powers of it?

Despite the fact that the above are mostly open problems, one might try
to get some ideas of how to proceed in order to answer them, trying first
to produce a proof of undecidability of the analogue of HTP for the fields
of rational functions Fp(z) with coe�cients in Fp[z], in a manner as similar
to the above as possible. Note that the existing proof of undecidability of
the existential theory of Fp(z) (given by the author for odd p and by Carlos
Videla for p = 2) is quite di↵erent from the above (see the presentation in
[43] for the case of odd p). So I will suggest a likely way to do this.

Say that we work over some Fp(z) with coe�cients in Fp[z]. One may
produce elliptic curves E over Fp(z) whose Fp(z)-rational points (even the
F̃p(z)-rational points) may be inrdexed as n · P1 plus (a finite) torsion (see
how in cf. [41]). One problem is that the indices n range not in Z but in an
order of a non-real quadratic field (e.g. Z[p�p]); but this does not seem to
me as a critical problem. A di↵erence of the case of positive characteristic
(over Fp(z)) from the case of characteristic zero (Q) is that in the case of
characteristic p > 0 one may produce a diophantine definition of the relation

(5.2) {(u, v) 2 (Fp(z))
2 9s 2 Z v = u

ps} .
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(see a discussion of new ways to produce such definitions for p 6= 2 in Section
6.3). Then, if one had a diophantine definition of divisibility of indices of the
points Pn, the structure of the points Pn, together with addition on E, divisi-
bility among the indices n and the relation |Zp among indices, defined by ‘m|Zp n
if and only if 9h 2 Z n = p

s ·m’ would give a model of addition, divisibility
(denoted by |) and |Zp on the set of indices. It has been proved by Denef that
in the structure (Z,+, |, |Zp , 0, 1), one may define positive-existentially mul-
tiplication, hence the positive existential theory of it is undecidable. So, in
order to produce an undecidability proof of HTP for Fp(z) as above it would
su�ce to define, positive existentially, a definition of divisibility | of indices
of the points Pn. Maybe such a definition results from some sort of analogue
of the Existential Divisibility Lemma for the fields Fp(z). I consider it very
likely that analogues of the methods of [23] for the function-field case would
be useful in this.

Problem 18 Give a proof of undecidability of the existential theory of any
Fp(z), with coe�cients in Fp[z], along the lines of the last paragraph. See
how much of the methods may be generalised to the case of F̃p(z) (the unde-
cidability of the existential theory of which is an open problem).

6 The question of decidability of the theory
of C(z).

We continue the presentation of Section 2 of [43].
The following is an old unanswered question:

Problem 19 Is the first order theory of C(z) decidable in the language Lz,
which extends the language of rings by a constant-symbol for the variable z?

The similar problems in positive characteristic have been answered nega-
tively: The theory of a field F̃p(z) in the language Lz is undecidable, due to
Gregory Cherlin (cf. [41]).

The similar question for the diophantine theory seems much harder.

Problem 20 Is the diophantine theory of C(z) in the language Lz decidable?

In fact there is no known example of an algebraically closed field F for which
the diophantine theory of F (z) (analogue of HTP) in Lz is undecidable (or
decidable).
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A problem, seemingly similar to the above, but probably much harder is
the following: Consider the language LT which extends the language of rings
by a predicate symbol T , which is interpreted as

T (x) if and only if the function x is not a constant function.
One may consider the theory and the diophantine theory of a ring of

functions of the variable z in the language LT . Notice that, given a variety
V over Q, the question of whether V contains a non-trivial rational curve
may be expressed as a positive-existential sentence of LT . As we saw in
Section 4, similar problems in rings of analytic or meromorphic functions of
one variable relate to a qualitative version to Hilbert’s tenth problem, cf.
[44]. Here we ask:

Problem 21 a) Is the theory of C(z) in the language LT decidable?
b) Is the diophantine theory of C(z) in the language LT decidable?

There are only few results on undecidability of LT -theories of rings of
functions - even fewer for existential theories. One of them is for rings of
polynomials (in any number of variables) over an integral domain - due to
Zahidi and the aurhor, cf. [37].

It is known that a proof of undecidability of the theory (respectively, exis-
tential theory) of C(z) in Lz would result from a definition (resp. existential
definition) of the property ‘the function x has no pole at z = 0’ - along the
lines of Denef’s similar proof for R(z). The next subsection constitutes an
e↵ort towards producing such a definition. Another e↵ort has been through
using elliptic curves over C(z) of rank equal to two - along the lines of the
proof of undecidability of the existential theory of C(z1, z2) (z1 and z2 are
independent variables, with constant symbols to represent them in the lan-
guage) of Kim and Roush; it has been mostly unsuccessful so far. The last
subsection contains a definition of a countable subset of the integral alge-
braic closure of Z in Lz over C(z)- the first of this kind, to the best of my
knowledge.

6.1 Defining order at a fixed point in fields of functions

Let K be a field of functions of the (one) variable z which is one of a) rational
functions, b) the field Mz(C) of meromorphic functions of z as this ranges
onC, c) the field Mz(Cp) of meromorphic functions of z as this ranges on Cp

(the field of p-adic complex numbers). By ordz(x) we denote the order of the
function x at z = 0, i.e. the multiplicity of the divisor z in x.
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Problem 22 Let K be as above. For any M 2 N, consider the set KM of
functions of K

(6.1) KM = {x | 9a, a1, . . . aM 2 K[x = a
2 · ⇧M

k=1(a
4
k � z

2)]} .

Is there an M such that {x 2 Q(z) | ordz(x) is even } ✓ KM?

It remains open . Notice that for a meromorphic function x in Mz(C) or
Mz(Cp) with p 6= 2 the following are equivalent:

• ordz(1 + zx
2) is even.

• ordz(x) � 0.
Therefore a positive answer to Problem 22 would result in a diophantine

definition in Lz of a subset of functions K⇤ of any K as above, such that

{x 2 Q(z) | ordz(x) � 0} ✓ K
⇤ ✓ {x 2 K | ordz(x) � 0} .

It is known that a positive answer to Problem 22 in the case K = C(z)
will imply that the analogue of HTP for C(z) with coe�cients in Z[z] has
a negative answer (cf. the discussion of the similar subject in the Thesis of
Karim Zahidi).

6.2 A set of algebraic integers, definable over C(z).
The following is due to an unknown, to me, referee, around 1990. It gives a
set J2, definable over C(z) in Lz, which is guaranteed to be a subset of the
set of algebraic integers.

Consider an elliptic curve E over C, given by some equation on the (X, Y )-
plane, say Y

2 = X
3 + �X

2 + �X + �, with �, �, � 2 C (the right-hand
side must be a polynomial of X with only simple zeros) and with identity
the (uniques) point at infinity. Its j-invariant is a rational function of the
coe�cients �, � and � . Consider an element s, algebraic over C(z), such
that s2 = z

3 + �z
2 + �z + �,

The non-constant algebraic endomorphisms e : E ! E (i.e. maps from E

to E which preserve addition on the curve and are algebraic over the inputs)
may be described as pairs of functions, e = (x(z), sy(z)) of the variables z

and s, where x, y 2 C(z). This set of endomorphisms, which we will denote
by End(E), is a ring under the operations of addition on E and composition.
It is known that (in characteristic zero) End(E) is isomorphic to either Z or
to some order in an imaginary quadratic extension of Q. In the second case
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we say that E has ‘complex multiplication’. It is known that the j-invariant
of a curve with complex multiplication is an algebraic integer. Look at the
ring End(E)/(2End(E), i.e. End(E) modulo 2 (with addition meant on
E). If this ring contains elements other than 0 and 1 then E has complex
multiplication, hence its j-invariant is an algebraic integer. So define J2 to
be the set of j-invariants of elliptic curves E (with the coe�cients �, � and �

as parameters), for which the above holds (i.e. End(E)/(2End(E)) has more
than two elements). It is easy to see that J2 is definable over C(z) in the
language Lz. Technically, the, so called, Manin-Denef curve Ez, associated
to E, given by the equation

(6.2) (z3 + �z
2 + �z + �)y2 = x

3 + �x
2 + �x+ �

in the variables x and y, which defines an elliptic curve over C(z). For each
solution (x, y) of it over C(z) the function defined by (z, s) 7! (x, sy) is a
function from E into E. By a theorem of Weil any such function (from E

to E and with an algebraic graph over C(z, s)) is of the form e � P where
� denotes addition on E, e is an endomorphism of E and P is a point of E
rational over C. Looking at the possible values of (x, y) at the points of E
of order two, i.e. for s = 0, one sees that the point P is, if not the identity
(the point at infinity) necessarily of order 2 on E - and there are three such
points. We conclude that the a�ne points (x, y) of Ez, rational over C(z),
are precisely the points for which (x, sy) = e� P0 for some endomorphism e

of E and P0 is either the identity or one of the three points of E of order 2.
The rest (for defining J2) is easy and left to the reader.

Of course J2 may not contain all j-invariants of curves with complex
multiplication, because in some cases it might be that all endomorphisms
are conguent to 0 or 1 modulo 2. But I would guess that J2 is an infinite
set. Notice that, given any positive integer d > 1 one may work similarly
with End(E)/(dEnd(E)) in order to define a set Jd, likewise. So, in trying
to determine the decidability properties of the theory of C(z) in Lz, one may
use for free a predicate for any set Jd. Also notice that the definition of Jd,
apparently is not existential - the statement “End(E)/(2End(E)) has more
than two elements”, which translates to ‘End(E) has at least three elements,
which are pairwise in-equivalent modulo 2’, needs a universal quantifier. So
I ask:

Problem 23 Are the sets Jd, defined above, existential over C(z) in Lz?.

20



I can not see an immediate application of the above. But the sets Jd, if they
are large enough as I expect, are non-trivial sets of algebraic integers, such
sets are often quite complicated and this seems to indicate a step towards
undecidability.

6.3 The case of characteristic p > 0

In the case of global fields of characteristic p > 0 the Frobenius map
x 7! x

p may be used in order to produce a positive-existential definition of
the relation x|py, defined by 9s 2 Z y = x

ps . This was established first for
fields of rational functions (by the author for odd p and Carlos Videla for
p = 2). A uniform way to define the same relation in a positive existential
way but, also, uniformly throughout the positive characteristics p > 0 is
given in [37]. So one may produce, over F̃p(z) in Lz, a ‘model’ Z with the
structure of addition and the relation |Zp in Z, where, for m,n 2 Z, |p is
defined by m|pn if and only if 9s 2 Z n = p

s
m.

Problem 24 Is the positive-existential theory of the structure (Z,+, |Zp , 0, 1)
undecidable?

If the answer is positive then the analogue of HTP for any F̃p(z) in Lz is
undecidable.

It is interesting to see the latest sort of definitions of the relation |p over
F̃p(z) (for su�ciently large p):

Theorem 25 Let p � 23 be a prime number. Then, for any x, y 2 F̃p(z)\ F̃p

the relation x|py holds (i.e.9s 2 Z y = x
ps) if and only if there is a sequence

x1, . . . , x20 such that x2 6= ±x1 ± 1 and any three successive xn�1, xn, xn+1 of
it satisfy the conditions (3.2) of Buchi’s Problem and xy = x

2
1 and x + y =

x
2
2 � x

2
1 � 1.

Notice that this gives an existential definition of the relation |p over F̃p(z)
even in the language LT . For a proof see Lemma 6.1 and the proof of Propo-
sition 4.1 of [37]. Observe that, for any non-negative integer s, the squares

of successive terms of any sequence of the form
�
(x + n)

ps+1
2

�
n
satisfy the

relations (3.2).
More definitions of the same relation |p have been given, among others

by Pasten.
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7 Analogues of HTP for rings of analytic and
meromorphic functions.

The ring of functions of one variable, analytic on a domain of C with non-
empty interior has an undecidable theory in the language Lz but even in
the language of rings (due to Raphael Robinson). For analogues of HTP the
following problems, due to Lee Rubel, are open:

Problem 26 Let Hz(C) be the ring of entire functions of the single variable
z and let Mz(C) be the field of fractions of Hz(C).

a) Is the positive existential (respectively, existential) theory of Hz(C) in
Lz decidable?

b) Let Lz,ord = Lz [ {ord} be the extension of the language Lz by the
predicate-symbol ord, which, in Mz(C) is interpreted as the set of functions
which are analytic at z = 0. What about the similar problem for the field
Mz(U) of meromorphic functions on the open unit disk U? (or the closed
unit disk Ū , meaning meromorphic on some open set containing Ū?)

c) Is the existential theory of Mz(C) in Lz,ord decidable?
d) As in c) for Mz(U) or Mz(Ū)?

The analogue of a) of the Problem for the ring Hz(Cp) of entire functions
on a p-adic analogue Cp of C has a negative answer (due to Leonard Lipshitz
and the author) - Z is diophantine in Lz. Xavier Vidaux proved in [56] a
negative answer for the field Mz(Cp) of p-adic meromorphic functions on Cp

- Z is diophantine- but only in the language Lz [ {ord} (the question raised
in Subsection 6.1 may be asked of Mz(Cp) and is open).

The first of these results uses the fact that p-adic entire functions which
are not polynomials have an infinite number of zeros. In particular there
is no such function without zeros (such as the exponential in the complex
case). Out of this (and with a lot of work) comes the fact that there is no
non-polynomial map of the form (x, sy) from the curve s2 + z

2 = 1 (the unit
circle over Cp) into itself, i.e. the equation

(7.1) (1� z
2)y2 = 1� x

2
,

in the unknowns (x, y), and with x, y 2 Hz(Cp) has only polynomial solu-
tions. These are known: they are given by

(±x, y) = (xn, yn) = (cos(n arccos z), 1p
1�z2

sin(n arccos z))
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(the ± sign is read as ‘plus or minus’).
For each integer n - the xn are the Chebishev polynomials. These solutions
were first used by J. Robinson, then by M. Davis and by J. Denef in order
to prove undecidability of the analogue of HTP for polynomial rings such
as C[z] in Lz. Here one may repeat Denef’s proof and give a diophantine
definition of the rational integers over Hz(Cp) in Lz.

For the meromorphic functionsMz(Cp) a similar phenomenon holds: Any
function from an elliptic curve E with a�ne equation in (z, s) coordinates
s
2 = z

3 + �z
2 + �z + � (with �, �, � 2 Q) into itself is a rational function

of z and s- but the proof here is much more di�cult than in the case of the
circle. In consequence Equation (6.2):

(z3 + �z
2 + �z + �)y2 = x

3 + �x
2 + �x+ �

in the unknowns (x, y), with x, y 2 Mz(Cp) has only rational function solu-
tions (those presented in Subsection 6.2). Choosing the coe�cients (i.e. the
curve E of Subsection 6.2) so that it does not have complex multiplication, a
variant of the proof of Denef for the case of R(z) works in order to obtain a
definition of the rational integers, diophantine over Mz(Cp) - but one needs
the predicate interpreting ord.

Since those results Natalia Garcia-Fritz and Hector Pasten have produced
new similar (undecidability) results for various non-archimedean rings and
fields - see the introduction of [42]. The latest result, in [42], proves the
following:

Consider the ring Hz1,z2(C) of functions of the two variables z1 and z2,
analytic as (z1, z2) ranges over C2 and let Mz1,z2(C) be the field of fractions
of Hz1,z2(C). Let Lz1,z2,eval be the language of rings, extended by symbols for
z1, z2 and a predicate symbol for the property Eval of elements of Mz1,z2(C),
defined by

Eval is the set of meromorphic functions which, evaluated at z1 = 0 give
functions of z2, analytic around z2 = 0 and with a zero at z2 = 0.

Then

Theorem 27 (Xavier Vidaux and the author)
The set of rational integers Z is diophantine over Mz1,z2(C) in Lz1,z2,eval,

therefore the positive-existential Lz1,z2,eval-theory of Mz1,z2(C) is undecidable.

The proof uses the following: Set z1 = z�1 and z2 = �+2, soMz1,z2(C) =
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Mz,�(C). Consider the solutions (x, y) 2 Mz,�(C) of

(7.2) (z3 + �z
2 + z)y2 = x

3 + �x
2 + x.

The solutions (x, y) = (xn, yn), which were presented in Subsection 6.1 for
given any fixed �, are actually rational functions of the pair of variables (z, �).
We do not know whether there are any solutions of (7.2) other than those.
But yet the following is proved:

Consider a pair of solutions (x, y) of (7.2), where y is not the zero function.
Write

Axy =
xz

y

where xz is the partial derivative of x with respect to z and, for any w 2
Mz,�(C), w|z=1|�.=�2 is the value of the meromorphic function w, evaluated
first at z = 1 and then at � = �2 - and the notation implies that w|z=1 is a
function of �, analytic around � = �2). The main point is to prove that

• The function Axy is an analytic function of the pair of variables (z, �)
over C2 and the value Axy|z=1|�.=�2 is a rational integer.

Observe that for each � 6= ±2 Equation (7.2) defines an elliptic curve
E�. It is shown that in the limit case � ! �2 the value of Axy is a rational
integer. The proof is too complicated to be presented here - for an outline
see Section 2 of [42], Here we ask:

Problem 28 Does Equation (7.2) have any non-rational solutions (x, y),
over Mz,�(C)?

Notice that questions that may be expressed in the language Lz1,z2,eval (i.e.
equations which are polynomials of the unknowns, together with conditions
of the form Eval(x)) include many questions in the Sciences that come from
solutions of di↵erential equations together with initial or boundary condi-
tions. A slightly di↵erent (but probably quite more di�cult) problem would
be to determine the question of decidability in the following situation, also
coming from natural problems:

Problem 29 Let Lz1,z2 be the extension of the language of rings by symbols
for the variables z1 and z2.

a) Is the positive existential theory of Hz1,z2(C) decidable?
b) Let Lz1,z2,ord.be the extension of Lz1,z2 by a symbol for the property ord,

defined by
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‘ord is the set of elements of Mz1,z2(C) which are analytic around
(z1, z2) = (0, 0) and obtain the value zero there’.

Is the positive existential theory of Mz1,z2(C) in Lz1,z2,ord decidable?

There are many more questions that come naturally from the proof of
Theorem 27, especially in Analytic Geometry - but asking some of them
would take us out of the aim of the present article.

7.1 Exponential polynomials

It has been a question of Lee Rubel to examine the analogue of HTP for
rings that result from extending C[z] (and C(z)) by as many functions of
elementary Calculus as possible and closing under composition. One of the
simplest rings of this form is the ring of exponential polynomials, often writ-
ten as C[z]E i,e, the result of closing C[z] under the operations of addition,
multiplication and composition. It is not known whether the theory of C[z]E
in Lz (or LT ) is decidable or not, much more for the existential or positive
existential theory.

Problem 30 Which of the following is decidable?

• The theory of C[z]E in Lz.

• The existential (respectively, positive existential theory) of C[z]E in Lz.

• The theory of C[z]E in LT .

• The existential (respectively, positive existential theory) of C[z]E in LT .

In [4] a negative answer to the analogue of HTP in Lz is given for the ring of
exponential polynomials ‘of finite order’ (in the sense of Complex Analysis).
It is shown that in this ring the solutions of (7.1) are only the polynomial
ones and Z is diophantine.

8 Characterisation of diophantine sets

How much may one extend the answer DIO = RE over the integers to
other domains? Do analogous facts hold true for rings such as Fp[z] (with
coe�cients in the natural image of Z[z])? The answer is essentially yes, see
[15]. What about the fields Q(z) and Fp(z) - where negative answers to the
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analogue of HTP have been given (with coe�cients in Z[z])? The answer is
not known.

Problem 31 a) Give characterisations of the diophantine subsets, in Lz, of
Q(z) and Fp(z), if possible in algorithmic terms. In particular answer to the
question whether Fp[z] is diophantine in Fp(z).

b) Is Q diophantine over Q(z) with coe�cients in Z[z]?

For a) notice that it is known that C[z] is not diophantine over C(z) in
Lz - see [24].

For b), notice that the proof by Denef of the undecidability of Q(z) in Lz

does not give a definition of Q (even more so for an existential definition).

9 A short list of results

(complementing those presented in [43])

1. Analogue of HTP for rational solutions (HTP(Q)): An open problem
see Section 1.

2. Is Z existentially definable in Q (in the language of arithmetic)? An
open problem; see Section 1.

3. Analogue of HTP for ‘diophantine equations’ with coe�cients in the
natural image of Z[z] and solutions in

(a) Any of Fp[z], Q[z], C[z] (in general: F [z], F a field or even an
integral domain) (HTP(F [z]): Undecidable, due to J. Denef.

(b) Any of R(z), Fp(z): Undecidable, due to J. Denef, the au-
thor and C. Videla; see Section 6.3.

(c) Any of F̃p(z) (where F̃p is an algebraic closure of Fp), C(z): An
open problem, see Section 6.

(d) Any of R[[z]], R((z)), C[[z]], C((z)): Decidable, due to J. Ax
and S. Kochen.

(e) The ring of entire (i.e. global analytic) functions of the variable
z: An open problem; see Section 7.

4. Is C[z] existentially definable in C(z) in the language Lz? No, due to
J. Kollar.
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5. Is Q existentially definable in Q(z) in the language Lz? An open
problem; see Section8.

6. Is the existential theory of any of Fp[[z]], Fp((z)), F̃p[[z]], F̃p((z)) in the
language Lzdecidable? An open problem.

7. Given a diophantine equation with coe�cients in Z[z], does it have
a power series solution with radius of convergence > 1? An open
problem.

8. Analogues of HTP for rings of transseries (see definitions in [17]): Open
problems.

Some comments:
For rings and fields of power series (Item 3): The diophantine theory of

Fp[[z]] and F̃p[[z]] with coe�cients in Fp[z] is decidable by the analogue of
the Artin-Greenberg approximation, due to J. Denef and L. Lipshitz (see [10]
and for recent results and references [31]); in other words we have a way to
e↵ectively solve systems of equations over these rings but not for systems of
equations and in-equations.

For rings and fields of power series in positive characteristic (Item 6) J.
Denef and Hans Schoutens have proved in [11] that if there is resolution
of singularities in positive characteristic then the existential theory under
consideration is decidable. There are new (decidability) results in extensions
of the language of rings (but not in Lz) due to Sylvy Anscombe and Arno
Fehm in [1]. Notice that for fields F of characteristic other than 2, 9y y

2 �
zx

2 = 1 is equivalent over F ((z)) to x 2 F [[z]] (an application of Hensel’s
Lemma, due to J. Ax, see generalisations in [19]). For connections with the
fields of p-adic numbers see [21] and its references. For power series of more
than one variables see [13]. For a rather complete bibliography see he page
The valuation theory home page of Franz-Victor Kuhlmann. For some very
interesting relative applications and additional bibliography see [9].

For rings of rational or algebraic functions of one or more variables there
is a number of results - all negative - by A. Shlapentokh, Ki Hang Kim and
Fred Roush (a characteristic result with method di↵erent from most of the
bibliography: undecidabity of the existential theory of C(z1, z2), with coef-
ficients in Z[z1, z2]) and relevant results by K. Zahidi, Kirsten Eisentraeger,
G. Demeyer and Claudia Degroote. Many analogues of HTP for global fields
rely on knowing that, for any given such field, there is an elliptic curve of
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rank one, with generator the point (z, 1), given by Equation (6.2); this holds
true by [30].

For analogues of HTP for rings between Z and Q see the survey [53] and
the references therein.

For the status of the following

Conjecture 32 (Jan Denef and Leonard Lipshitz) Let K be a number field
and OK the ring of integers of K. Then the positive-existential theory of OK

in the language of rings is undecidable (i.e. the analogue of HTP for OK has
a negative answer.

all existing results on this area negative answers to HTP (by J. Denef,
L. Lipshitz, A. Shlapentokh, the author and recently by N. Garcia-Fritz
and H. Pasten - using Iwasawa Theory). An analogue for global fields of
characteristic > 0 is known, see [51]. In [46] and [8] it is proved that each of
two di↵erent conjectures in Number Theory would imply Conjecture 32. B.
Mazur and K. Rabin have shown that the Shafarevich-Tate Conjecture (in
Number Theory) implies both the conjectures.

Another direction is to examine questions of uniformity, i.e. a com-
mon definition of similar sets in each of a class of structures, cf. [5], or
(un)decidability of the problem whether a formula (or an existential for-
mula) is true in almost all structures in a class (e.g. almost all Fp[z], as p

varies), cf. [37].
For more interesting relevant results see [29], [18], [26] and work by -

except for the authors of papers in the references - Lou Van den Dries
(see especially questions for rings of transseries), David Marker, and Maxim
Vsemirnov. Also by Mihai Prunescu and Leonidas Cerda-Romero (about the
structure of addition and divisibility).
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and Silvain Rideau-Kikuchi, Enriching a predicate and tame expansions
of the integers, arXiv:2203.07226 [math.LO].

[8] Gunther Cornelissen, Thanases Pheidas, and Karim Zahidi, Division-
ample sets and the Diophantine problem for rings of integers, Journal
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Abstract

We provide a survey of classical decidability results for local fields and then present some
new results for various infinite extensions of local fields which are of arithmetic interest.

1 Introduction

The decidability of the p-adic numbers Qp, established by Ax-Kochen [AK65] and Ershov
[Ers65], still remains one of the highlights of model theory. It motivated several decidability
results both in mixed and positive characteristic:

• In mixed characteristic, Kochen [Koc74] showed that Qur
p , the maximal unramified ex-

tension of Qp, is decidable. More generally, by work of [Zie72], [Ers65], [Bas78], [Bél99]
and more recently [AJ19], [Lee20] and [LL21], we have a good understanding of the model
theory of unramified and finitely ramified mixed characteristic henselian fields.

• In positive characteristic, our understanding is much more limited. Nevertheless, by
work of Denef-Schoutens [DS03], we know that Fp((t)) is existentially decidable in Lt =
{+, ·,�, 0, 1, t}, modulo resolution of singularities. In fact, Theorem 4.3 [DS03] applies to
show that any finitely ramified extension of Fp((t)) is existentially decidable relative to
its residue field.

Note that all of the above results are restricted to finitely ramified extensions of Qp and Fp((t)).
The situation is less clear for infinitely ramified fields and there are many such algebraic ex-
tensions of Qp, whose decidability problem is still open. This is the content of the following
sections. Our results are divided into two categories, the wildly ramified extensions and the
tamely ramified extensions.

2 Wildly ramified extensions

Recall the definition:

Definition 2.0.1. A finite extension (L,w)/(K, v) of valued fields is said to be wildly ramified

if the ramification degree e(L/K) is p-divisible, where p is the residue characteristic of (K, v).
An algebraic extension is said to be wildly ramified if any finite subextension is wildly ramified.

In practice, one refers to wildly ramified extensions when the ramification degree is highly
p-divisible. Important wildly ramified extensions of Qp include:

Example. (a) Qab
p , the maximal abelian extension of Qp.

(b) Qp(⇣p1), the totally ramified extension obtained by adjoining all pn-th roots of unity.
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These extensions have been discussed in Macintyre’s survey on pg.140 [Mac86] and a conjectural
axiomatization of Qab

p was given by Koenigsmann on pg.55 in [Koe18]. Another interesting

extension is Qp(p1/p
1
), a totally ramified extension of Qp obtained by adjoining a compatible

system of p-power roots of p.
The p-adic completions of the above fields are typical examples of perfectoid fields (see [Sch12]).
For any such field K, one can define its tilt, which intuitively is its local function field analogue
and serves as a characteristic p approximation of K. For our fields of interest, one has that
Qp(p1/p

1
) and Qp(⇣p1) are approximated by Fp((t))1/p

1
, the perfect hull of Fp((t)), while

Qab
p is approximated by F̄p((t))1/p

1
, the perfect hull of F̄p((t)). The fields Fp((t))1/p

1
and

F̄p((t))1/p
1

are typical examples of wildly ramified extensions of Fp((t)).
In [Kar20], the following is established:

Theorem A (Corollary A [Kar20]). (a) Assume Fp((t))1/p
1

is decidable (resp. 9-decidable)

in Lt. Then Qp(p1/p
1
) and Qp(⇣p1) are decidable (resp. 9-decidable) in Lval.

(b) Assume F̄p((t))1/p
1

is decidable (resp. 9-decidable) in Lt. Then Qab
p is decidable (resp.

9-decidable) in Lval.

In the above result, the language Lt is the language of valued fields together with a constant
symbol for t. This is essentially a special case of the main result of [Kar20], which is a relative
decidability result for perfectoid fields. The proof uses Fontaine’s period rings, which are
relevant in the construction of the Fargues-Fontaine curve.
One may also prove the following unconditional decidability result:

Theorem B. There is an algorithm that decides whether a system of polynomial equations

and inequations, defined over Z, has a solution modulo p over each of the valuation rings of

Qp(p1/p
1
),Qp(⇣p1) and Qab

p .

The proof of Theorem B goes via reduction to characteristic p, but unlike Theorem A only
existential decidability in Lval is needed on the characteristic p side. The latter is known by
work of Anscombe-Fehm [AF16].
Relative decidability results in the reverse direction are also established in [Kar20]. For example:

Proposition. If Qp(p1/p
1
) is 8

1
9-decidable in Lval, then Fp[[t]]1/p

1
is 9

+
-decidable in Lt.

The above Proposition is not exactly a converse of the existential version of Theorem A but
still suggests that if we eventually want to understand the theories of Qp(p1/p

1
), Qp(⇣p1) and

Qab
p (even modest parts of their theories), we have to face the diophantine problem over the

perfect hull of Fp((t)) and F̄p((t)).

3 Tamely ramified extensions

We now discuss some new results for tamely ramified extensions that are established in [Kar21],
where details and proofs may be found. Theorem C below is a general existential Ax-Kochen-
Ershov principle for tamely ramified fields, with no restriction on the characteristic, but which
is conditional on a certain form of resolution of singularities.
For our model-theoretic purposes, we need to extend the usual notion of a tamely ramified field
extension to the context of transcendental valued field extensions:

2
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Definition 3.0.1. A valued field extension (L,w)/(K, v) is said to be tamely ramified if l/k
is separable

1
, the quotient group �/� has no p-torsion, where p = char(k), and every finite

subextension is defectless.

Example. (a) Every valued field extension is tamely ramified when the residue characteristic

is zero.

(b) The valued field extension (Qp(p1/n), vp)/(Q, vp) is tamely ramified if and only if p - n.
(c) Let Fp((t�)) be the Hahn series field with residue field Fp and value group �. The valued

field extension Fp((t�))/Fp(t) is tamely ramified if and only if 1 is not p-divisible in �.

Our results in this section depend on a certain form of resolution of singularities. In very simple
terms, resolution of singularities allows us to transform a given variety, which may have lots of
singularities, to one which is non-singular. Moreover, the latter variety is in some sense close
to the former, so that anything useful that can be said about the latter variety can often be
translated into something useful about the former. The advantage of resolving the singularities
of a variety lies in the fact that it is usually much easier to deal with non-singular varieties for
all sorts of problems.
We now state the precise form that is assumed in [Kar21]:

Conjecture R (Log-Resolution). Let X be a reduced, flat scheme of finite type over an excellent

discrete valuation ring R. Then there exists a blow-up morphism f : X̃ ! X in a nowhere dense

center Z ⇢ X such that

1. X̃ is a regular scheme.

2. X̃s = X̃ ⇥SpecR Spec(R/mR) is a strict normal crossings divisor.

The notion of an excellent ring, introduced by Grothendieck(see §7.9 [Gro65]), is quite technical
to define here. However, for the case of discrete valuation rings, this simply means that bK/K
is a separable (not necessarily algebraic), where K = Frac(R) and bK denotes the completion
of K. A divisor is said to be strict normal crossings if its reduced underlying scheme locally
looks like a union of smooth varieties crossing transversely. In [Kar21], the following general
existential Ax-Kochen-Ershov is obtained:

Theorem C (Theorem A [Kar21]). Assume Conjecture R. Suppose (K, v) and (L,w) are

henselian and tamely ramified over a discrete valued field (F, v0) with OF excellent. If

RV(K) ⌘9,RV (F ) RV(L), then K ⌘9,F L in Lr.

Theorem C specializes to well-known Ax-Kochen-Ershov results in residue characteristic 0 and
in the mixed characteristic unramified setting. Moreover, these Ax-Kochen-Ershov principles
are known not only for the existential theories but also for the full-first order theories. The case
of finite tame ramification in mixed characteristic and with perfect residue fields was proven
recently in Corollary 5.9 [Lee20].
At the same time, Theorem C implies conditional existential decidability results for Fp((t))
and its finite extensions, which were already known by the work of Denef-Schoutens [DS03].
Our proof does not use Greenberg’s approximation theorem, which is an essential ingredient in
[DS03].
On the other hand, Theorem C applies also to the setting of infinite ramification, providing us
with an abundance of examples of infinitely ramified extensions of Qp and Fp((t)) whose theory
is existentially decidable. This is the content of the next section.

1A field extension l/k (not necessarily algebraic) is said to be separable if l is linearly disjoint from k1/p
1

(see §2.6 [FJ04]).

3
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3.1 Decidability

In Remark 7.6 [AF16], the authors write:
”At present, we do not know of an example of a mixed characteristic henselian valued field

(K, v) for which k and (�, vp) are 9-decidable but (K, v) is 9-undecidable.”
The existence of such an example is proved in Observation 1.2.2 [Kar20]. However, if we restrict
ourselves to the tamely ramified setting, we indeed get such an Ax-Kochen style statement:

Corollary (Mixed characteristic). Assume Conjecture R. Suppose (K, v) and (L,w) are

henselian and tamely ramified over (Q, vp), admitting cross-sections that extend a given cross-

section of (Q, vp). If k ⌘9 l in Lr and (�, vp) ⌘9 (�, wp) in Loag, then K ⌘9 L in Lr.

In particular, if (K, v) is henselian and tamely ramified over (Q, vp), admitting a cross-section
extending one of (Q, vp), then K is existentially decidable in Lr relative to k in Lr and (�, vp)
in Loag (see Corollary 4.1.4 [Kar21]). Similarly, we obtain a positive characteristic analogue:

Corollary (Positive characteristic). Assume Conjecture R. Suppose (K, v) and (L,w) are

henselian and tamely ramified over (Fp(t), vt), admitting cross-sections that extend a given

cross-section of (Fp(t), vt). If k ⌘9 l in Lr and (�, vt) ⌘9 (�, wt) in Loag, then K ⌘9 L in Lt.

Among the fields that are existentially decidable, the maximal tamely ramified extensions of
Qp and Fp((t)) are of arithmetic significance.

Corollary. Assume Conjecture R. Then the fields Qtr
p and Fp((t))tr are existentially decidable

in Lr.

3.2 Tweaking Abhyankar’s example

Finally, we discuss a tame variant of the following famous example, essentially due to Abhyankar
[Abh56]. It is also presented by Kuhlmann in a model-theoretic context in Example 3.13
[Kuh11]:

Example. Let (K, v) = (Fp((t))1/p
1
, vt) and (L,w) = (Fp((t1/p

1
)), vt) be the Hahn series

field with value group
1

p1Z and residue field Fp. We observe that RV(K) ⇠=RV (Fp((t))) RV(L)

but (K, v) 6⌘9,Fp((t)) (L,w) since the Artin-Schreier equation xp
� x �

1
t = 0 has a solution in

L but not in K.

Our version of Abhyankar’s example is obtained by replacing p-power roots of t with l-power
roots and exhibits a totally di↵erent behaviour:

Example. Fix any prime l 6= p. Consider the valued fields (K, v) = (Fp((t))(t1/l
1
), vt)

and (L,w) = (Fp((t1/l
1
)), vt), with the latter being the Hahn series field with value group

1
l1Z and residue field Fp. We observe that RV(K) ⇠= RV(L) and by Theorem C we get that

(K, v) ⌘Fp((t1/l
n )),9 (L,w), for all n 2 N. It follows that Fp((t))(t1/l

1
) �9 Fp((t1/l

1
)) in Lr.
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Abstract
Inductive logic is concerned with assigning probabilities to sentences given probabilistic

constraints. The maximum entropy approach to inductive logic assigns probabilities to all
sentences of a first order predicate logic. This assignment is built on an application of the
Maximum Entropy Principle. This paper puts forward two di↵erent modified applications
of this principle and shows that the original and the modified applications agree in many
cases. A third promising modification is studied and rejected.

1 Introduction

Inductive logic is a formal approach to model uncertain inferences. It seeks to analyse the degree
to which premisses entail putative conclusions. Given uncertain premisses '1, . . . ,'k with
attached uncertainties X1, . . . , Xk an inductive logic provides means to attach an uncertainty
Y to a conclusion  , where the Xi and Y are non-empty subsets of the unit interval. Using |⇡
to denote an inductive entailment relation this can be represented as

'
X1
1 , . . . ,'

Xk
k |⇡  

Y
,

where |⇡ denotes an inductive entailment relation [4].
The main early proponent of inductive logic was Rudolf Carnap [2]. Nowadays, the spirit of

his approach today continues in the Pure Inductive Logic approach [7, 8, 14]. In this paper, I
however consider uncertain inference within the Maximum Entropy Principle, which goes back
to Edwin Jaynes [5]. Roughly speaking, the Maximum Entropy Principle compels rational
agents to use a probability function consistent with the evidence for drawing uncertain infer-
ences. In case there is more than one such probability function, a rational agent ought to use
one of those probability functions that has maximal entropy.

If the underlying domain is finite, then applying the Maximum Entropy Principle for induc-
tive entailment is straight-forward and well-understood due to the work of Alena Vencovská &
Je↵ Paris [11, 12, 13]. Matters change dramatically for infinite domains. Naively replacing the
sum by an integral in the definition of Shannon Entropy produces probability functions with
infinite entropy. But then there is no way to pick a probability function with maximal entropy
out of a set in which all functions have infinite entropy.

There are two di↵erent suggestions for inductive logic on an infinite first order predicate
logic explicating the Maximum Entropy Principle. The entropy limit approach [1] precedes
the maximum entropy approach [17, 18]. It has been conjectured, that both approaches agree
in cases in which the former approach is-well defined [18, p. 191]. This conjecture has been
shown to hold in a number of cases of evidence bases with relatively low quantifier-complexity
[6, 9, 16].

This paper introduces modifications of the maximum entropy approach and studies their
relationships. I next properly introduce this approach, the modifications and investigate their
relationships.

⇤Many thanks to Soroush Rafiee Rad and Jon Williamson for continued collaboration on these topics.
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2 The Maximum Entropy Approach and Modifications

The formal framework and notation is adapted from [9].
Given is a fixed first-order predicate language L with countably many constant symbols

t1, t2, . . . and finitely many relation symbols, U1, . . . , Un. The atomic sentences are sentences
of the form Uiti1 . . . tik , where k is the arity of the relation Ui, will be denoted by a1, a2, . . .,
ordered in such a way that atomic sentences involving only constants among t1, . . . , tn occur
before those atomic sentences that also involve tn+1. The set of sentences of L is denoted by
SL.

The finite sublanguages Ln of L are those languages, which only contain the first n constant
symbols t1, . . . , tn and the same relation symbols as L. The sentences of the form ±a1^. . .^±arn
are called the n-states. Let ⌦n be the set of n-states for each n. Denote the sentences of Ln by
SLn.

Definition 1. A probability function P on L is a function P : SL �! R�0 such that:

P1: If ⌧ is a tautology, i.e., |= ⌧ , then P (⌧) = 1.

P2: If ✓ and ' are mutually exclusive, i.e., |= ¬(✓ ^ '), then P (✓ _ ') = P (✓) + P (').

P3: P (9x✓(x)) = supm P (
Wm

i=1 ✓(ti)).

A probability function on Ln is defined similarly (the supremum in P3 is dropped and m is

equal to n). P denotes the set of all probability functions on L. The set of probability functions

consistent with all premisses is denoted by E, E := {P 2 P : P ('i) 2 Xi for all 1  i  k}.

A probability function P 2 P is determined by the values it gives to the quantifier-free
sentences, a result known as Gaifman’s Theorem [3]. Consequently, a probability function is
determined by the values it gives to the n-states, for each n. It is thus sensible to measure
entropy of P via n-states with varying n.

Definition 2 (n-entropy). The n-entropy of a probability function P is defined as:

Hn(P ) : =�
X

!2⌦n

P (!) logP (!) .

The usual conventions are 0 log 0 := 0 and log denoting the natural logarithm. The second

convention is inconsequential for current purposes. Hn(·) is a strictly concave function.

The key idea is to combine the n-entropies defined on finite sublanguages into an overall
notion of comparative entropy comparing probability functions P and Q defined on the entire
first order language. So far, the literature has only studied such inductive logics with respect
to the first binary relation in the following definition.

Definition 3 (Comparative Notions of Entropy). That a probability function P 2 P has greater
(or equal) entropy than a probability function Q 2 P could be defined in the following three ways.

1. If and only if there is some natural number N such that for all n � N it holds that

Hn(P ) > Hn(Q), denoted by P � Q.

2. If and only if there is some natural number N such that for all n � N it holds that

Hn(P ) � Hn(Q) and there are infinitely many n such that Hn(P ) > Hn(Q), denoted by

P ]Q.

2
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3. If and only if there is some natural number N such that for all n � N it holds that

Hn(P ) � Hn(Q), denoted by P )Q.

The lower two definitions are alternative ways in which one could explicate the intuitive
idea of comparative entropy.

Definition 4 (Maximum Entropy). The set of probability functions on L with maximal entropy

relative to a notion of comparative entropy > defined on P2
can then be defined as

maxent> E : ={P 2 E : there is no Q 2 E \ {P} with Q > P} . (1)

Definition 5 (Maximum Entropy Inductive Logics). An inductive logic with respect to > is

induced by attaching uncertainty Y>( ) ✓ [0, 1] to the sentences  of L via

Y>( ) := {r 2 [0, 1] | there exists P 2 maxent> E with P ( ) = r} .

In case there are two or more di↵erent probability functions in maxent> E, there are some
sentences of  of L to which multiple di↵erent probabilities attach.

In the next section, I study (the relationships of) these binary relations and the arising
inductive logics. Particular attention is paid to the case of a unique probability function for
inference, |maxent> E| = 1.

3 Maximal (Modified) Entropy

I first consider notions of refinement relating these three binary relations.

Definition 6 (Strong Refinement). > is called a strong refinement of �, if and only if the

following hold

• > is a refinement of �, for all P,Q 2 P it holds that P � Q entails P > Q,

• for all R,P,Q 2 P it holds that, if R � P and P > Q, then R � Q and R 6= Q.

Definition 7 (Centric Refinement). I call a refinement > of � centric, if and only if for all

di↵erent R,P 2 P with R > P it holds that (R+ P )/2 � P .

Clearly, not all binary relations possess strong refinements; not all binary relations possess
centric refinements.

Proposition 1. ] is a strong and centric refinement of �. ) is a strong and centric refinement

of ] and of �.

Proof. I now display the three notions of comparative entropy line by line. The second conjunct
in the first definition is superfluous as is the second conjunct in the third definition:

P � Q :()(Hn(P )  Hn(Q) not infinitely often &Hn(P ) > Hn(Q) infinitely often)

P ]Q :()(Hn(P ) < Hn(Q) not infinitely often &Hn(P ) > Hn(Q) infinitely often)

P )Q :()(Hn(P ) < Hn(Q) not infinitely often &Hn(P ) � Hn(Q) infinitely often) .

By thusly spelling out both comparative notions of entropy one observes that P � Q entails
P ]Q, and that P ]Q entails P )Q. This establishes the refinement relationships.

Strong Refinements Next note that, if R � Q or if R]Q, then R 6= Q.

3
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] is a strong refinement of �: Let R � P and P ]Q. Then R 6= Q. Furthermore, Hn(R) 
Hn(Q) is true for at most finitely many n, since from some N onwards P has always greater or
equal n-entropy than Q. So, R � Q.

) is a strong refinement of ]: Let R]P and P )Q. Then R 6= Q. From some N onwards P

has always greater or equal n-entropy than Q. There are also infinitely many n 2 N such that
Hn(R) > Hn(P ). So, R]Q.

) is a strong refinement of �: Let R � P and P )Q. Then R 6= Q. From some N onwards
P has always greater or equal n-entropy than Q. From some N

0 onwards R has always greater
n-entropy than P . Hence, Hn(R)  Hn(Q) can only be the case for finitely many n 2 N. So,
R � Q.

Centric Refinement First, note that di↵erent probability functions disagree on some
quantifier free sentence ' 2 LN (Gaifman’s Theorem [3]). Since ' 2 Ln+N for all n � 1, these
probability functions also disagree on all more expressive sub-languages Ln+N .

] is a centric refinement of �: Fix arbitrary probability functions R,P defined on L with
R]P . R 6= P . From the concavity of the function Hn it follows that Hn(

R+P
2 ) > Hn(P ),

whenever Hn(R) � Hn(P ). By definition of ], there are only finitely many n for which Hn(R) �
Hn(P ) fails to hold. Hence, R+P

2 � P by definition of �.
) is a centric refinement of �: Fix arbitrary probability functions R,P defined on L with

R)P . Note that R may be equal to P . From the concavity of the function Hn it follows that
Hn(

R+P
2 ) > Hn(P ), whenever Hn(R) � Hn(P ). By definition of ), there are only finitely many

n for which Hn(R) � Hn(P ) fails to hold. Hence, R+P
2 � P by definition of �.

) is a centric refinement of ]: Fix arbitrary probability functions R,P defined on L with
R)P . Note that R may be equal to P . Since R+P

2 � P (see above case) and since ] is a
refinement of �, it holds that R+P

2 ]P .

Remark 1 (Properties of Comparative Entropies). If Hn(P ) = Hn(Q) for all even n and

Hn(P ) > Hn(Q) for all odd n, then P ]Q and P ⌥ Q. Hence, ] is a proper refinement of �.

For P = Q it holds that P )Q and Q)P . Hence, ) is a proper refinement of ] and thus a

proper refinement of �.

] is transitive, irreflexive, acyclic and asymmetric. ) is transitive, reflexive and has non-

trivial cycles, e.g, for all probability functions P,Q with zero-entropy, Hn(P ) = 0 for all n 2 N,
it holds that P )Q.

I now turn to entropy maximisation and the induced inductive logics.

Proposition 2. Let > be a strong refinement of �. If {Q} = maxent� E, then {Q} =
maxent� E = maxent> E.

Proof. Note at first that since > is a refinement of � it holds that

maxent> E ✓ maxent� E . (2)

Maximal elements according to�may not be maximal according to > and all maximal elements
according to > are also maximal according to �.

Assume for the purpose of deriving a contradiction that Q /2 maxent> E. Then, there has
to exist a P 2 E \ {Q} such that P > Q but P � Q fails to hold ({Q} = maxent� E).

However, since {Q} = maxent� E and Q /2 maxent> E hold, there has to exist some R 2
E \ {P} such that R � P , P cannot have maximal �-entropy. We hence have R � P

and P > Q. Since > is a strong refinement of �, we obtain R � Q and R 6= Q. Since
R 2 E it follows from the definition of maxent� that Q /2 maxent� E. Contradiction. So,
Q 2 maxent> E.

4
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Since {Q} = maxent� E
(2)
◆ maxent> E 3 Q, it follows that maxent> E = {Q}.

Proposition 3. If E is convex, > is a centric refinement of � and {Q} = maxent> E, then
{Q} = maxent� E = maxent> E.

Proof. Assume for contradiction that there exists a P 2 E\{Q} such that P is not�-dominated
by the probability functions in E but >-dominated by some R 2 E \ {P}, R > P . Now
define S = 1

2 (P + R) and note that S 2 E (convexity) and that S, P,R are pairwise di↵erent,
|{S, P,R}| = 3.

Since > is a centric refinement of �, conclude that S � P , which contradicts that P 2
maxent� E and P 6= Q. So, only Q can be in maxent� E.

Since Q 2 maxent> E and maxent> E
(2)
✓ maxent� E it follows that {Q} = maxent� E.

Theorem 1 (Triple Uniqueness). If E is convex and at least one of maxent) E, maxent] E or

maxent� E is a singleton, then

maxentE) = maxent] E = maxent� E .

Proof. Simply apply the above three propositions.

Having studied refinements of �, I now briefly consider how � could refine a binary relation.
Closest to the spirit of Definition 3 would be to consider P}Q, if and only if Hn(P ) > Hn(Q)
for all n 2 N. Clearly, the other three notions of comparative entropy are refinements of }.

Neither of these three binary relations is a strong refinement and neither is a centric re-
finement. To see this, consider three pairwise di↵erent probability functions P,Q,R with i)
Hn(P ) > Hn(Q) for all n , ii) Hn(P )/Hn(Q) ⇡ 1, iii) H1(Q) = H1(R) � � for large � > 0
and iv) Hn(Q) > Hn(R) for all n � 1. Then P}Q and Q � R,Q]R,Q)R. Now note that
H1(P ) < H1(R) and thus P}R fails to hold. None of �, ], ) is a strong refinement of }. Finally,
observe that Q+R

2 }R fails to hold. None of �, ], ) is a centric refinement of }.
The binary relation } induces a di↵erent inductive logic than �, ], ):

Example 1. Let U be the only and unary relation symbol of L. Suppose there is no evidence,

E = P. Then every P 2 P with P (Ut1) = P (¬Ut1) = 0.5 has maximal 1-entropy. Hence, all

such P are members of maxent} E. For 2 2 {�, ], )} it holds that maxent2 E = P=, where P=

denotes the equivocator function, which for all n assigns all n-states the same probability of

1/|⌦n|. So, maxent2 E 6= maxent} E.

This leads to the following more general observation:

Proposition 4. If there exists an n 2 N such Hn(P ) = max{Hn(Q) : Q 2 E}, then P 2
maxent} E.

This strong focus on single sublanguages Ln makes maxent} unsuitable as an inductive logic
for infinite predicate languages.

4 Conclusions

Maximum entropy inductive logic on infinite domains lacks a paradigm approach. The entropy
limit approach, the maximum entropy approach as well as the here studied modified maximum
entropy approaches induce a unique inductive logic in a number of natural cases. This points
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towards a, perhaps surprisingly, unified picture of maximum entropy inductive logics – in spite
of the number possible ways to define such inductive logics.

The Maximum Entropy Approach fails to provide probabilities for uncertain inference for
certain evidence bases of quantifier complexity ⌃2 [15, § 2.2]. In these cases, for all P 2 E there
exists a Q 2 E such that Q � P and maxentE is hence empty [10]. One way to sensibly define
an inductive logic could be to consider a binary relation which is refined by �. Unfortunately,
the most obvious way fails to deliver a sensible inductive logic (Proposition 4). Finding a way
to define such a sensible inductive logic must be left to further study.
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Exchangeability in Polyadic Inductive Logic. Synthese, 181:19–47, 2011.

[9] Jürgen Landes, Soroush Rafiee Rad, and Jon Williamson. Towards the Entropy-Limit Conjecture.
Annals of Pure and Applied Logic, 172, 2021.

[10] Landes, Jürgen and Rafiee Rad, Soroush and Williamson, Jon. Determining maximal entropy
functions for objective Bayesian inductive logic. Forthcoming.

[11] Je↵ B. Paris. Common Sense and Maximum Entropy. Synthese, 117:75–93, 1998.

[12] Je↵ B. Paris. The Uncertain Reasoner’s Companion: A Mathematical Perspective, volume 39 of
Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge, 2
edition, 2006.
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Abstract

Let p be a prime number, Fp a finite field with p elements, z a variable, Fp[z] the
ring of polynomials in z with coe�cients in Fp and Fp(z) the field of rational functions
of z over Fp. We consider the existential theory of addition and the Frobenius map of
a ring R ⇢ Fp(z), where R is generated over Fp[z] by inverting finitely many irreducible
polynomials of Fp[z]. We prove that it is model-complete and hence decidable. We also
prove that, if the existential theory, in the same language, of Fp(z) is decidable, then its
first-order theory is also decidable.

1 Introduction

Our work is part of the on-going research revolving around the fact that the ring-theory
and even the existential ring-theory of any field of rational functions Fp(z) over a finite
field Fp with p elements is undecidable (see [Phe91] and [Vid94]). So, proving decidability
of structures weaker than the ring-structure of such a field and its subrings is desirable (cf.
[PZ00]).

Consider R as a structure (model) of the language L := {+,=, x 7! xp, x 7! zx, 0, 1},
where = and + denote regular equality and addition, x 7! zx denotes the multiplication-
by-z map and x 7! xp is the Frobenius map. In [PZ04], the authors proved that the
L-theory of Fp[z] is model-complete (meaning that every formula is equivalent in Fp[z] to
an existential L-formula), and, hence, decidable. A similar (model completeness) result
has been proved for the L-structure of the ring of power series Fp[[z]] of z (see [Ona18]).
It is a natural question to ask whether the L-theory of Fp(z) is model-complete. For the
moment, this problem seems inapproachable with current means and may demand the use
of novel tools. Those that we use here su�ce to prove model completeness for subrings of
Fp(z), generated over Fp[z] by the inverses of finitely many irreducible polynomials.

The structure of addition and the Frobenius map is interesting, not only for its own sake,
but also because it is connected to various important mathematical and logical domains
and problems. For example, the derivative of a function (polynomial, rational or power
series) is positive-existentially definable in L (see [PZ04]). So, the structure of Fp(z) as a
model of addition and di↵erentiation is encodable in its L-structure. It is also interesting
to study this structure with p as a parameter, cf., the open Gröthendieck-Katz conjecture

[Ber91].
In another direction, it is a long-standing (and famous) problem whether there is res-

olution of singularities of algebraic varieties in positive characteristic. In the zero charac-
teristic case, it has been proved to always exist, in the algebraic and the analytic sense,
by Hironaka [Hir64]. But in positive characteristic it is an open problem. Although it
has been thought, for a long time, that such resolution always exists (no counter-example
is known), all e↵orts to prove it have failed so far and, recently, experts have expressed
doubts. From the investigations so far, it seems that the main obstacle in characteristic
p > 0 is the existence of the Frobenius map .

⇤Corresponding Author, Email: kamarianakis@uoc.gr
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2 Our results

2.1 The main theorems

The existential L-theory of the ring R ⇢ Fp(z), where R is generated over Fp[z] by inverting
finitely many irreducible polynomials of Fp[z], is the set of existential sentences of L, i.e.,
the first-order sentences of the language L which are of the form 9x1 . . . 9xm 2 R : �,
where � is a boolean combination of equations that may be written in the language L.

We construct an algorithm which, given an existential formula � of L, finds an equiva-
lent universal formula, thus we prove model-completeness.

Theorem 2.1. Let R be the subring of Fp(z) generated over Fp[z] by inverting finitely

many irreducibles polynomials of Fp[z]. The L-theory of R is model-complete.

For the case R = Fp(z), we observe that our structure is a module over the non-
commutative ring Fp(z)[P ], where P is defined by Px := xP , but with constant symbols
that are not contained in the language of modules that is used in the existing bibliography.
We make a variant of the well-known theorem of Baur and Monk [Bau76, Mon75], using
work of Van den Dries and Holly [VdDH92], and obtain the following theorem.

Theorem 2.2. Assume that the existential L-theory of Fp(z) is decidable. Then the L-
theory of Fp(z) is decidable.

But the decidability (or not) of the existential L-theory remains an open problem.

2.2 The main technical theorem

We present an outline of a new method that we introduced in order to prove Theorem 2.1.

Definition 2.3. An additive polynomial is a polynomial of the form

f(x̄) =
nX

i=1

fi(xi),

where x̄ = (x1, . . . , xn) and, for each i,

fi(xi) := bix
ps(i)

i +

s(i)�1X

j=1

ci,jx
ps(i)�j

i ,

with bi, ci,j 2 Fp(z).

For s 2 N, let Vs be Fp(z), considered as a vector space over the field Fp(z
s). An

additive polynomial f as above is called normalized if all degrees s(i) are equal to some s
and the set of leading coe�cients {bi | i = 1, . . . , n} is linearly independent over Vs.

Theorem 2.4. Let f be a normalized additive polynomial of the variables x̄ = (x1, . . . , xn),
which has positive degree in all the variables. Let u 2 Fp(z). Then the set {x̄ 2 Rn | f(x̄) =
u} is finite.

The method of proof involves diverse tools, such as the Hasse derivative Di [Has36],
where i denotes the order of derivation. This “hyperderivative” is used to create a matrix
operator W which generalizes the concept of the Wronskian operator in characteristic zero.

Note that Theorem 2.4 is indicative of the usefulness of our methodology; the inverse
image of a rational function through a multi-variate polynomial is, in general, infinite. We
also show that Theorem 2.4 is not true if one replaces R by Fp(z) - and this shows the
limits of our method: We can construct a normalized additive polynomial f and choose a
u 2 Fp(z) such that the set {x̄ 2 Fp(z)

n | f(x̄) = u} is infinite.
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Abstract

In this paper, I show that ZFC + LCs is restrictive compared to the V -logic multiverse, char-

acterised as ZFC + LCs+multiverse axioms. This means showing that the V -logic multiverse

proves the existence of an extra object that it is unavailable in ZFC + LCs and that, in turn,

this object realises a new isomorphism type. I argue that such an object is a class-iterable sharp,

that can only be found if there are proper, uncountable, width extensions of V . Such extensions

are present in the V -logic multiverse, but not in classical set theory.

1 Introduction

Classical set theory (ZFC), as instantiated by the cumulative hierarchy V , has been a very successful
foundation of mathematics for over a century. Nonetheless, there are some problems with it. The
first, and foremost, problem is Gödel’s Incompleteness: in the context of set theory, it entails that
some set theoretic statements are independent from ZFC. This means that we cannot prove neither
that they are true, nor that they are false. The main example of such statements is the Continuum
Hypothesis (CH), as proved by Cohen in the 1960s using forcing. For some time it was thought
that adding new axioms to ZFC would solve this problem (Gödel’s program), with large cardinals
axioms (LCs) being the main candidate for addition. However, it was proved that they do not settle
CH and, moreover, that they are incompatible with the Axiom of Constructibility.1 In the end, the
impossibility of solving independent questions by the simple addition of new axioms, coupled with the
multiplication of incompatible models generated through forcing, led to several possible expansions
of ZFC, each one giving rise to interesting mathematics. But which one should be chosen as the new
foundations of mathematics? The set theoretic multiverse (as introduced by J. D. Hamkins (2012))
side-steps the question: there is no need to choose, we can integrate all these di↵erent set theories
in just one multiverse conception. Such a solution is not appealing to the advocates of universism,
that instead defend the idea that there is only one set theoretic universe, V , that contains all the
possible sets and cannot be further expanded. Moreover, they point out that everything that can be
done in the multiverse can actually already be done in the Single Universe. For example, they argue
that the main tool used to generated new universes, i.e. forcing, can be interpreted as taking place
entirely within the Single Universe.2 The only possible argument against this kind of universism and
in favour of multiversism entails proving that in the set theoretic multiverse we can some object that
we cannot have in the Single Universe at all.

In this paper, I argue exactly that. In particular, I contend that classical set theory, ZFC(+LCs),
is restrictive compared to the V -logic multiverse (a novel set theoretic multiverse conception de-
veloped by the present author and Claudio Ternullo). This multiverse conception is based upon
Friedman’s Hyperuniverse3 and Steel’s set-generic multiverse4: like the Hyperuniverse, it uses the
infinitary V -logic as background logic (this logic admits formulas of length less than the first successor
of the least inaccessible cardinal, but only a finite block of quantifiers in front of them) and admits
all kinds of outer models of V (produced by set-generic, class-generic, hyperclass forcing, etc.). Like

1The Axiom of Constructibility says that V = L, i.e. that all sets are constructible from simpler ones.
2Here and throughout the paper I will refer to models of set theory and universes interchangeably, as done in the

literature.
3See S. Friedman (2016).
4See Steel (2014).



Steel’s set-generic multiverse, it is recursively axiomatisable and is rooted on a ground universe that
satisfies ZFC. For this proof, I compare ZFC + LCs and the V -logic multiverse, characterised as
ZFC + LCs+ the multiverse axioms, following Maddy’s methodological principle MAXIMIZE (as
introduced in Maddy (1997)). According to this principle, when choosing between two theories T

and S we should prefer the one that can prove more isomorphism types. I claim that the V -logic
multiverse, as opposed to ZFC + LCs, does exactly that. This is because in the V -logic multiverse
theory we can prove the existence of proper, uncountable, extensions of V , that we cannot have in
ZFC + LCs (see Neil Barton (2019)). In turn, this extra object means we can realise more isomor-
phism types, since in the V -logic multiverse we can prove the existence of iterable class sharps and,
more importantly, maps between them (see Antos, N. Barton, and S.-D. Friedman (nd)). Moreover,
when moving from ZFC + LCs to the V -logic Multiverse we are not losing anything: ZFC, all
the large cardinals, inner models and V are still there. On the other hand, when moving from the
V -logic multiverse to ZFC + LCs we lose the actual outer models of V , iterable class sharps and
iterable class sharp generated models. Thus, this latter theory is restrictive compared to the V -logic
multiverse theory.

This paper is structured as follows. First, I describe the infinitary V -logic and the V -logic
multiverse (section 2). After that, I show that classical set theory is restrictive compared to the
V -logic multiverse (section 3). Finally, some concluding remarks sketching the road ahead end the
paper (section 4).

2 The V -logic Multiverse

I now proceed to mathematically describe the V -logic multiverse. The system to be adopted allows
to address universes arising from extending V in width and height.5 More specifically, it is able to:

1. code representations of the “canonical” relationship between V and its outer models;

2. incorporate all kinds of outer-model constructs (e.g. extensions produced by various kinds of
forcing);

3. formulate what one should easily acknowledge as multiverse axioms.

This multiverse conception is, philosophically, a refinement of Hamkins’ broad multiverse. The key
di↵erence is that, instead of admitting all the possible universes, without any hierarchy (as done
in Hamkins’ multiverse), the V -logic Multiverse only admits the universes that can be defined and
described in a certain, uniform way. While this is philosophical starting point aims at restricting
Hamkins’ philosophical conception (goal shared with other multiverses), the mathematical imple-
mentation ends up being more open.6 In order to satisfy these requirements, I adopt the infinitary
V -logic, i.e. a logic whose language L+,! is that of first-order logic, admitting formulas of length
less than 

+ (the first successor of the least inaccessible cardinal) and with a finite number (less
than !) of quantifiers in front, and supplemented with the membership relation symbol 2 and the
following constant symbols:

• ā, one for each a 2 V ;

• V̄ , denoting the ground universe (that is, our initial V ).

Proofs in V -logic are infinitary, because of the addition of the following inference rules::

Set-rule {'(b̄)|b 2 a} ` (8x 2 ā)'(x)

5An height extension of V is produced by adding new ordinals, while a width extension by adding new subsets.
6Hamkins’s multiverse, as implemented by the axioms introduced in Gitman and Joel David Hamkins (2011), is

composed by only the countable computably saturated models of ZFC, while the V -logic multiverse axioms admits
any kind of model.



V -rule {'(ā)|a 2 V } ` (8x)'(x)

A sentence of V -logic may also use additional symbols.7 For example, a case of special interest is
when W̄ is introduced as a new predicate symbol (variable) ranging over “generic outer models of V ”,
and one considers sentences of the form “W̄ |= ZFC +  ” for some sentence  , possibly containing
constants ā for a 2 V . The following fact is fundamental for my purposes:

Fact 1 (Barwise). If V̄ is countable then a theory T of LV has a W̄ -structure for a model i↵ T is
consistent in V -logic.

This means that, in V -logic, one can produce a sentence about any outer model W of V which,
if consistent in V -logic, then really expresses a property of an outer model W of V .8 As Barwise
has shown, it turns out that structures satisfying the axioms of M-logic, that is, M-structures (V -
structures, in the case of V -logic), are models of Kripke-Platek set theory (KP ), a weak fragment of
ZFC.9 In turn, models of KP are called “admissible sets” (as these models are related to admissible
ordinals10 in recursion theory). The least such model, which contains M as an object, is called M+.11

If we turn to consider V -logic, a V -structure is the least admissible set beyond V , that is the least
model of KP containing V as an object, which is called V

+. In V
+, we finally have codes for proofs

in V -logic, which allows one to express syntactic facts that are essential for axiomatising the V -logic
multiverse.

I start by considering a set-theoretic sentence ', which expresses, in V -logic, that “W̄ |=  ”.
Now, consider the theory T = ZFC + “W̄ |=  ” and let Con(T ) be the statement “T is consistent”
(in V -logic).12 Then, by Fact 1 above, if Con(T ) holds, then W̄ really is an outer model W of V
enjoying the property  . This outer model, identified by Con(T ), is, thus, a member of the V -logic
multiverse. The procedure may be generalised to all kinds of  and all kinds of outer models W ,13

which leads to the formulation of the first, and key, “multiverse axiom” of the new theory MZFC –
more precisely, an axiom schema:

Axiom 1 (Multiverse Axiom Schema). For any first-order ' with parameters from V , if the sentence
of V -logic expressing “W̄ is an outer model of V satisfying '” is consistent in V -logic, then there is
a universe W which is an outer model of V that satisfies '.14

In addition to this axiom schema, and in analogy with ZFC, MZFC also features axioms describing
how the sets and universes of the multiverse behave.15 To this end, MZFC contains all of ZFC,
together with the following axiom:

Axiom 2 (Core Axiom). Every universe of the multiverse models ZFC.

Thus, MZFC, as of now, consists of:

1. ZFC;

2. the Multiverse Axiom Schema;

3. additional V -logic “axioms” (the “V -rule” and the “set rule”);

7The general features of infinitary logics, and their relationships with admissible sets (structures) are discussed in,
among other works, Keisler (1974), Barwise (1975), and Dickmann (1975).

8This was proved in Barwise (1975).
9
KP is the theory which results from removing the Power-Set and Infinity Axioms from ZF , and admitting

restricted forms of the Separation Axiom (�0-Separation) and of the Replacement Axiom (�0-Replacement).
10An ordinal ↵ is admissible i↵ the corresponding constructible universe L↵ is a transitive model of KP .
11Barwise’s original notation is Hyp(M), but to avoid confusion, the alternative notation M+ is preferable.
12Technically, Con(T ) is the V -logic statement: “T 0V ' ^ ¬'”, where ‘0V ’ is the V -logic provability relation.
13For instance, Con(T ) above may further specify that W̄ contains a filter Ḡ

C ✓ PC , where PC is a class-poset,
which would mean that W̄ is a class-forcing extension of V .

14This also means that each ' consistent in V -logic has a model in the multiverse. Note that the consistency of
such a ' is ⇧1-expressible in a first-order way, not over V but over V

+.
15Of course, there are distinct variables for sets and universes in our multiverse theory.



4. the Core Axiom.

Although the multiverse axioms clearly describe semantic constructs, what we have at this stage
is just a collection of theories. In particular, if we take an incremental approach to MZFC, we
may informally view it as a tree made up of branches corresponding to alternative set-theoretic
statements, and of nodes where alternative V -logic theories extending ZFC appear. Thus, the V -
logic multiverse may be seen as the collection of all the combinatorially conceivable consistent V -logic
theories of outer models.

Note that the V -logic multiverse maximises over outer-model constructs, as no constraint upon
the nature of the outer models has been placed in the formulation of the Multiverse Axiom Schema.
I argue that this represents a significant improvement over the set-generic multiverse conception,
which only allows for certain kinds of outer models.16

3 ZFC+LCs is restrictive compared to the V -logic multiverse

In this section I present the result that I have hinted to in the Introduction: classical set theory
(ZFC) is restrictive compared to the V -logic Multiverse. To do so I use the methodological principle
MAXIMIZE as discussed by Maddy (1997). This principle states that when comparing two theories,
the one that proves more isomorphism types is preferable. The theory that proves more isomorphism
types maximizes over the other (or, equivalently, the theory that proves less isomorphism types is
restrictive compared to the other). Maddy (1997) applies this principle to argue against the addition
of V = L to ZFC, and I plan to apply the same line of reasoning to the V -logic Multiverse.

The argument consists of the following steps:

1. first of all, prove that one theory proves the existence of an extra object that cannot exists in
the (claimed) restrictive one;

2. prove that this extra object realises a new isomorphism type;

3. if the two above steps are done, then we can conclude that one theory maximizes (in Maddy’s
sense) over the other (or, equivalently, that one theory is restrictive over the other).

I contend that this is true in the case of the V -logic multiverse and classical set theory.
First of all I need to precise the terms of this comparison. On the one hand, for the Single Universe

framework I am taking classical set theory in its usual axiomatization ZFC plus the addition of
large cardinals axioms, as instantiated by the cumulative hierarchy V . According to universists, this,
together with the restriction of set-generic forcing to countable transitive models, is enough for set
theoretic practice.17 On the other hand, the V -logic Multiverse is characterised as ZFC+LCs+ the
Multiverse Axioms. Note that, as usually argued by the universist, the addition of the Multiverse
Axioms do not add any “real” power to ZFC+LCs, since everything we need is already in the latter
theory, at least according to universists.

We can now proceed to the first step of my argument, i.e. showing that the V -logic multiverse
can prove the existence of an extra object that it is unavailable in ZFC + LCs. This object is a
proper, uncountable, outer model of V . Such an object cannot exists in the universist’s framework
of ZFC + LCs: indeed, the application of forcing in that usual setting is done only to countable
transitive models.18 This is because to do it we need the existence of generic filters, and for the
universist there are no V -generic filters.

However, in the V -logic multiverse framework we can prove the following theorem:

Theorem 1. Let ' be a V -logic sentence (for instance, a sentence which says “Con(T )” for some
V -logic theory T ). The following are equivalent:

16In particular, models obtained through set-forcing.
17This point is argued by N. Barton (2019).
18See Nik (2014), Antos, N. Barton, and S.-D. Friedman (nd) and N. Barton (2019).



1. ' is consistent in V -logic.

2. ' is consistent in v-logic (this is essentially the V-logic build upon a transitive countable model
v, instead of the full uncountable V ).

3. V̄ has an outer model, W̄ , such that W̄ |= '.

4. There exists a W̄
⇤, elementarily equivalent to W̄ , such that W̄ ⇤ |= '.19

This theorem implies that, in the V -logic multiverse, even if we start with a countable model of
ZFC inside V , we can then end up with a proper, uncountable outer model of an uncountable V

20

Consequently we have, in the V -logic Multiverse, an object that cannot be found in the universist’s
framework. We now need to prove that this new object realises a new isomorphism type. And this
is exactly my claim.

To see this, consider the technique of #-generation.21 As stated by Antos, Barton and Friedman,
this method is very useful in encapsulating several large cardinals consequences of reflection proper-
ties.22 It is based upon the existence of class-iterable sharps: these are transitive structures that are
amenable (i.e. x \ U 2 N for any x 2 N), with a normal measure and iterable in the sense that all
successive ultrapower iterations along class well-orders are well-founded.23 If such an object exists,
then we can have class iterated sharp generated models, i.e. models that arise through collecting
together each level indexed by the largest cardinal of the model that result from the iteration of
a class-iterable sharp.24 Finally, we can claim that V is such class iterably sharp generated, and
enjoy all advantages of this fact (the main advantage is that any satisfaction obtainable in height
extensions of V adding ordinals is already reflected to an initial segment of V itself). However, in
V we cannot find such a class-iterable sharp, since, if it were the case, then we would be able to
prove the existence of a cardinal that is both regular and singular25, but this is impossible.26 So in
the classical set theoretic framework V is not a class iterably sharp generated model, and all of the
above is unattainable.

This situation is fundamentally di↵erent in the V -logic multiverse. Indeed, since in the V -logic
multiverse we can have proper, uncountable, extensions of V , we can also have, in these extensions,
a class-iterable sharp. And thus, in the V -logic multiverse, we can claim that V is, in fact, class
iterably sharp generated. This result opens a new realm of isomorphisms types between all the
various iterated ultrapowers, and models of di↵erent heights that are provided by #-generation.
Thus, we can claim that ZFC + LCs is restrictive compared to the V -logic multiverse, since in the
latter we can find a new object that realises a new isomorphism type.

4 Concluding remarks

I have shown that the V -logic multiverse, characterised as ZFC+LCs+Multiverse Axioms, and with
V -logic as the background logic, proves more isomorphism types than classical set theory (ZFC +
LCs), and thus we can say that classical set theory is restrictive compared to the V -logic multiverse.

19This theorem has been proved by the present author and Claudio Ternullo in the paper Outer Models, V -logic

and the Multiverse, currently in preparation, and based on related results from Antos, N. Barton, and S.-D. Friedman
(nd) and N. Barton (2019).

20The V -logic multiverse is not the only multiverse conception that claims the existence of proper outer models of
V , the other being the Hyperuniverse. However, the latter assume that V is countable, thus simplifying the setting
by a lot.

21See Antos, N. Barton, and S.-D. Friedman (nd) for a discussion of it.
22A reflection property is a property of a model that can be proved to be true already in an initial segment of that

model.
23Here I am following the definition from Antos, N. Barton, and S.-D. Friedman (nd). The original definition in

S. Friedman (2016) is slightly di↵erent.
24Again, the precise definition can be found in Antos, N. Barton, and S.-D. Friedman (nd).
25A regular cardinal is a cardinal which cofinality is equal to the cardinal itself, otherwise it is singular.
26See Antos, N. Barton, and S.-D. Friedman (nd) for the details.



The argument I presented is compelling, but it is only one step of a much wider research program.
Other than the already mentioned UNIFY principle, it must be noted that my argument uses an
intuitive definition of restrictiveness and isomorphism type that can both be refined. This can be
done by following first and foremost the definitions present in Maddy (1997), and then the subsequent
work done by Benedikt Löwe, Luca Incurvati and especially Albert Visser.27

In conclusion, showing that the V -logic multiverse is better than classical set theory concerning
the principle MAXIMIZE is the first, necessary step to a better understanding of the set theoretic
multiverse and the requirements for a good foundational framework for mathematics.
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A total Solovay reducibility and totalizing of the notion
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Abstract
While the set of Martin-Löf random left-c.e. reals is equal to the maximum

degree of Solovay reducibility, Miyabe, Nies and Stephan [5] have shown that the
left-c.e. Schnorr random reals are not closed upwards under Solovay reducibility.
Recall that for two left-c.e. reals ↵ and �, the former is Solovay reducible to the
latter in case there is a partial computable function f and constant c such that for
all rational numbers q < ↵ we have

↵� f(q) < c(� � q).

By requiring the translation function f to be total, we introduce a total version of
Solovay reducibility that implies Schnorr reducibility.Accordingly, by Downey and
Gri�ths [1], the set of Schnorr random left-c.e. reals is closed upwards relative to
total Solovay reducibility.

Furthermore, we observe that the the notion of speedability introduced by
Merkle and Titov [4] can be equivalently characterized via partial computable
translation functions in a way that resembles Solovay reducibility. By requiring
the translation function to be total, we obtain the concept of total speedability.
Like for speedability, this notion does not dependent on the choice of the speeding
constant.

1 A total version of Solovay reducibility

We first review the usual definition of Solovay reducibility in terms of a partial recursive
function [3].

Definition 1.1 (Solovay reducibility, S,c). Let ↵ and � be reals and let c > 0 be a

rational number. Then ↵ is Solovay reducible to � with respect to a constant c,

written ↵ S,c �, if there is a partial computable function ' : Q ! Q such that for all

q < � it holds that '(q) #< ↵ and ↵�'(q) < c(��q). The real ↵ is Solovay reducible
to �, written ↵ S �, if ↵ is Solovay reducible to � with respect to some c.

In case ↵ S �, we will also say that ↵ is S-reducible to �, and similarly notation
will be used for other reducibilities introduced in what follows.

Definition 1.2 (total Solovay reducibility, tot
S,c). A real ↵ is total Solovay

reducible to a real � with respect to a constant c, written ↵ tot
S,c �, if there

is a computable function f : Q ! Q such that for all q < � it holds that f(q) < ↵ and

↵� f(q) < c(� � q). The real ↵ is total Solovay reducible to �, written ↵ tot
S �,

if ↵ is total Solovay reducible to � with respect to some c.

1



The total Solovay reducibility obviously implies the normal one, thus, the Martin-Löf
random left c.e. reals are closed upwards relative to the total Solovay reducibility.

2 The structural properties of the tot

S
lattice of left-

c.e. reals

In this section, we argue that total Solovay reducibility is in ⌃0
3 but is not a standard

reducibility in the sense of Downey and Hirschfeldt [3] because neither is addition a join
operator nor is there a least degree.

Proposition 2.1. Total Solovay reducibility is in ⌃0
3.

Proof. Let ↵
0
,↵

1
, ... be an e↵ective enumeration of left-c.e. reals, where we can as-

sume that for given n on can compute a recursive index for a nondecreasing approxima-
tion a

n
0 , a

n
1 , . . . to ↵

n from below. Then we have

↵
a tot

S ↵
b : () 9he, ci8hq, si9hr, ti : ('e(q)[t] #
^ (q < bs =) (ar � 'e(q) > 0 ^ ar � 'e(q) < c(bs � q)))).

Proposition 2.2. Let ↵ be a left-c.e. real and let r > 0 be a rational number. Then it

holds that r↵ ⌘tot
S ↵.

Proof. It holds that r↵ tot
S ↵ via the identify function and constant r, and similarly for

a reduction in the reverse direction with constant 1/r.

Next we review the notion of a hyperimmune set.

Definition 2.3. Let A be an infinite set. By pA, we denote the principal function

of A, i.e., the members of A are pA(0) < pA(1) < · · · . Let kA(n) be the least member

of A \ {0, . . . , n� 1}.

Recall that a set A is hyperimmune if pA is not majorized by a computable function,
i.e., for no computable function g we have pA(n)  g(n) for all n.

Lemma 2.4. For any set A, the following assertions are equivalent.

(i) pA is not majorized by any computable function

(ii) kA is not majorized by any computable function

Proof. In case the computable function g(n) majorizes kA(n), where we can assume
that h in nondecreasing, then a computable function that majorizes pA(n) is given by

n 7! g(g(...(g(0)...))| {z }
n-fold application of g

Conversely, in case the computable function g(n) majorizes pA(n), then the function
n 7! g(n+ 1) majorizes kA(n).
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Proposition 2.5. There exists no least degree in the total Solovay degrees.

Every least set with respect to total Solovay reducibility is also a least set with respect
to Solovay reducibility. Since the sets of the latter type are exactly the computable sets,
the proposition is immediate from the following lemma.

Lemma 2.6. Let ↵ = 0.A(0) . . . and � = 0.B(0) . . . be reals where the set A is computable

and infinite. Then ↵ is total Solovay reducible to � if and only if the set B is not

hyperimmune.

Proof. First assume that B is not hyperimmune. For a dyadic rational q that can be
written as q = 0.� where the last letter of � is equal to 1, define |q| = |�|. Then for any
such q and � where q < �, we have

2�kB(|q|)  � � 0.� = � � q.

By Lemma 2.4, we can fix a computable function g that majorizes kB . We obtain a
computable function f witnessing ↵ tot

S � by choosing f(q) < ↵ such that we have

↵� f(q) < 2�g(|q|)
.

Next assume that ↵ is total Solovay reducible to � via some function f and constant c.
Then for every n and for qn = 0.B(0) . . . B(n � 1), we have q < �, thus, for some
appropriate constant d one holds that

g(n) := min
|�n|=n

{↵� f(0.�n) : ↵� f(0.�n) > 0}  ↵� f(q) < c(� � q)  2�kB(n)+d
.

Consequently, the function n 7! d + dlog g(n)e is a computable upper bound for kB ,
hence B is not hyperimmune.

Indeed, the total Solovay-lattice satisfies the following stronger property, which we
state here without proof.

Proposition 2.7. There exists a countably infinite antichain of mutually tot
S -incomparable

left-c.e. reals such that each of them is incomparable with every computable real.

Before proving that addition is not a join operator, we recall the notion of a Schnorr
reducibility, namely, the uniform version of it.

Definition 2.8 (uniform Schnorr Reducibility, uSch,c). A real ↵ is uniform
Schnorr reducible, or uSch-reducible, to a real � with respect to a constant
c, written ↵ uSch,c �, if there is a computable functional ' that, given a description of

a computable measure machine (or, shortly, cmm) B, returns a description of another

computable measure machine '(B), so that

K'(B)(↵ � n)  KB(� � n) + c.

The real ↵ is uniform Schnorr reducible to �, written ↵ uSch �, if ↵ is uniform

Schnorr reducible to � with respect to some c.

Obviously, the uniform Schnorr reducibility implies the Schnorr reducibility, with
respect to which the Schnorr random reals are closed upwards.
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Proposition 2.9. For all left-c.e. ↵,�, ↵ tot
S � implies ↵ uSch �

Corollary 2.10. The Schnorr random left-c.e. reals are closed upwards relative to the

total Solovay reducibility.

Proof. Let f be a total computable function, such that ↵ tot
S,c � via f . Given a cmm

machine B computing �, we construct a cmm machine A computing ↵ in the following
uniform way:

Input:(x 2 Q, w 2 {0, 1}dlog(c)+1e)

• compute � := B(x) (the computation halts i↵ x 2 dom(B))

• compute ⌧ , so that 0.⌧ := (f(0.�) � n)
If 0.� < �, then on holds

↵� f(0.�) < c(� � 0.�)

In particular, if 0.� = � � n, then ��0.� < 2�n, so ↵�f(0.�) < c2�n = 2dlog(c)e�n.

Thus,

↵ � n� 0.⌧ < ↵� f(0.�) + f(0.�)� (f(0.�) � n) < c2�n + 2�n = 2dlog(c+1)e�n

• return y 2 {0, 1}n, so that 0.y = 0.⌧ + 2�n · 0, w
The constructed machine A has the following properties:

• prefix-freeness (since B is prefix-free)

• computable measure of the domain (the following relation:

B(x) # =) A((x,w) # 8w 2 {0, 1}dlog(c+1)e

implies, that µ(dom(A)) = µ(dom(B))

• KA(↵ � n)  KB(� � n) + log(c + 1) + O(1) (since there always exists a word
w 2 {0, 1}dlog(c+1)e such that

↵ � n� 0.⌧ = 2�n · 0.w

For that w, on holds A(x,w) = y, such that

0.y = 0.⌧ + 2�n · 0, w = ↵ � n
that implies KA(↵ � n)  |x|+ |w|, where x may be the shortest code of � � n.

Proposition 2.11. There is a pair of left-c.e.reals ↵,� where ↵ ⇥tot
S ↵+ �.

Proof. Miyabe, Nies and Stephan [5, Paragraph 3] demonstrated that there exists a pair
of left-c.e. reals ↵ and � such that ↵ ⇥Sch ↵+�. Thus we also have ↵ ⇥tot

S ↵+� because
total Solovay reducibility implies Schnorr reducibility.

Remark. The uniform Schnorr-reducibility is, due to the similar argumentation, also
implied by the weaken version of the total Solovay reducibility, whose requirement for f
di↵ers from the original one in the additional term:

↵� f(q) < c(� � q) + 2�|q|
.

The motivation of this weakening is that now its lattice on the field of left-c.e. reals has
a minimal degree containing all the computable reals.
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3 Speedability of left-c.e. numbers.

Definition 3.1. A function f : N ! N is a speed-up function if it is nondecreasing

and n  f(n) holds for all n. A left-c.e. number ↵ is ⇢-speedable with respect to
its given left approximation a0, a1, . . . % ↵ for some real number ⇢ 2 (0, 1) if there
is a computable speed-up function f such that we have

lim inf
n!1

↵� af(n)

↵� an
 ⇢, (1)

and speedable if it is ⇢-speedable with respect to some its left-c.e. approximation for

some ⇢ 2 (0, 1). Otherwise we call ↵ nonspeedable.

Whether a real is speedable depends neither on the left-c.e. approximation nor on
the constant ⇢ one considers.

Theorem 3.2 (Merkle and Titov [4]). Every speedable left-c.e. real number is ⇢-speedable

for any ⇢ > 0 with respect to any of its left approximations.

The following theorem is immediate from the main result of Barmpalias and Lewis-
Pye [2].

Theorem 3.3 (Barmpalias and Lewis-Pye [2]). Martin-Löf random left-c.e. real numbers

are never speedable.

By the following proposition, the notion of speedability can be equivalently charac-
terized as a Solovay reduction of a real number to itself via a special partial computable
functions on the rational numbers. By applying the same characterization to computable
functions, in what follows we obtain a variant of speedability, similar to the introduction
of total Solovay reducibility.

Proposition 3.4. Let ↵ be a left-c.e. real and let ⇢ be a real number such that 0 < ⇢ < 1.
Then ↵ is speedable if and only if there is a partial computable function g : Q ! Q that

is defined and nondecreasing on the interval (�1,↵), maps this interval to itself and

satisfies

lim inf
q%↵

↵� g(q)

↵� q
 ⇢. (2)

Proof. Fix some left approximation a0, a1, . . . of ↵. First assume that ↵ is speedable.
By Theorem 3.2 there is then a computable speed-up function f that witnesses that ↵

is ⇢-speedable with respect to its left approximation a0, a1, . . .. Let n be the partial
computable function on the set of rational numbers that maps every q < ↵ to the least
index i such that q  ai, and is undefined for all other q. Here we assume that rational
numbers are represented in a form such that equality is a computable predicate. Then
the partial function g defined by

g(q) = af(n(q)),

by choice of n and f , is partial computable, is defined and nondecreasing on the in-
terval (�1,↵) and maps this interval to itself. Furthermore, the sequence a0, a1, . . .

witnesses that (2) holds, because we have g(ai) = af(i).

5



Next assume that there is a function g as stated in the proposition. Then there is a
not necessarily computable left approximation q0, q1, . . . of ↵ such that we have

lim inf
j!1

↵� g(qj)

↵� qj
 ⇢.

Let f be the computable speed up function that maps i to the least index n > i such
that g(ai+1) < an. Then for all q and i such that q is an element of the half-open
interval [ai, ai+1), we have

↵� af(i)

↵� ai
 ↵� g(ai+1)

↵� q
 ↵� g(q)

↵� q
.

In particular, this chain of inequalities holds true with q replaced by any of the qj , which
by choice of the qj implies that ↵ is ⇢-speedable via its left approximation a0, a1, . . . and
the speed-up function f .

From Proposition 3.4 it is immediate that the the equivalent characterization of speed-
ability stated there does not depend on the choice of ⇢ in the interval (0, 1). In particular,
the characterization holds for some ⇢ in this interval if and only if it holds for all ⇢ in
this interval.

In a same way as the totalizing of translation function for the Solovay reducibility,
we can totalize the concept of speedability by requiring the function g from the latter
definition to be total.

Definition 3.5. Let ⇢ be a real number such that 0 < ⇢ < 1. A left-c.e. real ↵ is called

total ⇢-speedable if there exists a nondecreasing computable function g : Q 7! Q that

maps every q in the interval (�1,↵) to a value g(q) > q in this interval and satisfies

lim inf
q%↵

↵� g(q)

↵� q
 ⇢. (3)

Such a function g is called total speed-up function.

By the following proposition, the total version of speedability does again not depend
on the choice of the constant. The proof is omitted due to space considerations.

Proposition 3.6. Whether a left-c.e. real is total ⇢-speedable does not depend on the

choice of ⇢ 2 (0, 1).

Barmpalias and Lewis-Pye [2] have shown that speedability implies Martin-Löf non-
randomness. We currently research the characteristics of the total speed-up function via
which the total speedability will imply Schnorr nonrandomness.
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1 Introduction

Substructural logics are non-classical logics that include Boolean, Intuitionistic, Relevance,
Many-valued and Linear logic, among others. They are further connected to philosophy, math-
ematical linguistics, and computer science, while their algebraic semantics have been studied
extensively in order algebra, in the context of algebraic logic; see [1] for more on residuated
lattices and substructural logics. In this presentation we discuss (generalized) Bunched Impli-
cation logic. The initial motivation comes from pointer management, memory allocation and
concurrent programming in computer science where it serves as the Hoare logic for Separation
logic. The algebraic semantics (which we suitably generalize to the non-commutative case, so
as to include algebras of relations) are known as GBI-algebras (and Heyting residuated lattices)
and they combine two di↵erent implication connectives: the dynamic and the logical; see [8] for
an account of bunched implication logic and [7] for the connections between separation logic,
bunched implication logic and residuated structures.

2 Proof theory

We present a Gentzen-style sequent GBI calculus for GBI-logic, which has two structural
connectives, corresponding to conjunction ^ and strong conjunction ·, also known as fusion.

Theorem 1. The system GBI enjoys cut elmination.

We present a semantical proof of cut elimination; the proof proceeds by considering distribu-
tive residuated frames, two-sorted structures that form relational semantics for GBI-algebras;
see [2] and [4]. This allows us to prove cut elimination for any extension of GBI with equations
over the signature {_,^, ·, 1}. In particular we recover the known cut elimination for the system
of (commutative) BI logic as a special case. We also discuss a contraction-controlled form of
the proofs of the system, based on the notion of 3-reduced proofs.

3 Congruences

A residuated lattice is an algebra (A,^,_, ·, \/, 1), where (A,^,_) is a lattice, (A, ·, 1) is a
monoid and x ·y  z i↵ x  y/z i↵ y  x\z, for all x, y, z 2 A. If · is equal to ^, then A is called
a Brouwerian algebra (these are the bottom-free subreducts of Heyting algebras) and in this case
we write x!y for x\y; it also follows that y/x = x\y so we suppress this operation. A generalized
bunched implication algebra, or GBI-algebra, is an algebra A = (A^,_, ·, \, /, 1,!,>), where
(A,^,_, ·, \, /, 1) is a residuated lattice and (A,^,_,!,>) is a Brouwerian algebra.

Congruences in residuated lattices are determined by certain subsets (in a way similar to the
fact that congruences in groups are determined by normal subgroups);see [1]. Given a, x 2 A
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we define ⇢0a(x) = ax/a and �0
a(x) = a\xa (which are akin to conjugates in group theory). A

subset is called normal if it is closed under ⇢0a and �0
a for all a 2 A. A (RL)-deductive filter of

a residuated lattice A is defined to be a normal upward closed subset of A that is closed under
multiplication and meet and contains the element 1. It is known that if ✓ is a congruence on
A then "[1]✓, the upset of the equivalence class of 1, is a deductive filter. Conversely, if F is
a deductive filter of a residuated lattice A, then the relation ✓F is a congruence on A, where
a ✓F b i↵ a\b ^ b\a 2 F . Note that if A is a Brouwerian or a Heyting algebra, then deductive
filters are usual lattice filters.

Theorem 2. The GBI-deductive filters are exactly the RL-deductive filters that are further
closed under ra,b(x) = (a! b)/(xa! b) and sa,b(x) = (a! bx)/(a! b), for all a, b.

Alternatively, congruences are characterized by their equivalence classes of >. These are
usual lattice filters that are closed under the terms

ta,b(x) = a/b! (a ^ x)/b, ua,b(x) = a/(b ^ x)! a/b, va,b(x) = ab! (a ^ x)b and
t0a,b(x) = b/a! b/(a ^ x), u0

a,b(x) = (b ^ x)\a! b\a, v0a,b(x) = ab! a(b ^ x) for all a, b.

4 Weakening relation algebras

In their seminal on Boolean algebras with operators (BAOs), Jónsson and Tarski showed that
many varieties of BAOs, including the variety of relation algebras, are closed under canonical
extensions, and that a relation algebra is complete and atomic with all atoms as functional
elements if and only if it is the complex algebra of a generalized Brandt groupoid. We show
that results about relation algebras can also be generalized to certain involutive GBI-algebras,
which we call weakening relation algebras. These can be thought as intuitionistic analogues to
classical/Boolean relation algebras.

A relation algebra (A,^,_,0 ,>,?, ·,`, 1) consists of a Boolean algebra (A,^,_,0 ,>,?) and
a monoid (A, ·, 1) such that xy  z () x`

· z0  y0. A cyclic involutive GBI-algebra (CyGBI-
algebra) is an expansion (B,^,_,!,>, ·, 1, 0) of a GBI-algebra with an additional constant 0;
we further define the connectives ⇠ x = x\0, ? =⇠ >, ¬x = x ! ? and x` = ⇠¬x. A
relation algebra is a CyGBI-algebra where x ! y = x0

_ y and ⇠x = x0`. It turns out that a
CyGBI-algebra is a relation algebra i↵ it satisfies the identities ¬¬x = x and (xy)` = y`x`. In
other words, CyGBI-algebras provide a natural setting which shows all the hiden symmetries
in the definition of relation algebras.

We define algebras of binary relations that are cyclic involutive GBI-algebras and gener-
alize representable relation algebras. Let P = (P,v) be a partially ordered set, Q ✓ P 2

an equivalence relation that contains v, and define the set of weakening relations on P by
Wk(P, Q) = {v � R � v : R ✓ Q}. Note that this set is closed under intersection \, union [

and composition �, but not under complementation R0 = Q�R or converse R`.
Weakening relations are the natural analogue of binary relations when the category Set of

sets and functions is replaced by the category Pos of partially ordered sets and order-preserving
functions. Since sets can be considered as discrete posets (i.e. ordered by the identity relation),
Pos contains Set as a full subcategory, which implies that weakening relations are a substan-
tial generalization of binary relations. They have applications in sequent calculi, proximity
lattices/spaces, order-enriched categories, cartesian bicategories, bi-intuitionistic modal logic,
mathematical morphology and program semantics, e.g. via separation logic.

Let P = (P,v) be a poset, Q an equivalence relation that contains v, and for R,S 2

Wk(P, Q) define > = Q, ? = ;, 1 = v, ⇠R = R`0 and R ! S = (w � (R \ S0) � w)0 where
S0 = Q� S.

2
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Theorem 3. Wk(P, Q) = (Wk(P, Q),\,[,!,>,?, �, 1,⇠) is a CyGBI-algebra.

Algebras of the form Wk(P, Q) are called representable weakening relation algebras, and if
Q = P⇥P , then we write Wk(P) and call this algebra the full weakening relation algebra on P.
If P is a discrete poset then Wk(P) is the full representable set relation algebra on the set P , so
algebras of weakening relations play a role similar to representable relation algebras. We define
the class wRRA of representable weakening relation algebras as all algebras that are embedded
in a weakening relation algebra Wk(P, Q) for some poset P and equivalence relation Q that
contains v. In fact the variety RRA of representable relation algebras is finitely axiomatized
over wRRA.

Theorem 4. wRRA is a discriminator variety closed under canonical extensions. Also, RRA
is the subvariety of wRRA defined by ¬¬x = x. Finally, the class wRRA is not finitely axioma-
tizable relative to the variety of all CyGBI-algebras.

5 Weakening relations via conuclei on GBI-algebras

A weak conucleus on a residuated lattice A is an interior operator � on A such that �(x)�(y) 
�(xy), for all x, y 2 A. Then �[A] = (�[A],^�,_, ·, \�, /�) is a residuated lattice-ordered
semigroup, where x •� y = �(x • y), for • 2 {^, \, /}; we are interested in the cases where this
algebra also has an identity element e and hence (�[A], e) is a residuated lattice. A topological
weak conucleus on a GBI-algebra A is a conucleus on both the residuated lattice and the
Brouwerian algebra reducts of A.

Given a residuated lattice A and a positive idempotent element p we define the map �p

by �p(p) = p\x/p. Then �p is a topological weak conucleus (which we call the double division
conucleus by p), and p is the identity element �p(A); we denote the resulting residuated lattice
(�p(A), p) by p\A/p. If A is involutive then so is p\A/p and the latter is a subalgebra of A
with respect to the operations ^,_, ·,+,⇠,�; recall that an involutive residuated lattice is an
expansion of a residuated lattice with an extra constant 0 such that ⇠(�x) = x = �(⇠x),
where ⇠x = x\0 and �x = 0/x; we also define x+ y = ⇠(�y ·�x).

Note that given a poset P = (P,v), we have Wk(P) = O(P ⇥ P@), where O denotes the
downset operator. Recall that a map on f on a poset P is called residuated if there exists a
map f⇤ on P such that f(x) v y i↵ x v f⇤(y), for all x, y 2 P . For a complete join semilattice
L, Res(L) denotes the residuated lattice of all residuated maps on L.

Theorem 5. Wk(P) ⇠= Res(O(P)).

Given a poset P = (P,v), we set A = Rel(P ), to be the involutive GBI algebra of all binary
relations on the set P . Note that p = v is a positive idempotent element of A. It is easy to see
that p\A/p is exactly Wk(P). Since A is an involutive GBI-algebra, so is Wk(P).
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Abstract

In the present paper, we will show how to construct an exact truthmaking model for
a rich enough first order language containing two unary predicates S,A whose intended
reading is being (the code of) a state and being (the code of) an actual state respectively,
and a binary predicate �, which bears (codes of) states to (codes of) sentences of the
language, and whose intended meaning is making exactly true. In other, more informal
terms: we will show how to construct an exact truthmaking model for a language rich
enough to talk about its own exact truthmaking semantics.

1 Introduction

Recent years have seen a rise of interest in exact truthmakers in philosophical logic and seman-
tics. A state (of a↵airs, action, event, ...), s, is an exact truthmaker for a statement, �, just in
case s necessitates � ’s truth while being wholly relevant to it [9, 14]. The state of the ball being
red, for instance, is an exact truthmaker for “the ball is red”, while the complex state of the ball
being red and round is not – the ball’s shape has nothing to do with its color [14]. The concept
of exact truthmaking gives rise to a very fine-grained semantics, exact truthmaking semantics,
according to which we individuate content of sentences by means of their exact truthmakers
[see 9, 13, 17].
Exact truthmaking semantics has proved useful in the reconstruction of the notion of aboutness
[see 21, 7, 8], in the reconstruction of the semantics of hyperintensional contexts (see [15] for
an overview, on hyperintensional contexts, and see for instance [16, 17]) – e.g.: propositional
attitude reports (Alice believes that �, Bob knows that �, . . . ), in which substituting sentences
that are true in all and only the same possible worlds may not preserve the truth-value of the
report –, and as a semantics for large portions of natural language [see e.g. 17].
However, there are technical and philosophical problems that call for a solution. First of all, as
Barwise puts it [2], a rich enough semantics should be able “to be turned on itself, and provide
an account of its own information content, or rather, of the statements made by the theorist
using the theory”, i.e.: provide a semantics for the language we are using to do semantics. A
model in which to do this is not yet present in the literature about exact truthmaking.
Secondly, we may want a hyperintensional semantics, especially one used to give an analysis
of the notion of aboutness, to distinguish between the semantic content of a sentence � and
the semantic content of a sentence that ascribes truth to �, “‘�’ is true” [several arguments to
support this claim are present, for instance, in 20]. For instance, it seems that “‘Snow is white’
is true” says something about a statement, ‘Snow is white’, while the sentence “Snow is white”
says something about snow. We would like to have a model that would give an account of this
di↵erence, while maintaining the intensional equivalence of � and “‘�’ is true”. Such a model

⇤
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is not present in the literature on exact truthmaking, yet.
Thirdly, exact truthmaking semantics comes with philosophical problems related to paradoxes of
truthmaking. Sentences like “This very sentence doesn’t have truthmakers”, or “The situation
described by this very sentence is not actual” [see 1], generate di�culties for any truthmaking
semantics. In order to diagnose how statements like these are problematic, and to provide a
solution to these paradoxes of truthmaking, a good semantics for a language containing predi-
cates whose intended reading is being a truthmaker, making true, . . . , needs to be constructed.
In the following sections, we will show how to build a model that could be used to address these
challenges.

2 Exact Truthmaking: Technical Preliminaries

Definition 2.1. A state space is an ordered pair (S,v) such that

• S is a non-empty set – the set of states, objects that can act as truthmakers;

• v ✓ S ⇥ S is a partial order (i.e.: a reflexive, antisymmetric and transitive relation) on
S, meant to represent a parthood relation [9].

As a notational convention: we will use the notation
F
X to indicate the v-least upper

bound of the subset X ✓ S (i.e.: an s 2 S such that, for every r 2 X, r v s, and such that, for
all s0 2 S having this property, s v s

0), and we will use the notation s t r to indicate
F
{s, r}.

We do not require that every subset X ✓ S has a least upper bound (in S).

Definition 2.2. An exact truthmaking model for a first order language L is an ordered
tuple (S,v, D,A, | · |) such that

• (S,v) is a state space.

• D 6= ;, the domain, is a set (the set over which our quantifiers will range).

• A ✓ S, the set of “actual” states, is a downward closed non-empty subset of S – that is:
if s 2 A and t v s, then t 2 A.

• | · | ✓ L ⇥ (}(S)⇥ }(S)) is a function sending atomic sentences of the language L into
ordered pairs of sets of states.

In several papers, Fine [see e.g. 7, 9] has shown how to extend a function similar to | · | to
exact truthmaking and falsemaking relations � and �for a propositional language. However,
there is currently no consensus on what the exact verification (amd falsification) clauses for a
first-order language should be.
Above I accepted the idea that, in order to express the truth conditions of quantified sentence,
we must provide a collection of objects on which the variables bound by the quantifiers of our
language vary, a domain of discourse [see 12]. For reasons of simplicity, we will use a language
à la Robinson, in which each object of the domain has a constant that denotes it [see 3]. Given
these assumptions, we can consider the following semantics of exact truthmaking for a first
order language to be quite natural:

Definition 2.3. Let (S,v, D,A, | · |) be an exact truthmaking model for a first order language
containing a closed term d for every object d 2 D. The relations � and �of truthmaking
and falsemaking are recursively defined on the set of sentences of the language L as fol-
lows (we assume disjunction and existential quantifiers are defined as usual in terms of other
connectives/quantifiers):

2
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1. s � P(t1, ..., tn) i↵ s 2 proj1|P(t1, ..., tn)|, and s �P(t1, ..., tn) i↵ s 2 proj2|P(t1, ..., tn)|

2. s � ¬� i↵ s ��, and s �¬� i↵ s � �

3. s � � ^  i↵ there are s1, s2 2 S such that s1 � � & s2 �  & s1 t s2 is defined, and
s = s1 t s2, and s �� ^  i↵ s �� or s � 

4. s � 8vi .�[vi] i↵ there is an X ✓ S such that

(a) For all d 2 D, there is an s1 2 X such that s1 � �[vi := d], and

(b) For all s1 2 X, there is a d 2 D such that s1 � �[vi := d], and

(c)
F
X is defined, and s =

F
X

and s �8vi .�[vi] i↵ there is a d 2 D such that s ��[vi := d]

3 The Construction of the Model

Our aim is to construct a non-trivial1 exact truthmaking model (S,v, D,A, | · |) for a rich
enough first order language containing two unary predicate symbols S and A (whose intended
reading is being a state and being an actual state respectively), and a binary predicate symbol
� (whose intended reading is making exactly true), such that

9s 2 A : s makes � exactly true , 9s 2 A : s makes (9v .A(v) ^ v � p�q) exactly true

(Where p�q is a quotation name for the sentence �). Here’s, informally speaking, an overview
of our strategy. For sake of simplicity, we will consider as states objects similar to Carnapian
state descriptions [see 4] – that is: non-empty sets of (codes of) literals (i.e.: atomic sentences
or negations of atomic sentences) of a language. In deference to the spirit of [6, 7, 9], however,
unlike what happens in [4], we will not require that states be complete (i.e.: that, for each state
and each atomic statement, the state contains either the statement itself or its negation), nor
consistent (ie: that an atomic sentence and its negation are not present at the same time in a
state)2. Importantly, we want to be able to talk about states, and about ways in which states
and sentences of our language are related. To this e↵ect, we need at least a base structure in
which we can e↵ectively code expressions of our language, and in which “syntactical properties,
relations, and operations can be reflected” [19]. To keep the discussion general enough, we will
start the construction of our model making use of a language with denumerable signature sup-
ported by a strongly acceptable structure [18, 11] as syntax theory (recall that an acceptable3

structure A = (A,R1, ..., Rn) is strongly acceptable [see 11] i↵ there is an hyperelementary cod-
ing of A into an elementary ordering of members of A, NA, isomorphic to the natural numbers,
which exists because the structure is acceptable). The language of the structure will then be
expanded with semantical vocabulary, and we will consider as states the sets of literals of the
expanded language that are definable in the structure. From a technical point of view, as we will
see, this restriction will make it possible to encode our states in the domain of our structure.
From a philosophical point of view, the restriction could be viewed as a way to capture the
intuition that, in formulating a rigorous formal semantics for her language, a person is bound

1
In the sense that the set of actual states of the model is non-empty, and there is not an actual exact

truthmaker for every sentence of the language.
2
States similar to these are used, in the propositional case, in propositional HYPE [see 15], or for the

construction of the canonical model of the logic of the exact entailment of [10].
3
The notion of acceptable structure is standard in model theory [see 18].
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by the mathematical and formal-semantic resources available to her before the formulation of
the semantics4.
As for the other components of the desired model, the following apply. The parthood relation
will be represented by the subset relation, restricted to the set of states thus defined. We will
consider an exact truthmaker of a literal to be the code of the singleton of the literal itself, and
the relation of truthmaking will be defined for all the sentences of our language as done above.
And finally, actual states will be the ones containing only true literals – we will see how to
identify them.
Let’s now see how we can construct the desired model.

Let M = (M,R1, ..., Rn) be a strongly acceptable structure, and let L be its first order
language augmented with a constant m for all the m’s in M5. As a notational convention, let
#" be the object m 2 M that encodes the expression " according to a fixed coding function
#6, and let p"q be the closed term of the language denoting #" [see again 19, for an overview].

As we said, we are concerned with the sets of (codes of) literals that are describable by a
“speaker” of L . Let’s make this intuition rigorous.
In [18], Moschovakis shows how to define a satisfaction relation SatA, hyperelementary over a
base acceptable structure A, such that SatA bears a code of a formula �(v1, ..., vn) in the first
order language of A to (a1, ..., an) 2 A

n whenever A |= �(v1, ..., vn)[a1, ..., an] – i.e.: whenever the
tuple (a1, ..., an) satisfies the formula �(v1, ..., vn) in A. We can make the notion of definability
in M precise via the relation SatM:

Definition 3.1. A set X ✓ M
n is definable in M i↵ there is a first order formula �(v1, ..., vn)

in the first order language of M such that

(m1, ...,mn) 2 X , SatM(#�(v1, ..., vn), (m1, ...,mn))

Then we let LM be the set of sets definable in M. Let now FormL be the set of codes of
formulae of L . Since every set in LM is definable by a formula in L , we define a (hyperele-
mentary) coding ⇡ : LM ! FormL of sets of LM into codes of formulae of our language by
setting ⇡(X) be the minimal code of a formula defining X. That is:

⇡(X) = µw 2 FormL . ((m1, ...,mn) 2 X , SatM(w, (m1, ...,mn)))

Thus, let D⇡ be the set of codes in M of objects in LM, and let |m|⇡ be the object in LM

associated to m 2 M by ⇡. Let the language L + be the language L augmented with the
predicates S,A,�. Finally, let LitL + ✓ M be the set of codes of literal sentences of L + – i.e.:
the codes of atomic sentences and negations of atomic sentences of the language L extended
with S,A,� [see again 18, which shows that such a set exists and is elementary over the base
structure].
Then we can define the extension of the predicate being a state, S.

Definition 3.2. SM(x) :, D⇡(x) & |x|⇡ 6= ; & 8y 2 |x|⇡ . LitL +(y)

That is, informally speaking: x is declared to be a state inM i↵ it is a code of anM-definable
non-empty set of literals. Let then7:

4
A similar informal story is present in [11].

5
We will assume L to have denumerable signature and to contain finitely many functors.

6
We assume it is monotonic in NM

– see p. 3.

7
We will use Feferman’s dot notation: ḟ in ḟ(~x) represents the primitive recursive operation f on codes ~x

[see 5].
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Definition 3.3. x�M
y :, SM(x) & SentL +(y) &

1. LitL +(y) & x = ⇡({y}), or

2. 9w1 2 SentL + . y = ¬̇¬̇w1 & x�M
w1

3. 9w1w2 2 SentL + . y = w1 ˙̂w2 &
9x1x2 2 SM . x1 �M

w1 & x2 �M
w2 & x = ⇡(|x1|⇡ [ |x2|⇡), or

4. 9w1w2 2 SentL + . y = ¬̇(w1 ˙̂w2) & x�M¬̇w1 or x�M¬̇w2, or

5. 9v1 2 V arL + . 9w1 2 FormL + . y = 8̇v1w1 &

(a) 8m1 2 CTermL + . 9z 2 SM . |z|⇡ ✓ |x|⇡ & z�M
w1[v1 := m1], &

(b) 8u 2 |x|⇡ . 9m1 2 CTermL + . 9z 2 SM . |z|⇡ ✓ |x|⇡ &
z�M

w1[v1 := m1] & u 2 |z|⇡

6. 9v1 2 V arL + . 9w1 2 FormL + . y = ¬̇8̇v1w1 & 9m1 2 CTermL + . x�M¬̇w1[v1 := m1]

This extension mimics the one of the exact truthmaking that is present in the previous
section. However, the fact that we can quantify into what’s inside a state (provably) makes the
second order quantification unnecessary.

Now: as we said, if a truthmaker is a set of literals, we would like actual truthmakers to
be sets of true literals. As for literals of the base language, we know that there is a diagram
formula �M(x) which is true of all and only the codes of true literals of the base language [see
18, 11]. We would like to know, however, which literals of the expanded language should be
considered true. We will use a Kripkean strategy to establish this.

Let Opp : LitL + ! LitL + be the function that, for any x 2 LitL + , outputs the code of
the negation of x if x is the code of an atomic sentence, and the atomic sentence that results
from erasing the negation in front of x if x is the negation of an atomic sentence. Furthermore,
let V al : M ! M be the function that sends the code of a closed term to the object in M the
term denotes, and let the formula ⇣(X,x) be the following:

Definition 3.4. ⇣(X,x) :, LitL +(x) &

1. LitL (x) & �M(x), or

2. 9m1 2 CTermL + . x = Ṡ(m1) & SM(V al(m1)), or

3. 9m1 2 CTermL + . x = ¬̇Ṡ(m1) & ¬SM(V al(m1)), or

4. 9m1 2 CTermL + . x = Ȧ(m1) & 8u 2 |V al(m1)|⇡ . X(u), or

5. 9m1 2 CTermL + . x = ¬̇Ȧ(m1) & 9u 2 |V al(m1)|⇡ . X(Opp(u)), or

6. 9m1m2 2 CTermL + . x = m1�̇m2 & V al(m1)�M
V al(m2), or

7. 9m1m2 2 CTermL + . x = m1
˙6�m2 & V al(m1) 6�M

V al(m2)

Let now �⇣ be the operator induced by ⇣(X,x) and defined by transfinite recursion as
follows:

5
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Definition 3.5.

�↵
⇣ (X) =

8
>><

>>:

X, if ↵ = 0

{m 2 M : ⇣(�↵�1
⇣ (X),m)}, if ↵ is a successor ordinal

S
�<↵

��
⇣ (X), if ↵ is a limit ordinal

Since S
M and �M are not more complex than hyperelementary on the base structure, the

standard results of [18] apply, and:

Observation 3.1. � is monotone: if X ✓ Y , then, for every ↵ 2 On, �↵
⇣ (X) ✓ �↵

⇣ (Y )

Observation 3.2. There is a � 2 On such that ��
⇣ (;) = ��+1

⇣ (;)

Let � be the minimal ordinal such that ��
⇣ (;) = ��+1

⇣ (;). Then ��
⇣ (;) is the set of true

literals we were looking for. Then let

Definition 3.6. AM(x) :, SM(x) & 8y 2 |x|⇡ . y 2 ��
⇣ (;)

That is, an object m 2 M is an the extension of A i↵ it is the code of a state and the state
encoded by it contains only codes of true literals. Then the following propositions are provable:

Proposition 3.1. Let � be a formula of the language of M. Then � is true in M i↵ there is
an m 2 AM such that m�M#�.
In other terms: �⇠ 2 SentL . 9v .A(v) ^ v � p⇠q is a truth-predicate for L interpreted in M.

Proposition 3.2. Let � be a formula of the extended language. Then it is true in
(M, SM,AM

,�M) that there is an m 2 AM such that m�M#� i↵ there is an m 2 AM such
that m�M#(9v .A(v) ^ v � p�q).

Proposition 3.3. Let S := {x 2 LM : SM(⇡(x))}; v:=✓� S; D := M ; A := {x 2 LM :
AM(⇡(x))}; and, finally let | · | := {(�, ({{�}}, {{¬�}})) : � is an atomic sentence of L +}.
Then (S,v, D,A, | · |) is an exact truthmaking model for L +, and the model is such that:

• for any sentence � of L , there’s a state s 2 S \A making � exactly true i↵ M |= �, and

• for any sentence � of L +, there’s a state s 2 S \ A making � exactly true i↵ there’s a
state s 2 S \A making 9v .A(v) ^ v � p�q exactly true.
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Abstract

In recent years Shelah’s classification program has found surprising applications in the
context of classes of relational structures. The work of [1], [8], [12] and others has explored
the relationship between model-theoretic tameness, in particular (monadic) stability and
(monadic) NIP, and algorithmic tameness, e.g. nowhere density and bounded twin-width.
Motivated by this, we investigate the implications of NSOP in classes of graphs and rela-
tional structures.

1 Introduction

One core aspect of Shelah’s classification program is the discovery of combinatorial configura-
tions (dividing lines) which separate the “tame” theories from the “wild” ones. In recent years,
there has been a lot of work in drawing connections between these tameness conditions and
algorithmic or combinatorial tameness conditions, for instance in the works of [1], [8], [12].

Shelah’s outlook is that instability in a theory must come from either randomness (IP)
or order (SOP). It is curious that the notion of NSOP (intuitively: random phenomena are
allowed as long as they don’t introduce order-like behaviour) has not been examined further in
the context of classes of structures. Initiating this is the focus of our paper.

We start by recalling some core definitions from Shelah’s classification program, in the
context of classes of (possibly finite) structures. Throughout this paper classes of structures
are assumed to be closed under isomorphism.

Definition 1.1. Let L be a first-order language and C a class of L-structures. We say that an
L-formula �(x; y) has:

1. The Order Property in C if for all n 2 ! there is some M 2 C and sequences (ai)i<n and
(bi)i<n of tuples from M such that:

M ✏ �(ai; bj) if, and only if i < j.

2. The Independence Property in C if for all n 2 ! there is some M 2 C and sequences
(ai)i<n and (bI)I✓[n] of tuples from M such that:

M ✏ �(ai; bI) if, and only if i 2 I.

3. The Strict Order Property in C if for all n 2 ! there is some M 2 C and a sequence (ai)i<n

of tuples from M
|y| such that:

M ✏ (9x)(¬�(x; ai) ^ �(x; aj)) if, and only if i < j.

⇤
Supported by a George and Marie Vergottis Scholarship awarded by Cambridge Trust, an Onassis Foundation

Scholarship, and an EPSRC fees-only studentship
†
Supported by a Leeds Doctoral College Scholarship
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We say that C is stable if no formula has the order property in C. We say that C is NIP (No
Independence Property) if no formula has the independence property in C. Similarly, we say
that C is NSOP (No Strict Order Property) if no formula has the strict order property in C.

The notions defined above were introduced by Shelah [11] in the context of first-order the-
ories, rather than classes of structures. For instance, the definition of NSOP, in this context is
presented below. Stability and NIP for complete theories are defined analogously.

Definition 1.2. Let T be a complete theory in a first-order language L. We say that an L-
formula �(x; y) has the Strict Order Property over T if there is some M |= T and a sequence
(ai)i2! of tuples from M

|y| such that:

M ✏ (9x)(¬�(x; ai) ^ �(x; aj)) if, and only if i < j.

We say that T is NSOP if no formula has the strict order property over T .

It follows that a class of L-structures C is NSOP (resp. stable, NIP) if, and only if all
completions of the common theory of C, which we will denote by Th(C), are NSOP (resp.
stable, NIP), as a consequence of compactness.

We extend our analysis to dividing lines in monadic expansions of theories/classes of struc-
tures. Given a class of L-structures C, by a monadic expansion of C we mean a class C0 of L0-
structures, where L0 is an expansion of L by a finite set of unary predicates, containing exactly
one L0-expansion of each structure in C. We will call an L-theory T monadically NSOP (resp.
monadically stable / monadically NIP) if all complete extensions of T in L0 = L[{P1, . . . , Pn},
where each Pi is a unary predicate, remain NSOP (resp. stable/NIP).

Baldwin and Shelah [2] and later Shelah [10] studied monadic stability and monadic NIP.
Evidently, in their work it is shown that monadic NIP gives a completely new dividing-line, but
it turns out that the same is not true of monadic NSOP.

Lemma 1.1. A theory T is monadically NSOP if and only if T is monadically stable.

Proof. Suppose that T is not monadically stable. Then there is an expansion of the language
L0 ◆ L by finitely many unary predicates and some L0-structure M |= T which has the order
property. By a standard result, this is witnessed by a L0-formula �(x; ȳ) and (ai)i2!, (b̄i)i2! 2
M . Add a unary predicate P for A = {ai : i 2 !} ✓ M . Then, it is easy to see that

M |= (9x)(¬(�(x; b̄i) ^ P (x)) ^ (�(x; b̄j) ^ P (x))) if, and only if i < j,

and so T has monadic SOP. Conversely, Stable =) NSOP still holds in the monadic case.

We recall the following standard lemma.

Lemma 1.2. Let C be a class of L-structures. Then, the following are equivalent for an L-
structure A: (i) A ✏ Th(C); (ii) Every first-order L-sentence true in A is true in some M 2 C;
(iii) There exists {Mi : i 2 I} ✓ C and an ultrafilter F on I such that A ⌘

Q
I Mi/F ; (iv)

There exists an ultrafilter U on C such that A ⌘
Q

M2C M/U

The above lemma therefore implies that being tame depends entirely on the ultraproducts
of the class over di↵erent ultrafilters. This allows us to argue about the properties of a class by
looking at very common, well-studied theories.
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Example. Recall the definition of Paley graphs: Let q = p
n be of prime power with q ⌘ 1

(mod 4). We define the Paley Graph on q vertices, Pq, to be the graph with vertices the elements
of the finite field of q elements, Fq, and edges xEy if and only if x 6= y and (x� y) is a square.

Using a deep theorem of Bollobás and Thomason [3], one can show that ultraproducts of
Paley graphs over non-principal ultrafilters are elementarily equivalent to the random graph.
Recall that the random graph is the Fräıssé limit of the class of all finite graphs. It is ultraho-
mogeneous, @0-categorical, and has quantifier elimination (QE).

Lemma 1.3. Let I = {q 2 N : q is a prime power and q ⌘ 1 (mod 4)}, and U be a non-principal

ultrafilter on I. Then R :=
Q

q2I Pq/U is a model of the theory of the random graph.

Since each finite half graph embeds into the random graph, the infinite half graph embeds
into the random graph by compactness and @0-categoricity, and hence the edge relation is
unstable in the random graph. However, it does not have the strict order property, and in fact
no formula does as it is well known that RG is NSOP. This trivially implies the following.

Corollary 1.1. The class Pal of all Paley graphs is NSOP and unstable.

In the next sections we investigate how additional assumptions on the class a↵ect the re-
lationship between stability and NSOP, with a focus on di↵erent closedness conditions and
amalgamation.

Definition 1.3. Let L be a relational language and C be a class of L-structures. We say
that C is monotone if it is closed under weak substructures, that is, if (M,Ri)i2I 2 C then
(M 0

, R
0
i)i2I 2 C for any M

0 ✓ M and R
0
i ✓ Ri \ (M 0)ar(Ri). We also say that C is hereditary if

it is closed under substructures, that is, if N 2 C and f : M ,�! N is an embedding then M 2 C.

2 Monotone Classes

We briefly discuss monotone classes of graphs. The key to the relationship between stability
and NSOP is the notion of superflatness from structural graph theory.

Definition 2.1. A class C of graphs is superflat if for all r 2 N there is m 2 N such that for
all G 2 C we have that the r-subdivision of the complete graph on m vertices, Kr

m, is not an
induced subgraph of G.

The following is a well-known result, essentially due to Podewski and Ziegler [9].

Theorem 2.1. Let C be a class of graphs. If C is superflat, then it is stable.

Furthermore, Adler and Adler show in [1] that if C is monotone then the converse also holds.
In fact, they show that monotone classes of graphs are superflat if and only if they are stable
if and only if they are NIP. This collapse of NIP to stability for monotone graph classes is also
true in the case of NSOP classes. The proof is essentially an adaptation of their argument.

Proposition 2.1. Let C be a monotone class of graphs. If C is NSOP then C is superflat.

Proof. We show the contrapositive. Indeed, suppose that C is not superflat. Then there exists
r 2 N such that for all m 2 N there is G 2 C for which K

r
m is an induced subgraph of G. Let

Hn denote the half graph on 2n vertices and write H
r
n for the r-subdivision of Hn. Clearly H

r
n

is a subgraph K
r
2n�1 so by monotonicity H

r
n 2 C for all n 2 N. Let �(x, y) express that “there

is a path of length exactly r + 1 from x to y”. It follows that:

H
r
n ✏ (9x)(�(x, j) ^ ¬�(x, i)) if, and only if i < j

and hence C has the strict order property.
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In [1] the results for NIP in monotone classes of graphs are extended to monotone classes of
binary structures. This can be easily done for NSOP as well. This hints to the fact that from
a model-theoretic perspective, superflatness is a very strong tameness condition for monotone
classes of binary structures. Naturally, one may ask if there is an analogue of superflatness for
hypergraphs that has the same consequences. We briefly touch upon this in the Section 4.

Question 1. Is there a notion of sparsity for arbitrary relational structures, generalising the
notion of superflatness for graphs, which in the case of monotone classes implies strong model
theoretic tameness conditions?

It is not known if this collapse of NSOP to stability occurs for hereditary classes as well. In
the case of NIP this is trivially false: the class of finite linear orders is hereditary, (monadically)
NIP, but not stable. We further explore this question in the next section.

3 Hereditary Classes

So far we have not been able to find any examples of NSOP and unstable hereditary classes
of relational structures. In fact, we conjecture that for hereditary classes C of relational struc-
tures, C is stable if and only if C is NSOP. We firstly restrict the scope of the question to
hereditary classes with the joint embedding property. These are exactly the classes of finite
induced substructures of countable structures.

Definition 3.1. Let M be an L-structure. We denote by Age(T ) the class of isomorphism
types of finitely generated substructures of some M |= T .

This definition does not depend on the choice of M . Recall that a structure M is said to be
ultrahomogeneous if every isomorphism between two finitely generated substructures extends to
an automorphism of M . By Fräıssé, the following holds for complete theories in finite relational
languages.

Fact. T is @0-categorical and has QE if and only if all countable M |= T are ultrahomogeneous.

It is clear that passing down to substructures can be achieved by adding unary predicates.
Hence if a theory is monadically tame then Age(T ) is also tame. By proving an equivalent char-
acterisation of monadic NIP in terms of tuple-encoding configurations Braunfeld and Laskowski
have recently shown in [4] that the converse also holds for relational theories with QE.

Theorem 3.1 (Braunfeld, Laskowski). Let T be a complete theory in a relational language with

finitely many constants and QE. Then Age(T ) is NIP if and only if T is monadically NIP, and

Age(T ) is stable if and only if T is monadically stable.

A natural question to ask is whether the same holds for the strict order property. Since
monadic NSOP is in fact the same as monadic stability, we are led to the following equivalent
question.

Question 2. Let T be a theory in a relational language with finitely many constants and QE.

Does it hold that Age(T ) is stable if and only if Age(T ) is NSOP?

Motivated by this, we further restrict our investigation to ages of countable ultrahomo-
geneous structures. As mentioned previously, the complete theories of ultrahomogeneous rela-
tional structures have QE and are @0-categorical. In this light, we are specialising the context of
our question to the case of @0-categorical structures, or equivalently, to hereditary classes with
the joint embedding property and the amalgamation property. For this, we use the classification
programme of ultrahomogeneous structures.
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Homogeneous Graphs In the case of graphs, we have the following classification result
proved by Lachlan and Woodrow in [7].

Theorem 3.2 (Lachlan, Woodrow). Every countably infinite ultrahomogeneous undirected

graph is isomorphic to one of the following or their complement (i) The random graph RG;

(ii) The generic graph Rn for the class of all countable Kn-free graphs for a given n � 3; or
(iii) The disjoint union of m copies of Kn, where m,n  ! and at least one of m or n is !.

This allows us to prove the following.

Theorem 3.3. Let G be a countable ultrahomogeneous undirected graph. Then Age(G) is stable
if and only if Age(G) is NSOP.

Proof. We use Lachlan and Woodrow’s classification result to argue in a case-by-case manner.
The class of all finite graphs contains the finite half graphs which witness the SOP in Age(RG).
Since RG is isomorphic to its complement, this finishes the first case.

All classes defined by forbidden substructures are by definition monotone, and hence NSOP
collapses to stability. This applies to Rn. Consider the complement of Rn, the generic Kn-full
graph, which we will denote by Fn. We show that Age(Fn) has the strict order property. Indeed,
let Gk be with vertices {1, . . . , k} and k disjoint copies of Kn: A1, A2, . . . Ak. We connect the
singleton i with all the vertices of Aj if and only if i  j. Let �(x, y1, . . . , yn) =

Vn
i=1 E(x, yi).

For the sequence (āi)i2k with āi = Ai, it holds that Gk |= 9x(¬�(x, āi) ^ �(x, āj)) if, and only
if i < j, and since Gk 2 Age(Fn) for all k 2 !, Age(Fn) has SOP.

Finally, if G is a disjoint union of ! copies of Kn for a fixed n 2 !, then we have that
Age(G) = {Ki1 tKi2 t · · · tKik : k 2 !, i1, . . . ik 2 n}. This is trivially superflat, and hence
stable. The complement G

c is the Turán graph T (n,!), the complete !-partite graph with
parts of size n. This has the property that whenever two vertices are not connected by an
edge, they must belong to the same part. It follows that Gc is P4-free, and so Age(Gc) contains
only P4-free graphs. By results in [8] we can see that this class has bounded rankwidth and is
therefore stable if and only if it has stable edge relation. Since the finite half-graphs are not
members of Age(Gc) this class is therefore stable. Essentially the same argument applies to the
other two possibilities in the third case.

Homogeneous Tournaments. We continue with tournaments, a special case of digraphs,
which have the property that for any two vertices v, u there exists a single edge connecting
them, that is, a graph G is a tournament if is satisfies:

(8v)(8u)((E(u, v) _ E(v, u)) ^ (E(u, v) ! ¬E(v, u))).

In [6], Lachlan proved the following classification result, which is analogous to Theorem 3.2.

Theorem 3.4 (Lachlan). Every countably infinite homogeneous tournaments is isomorphic to

one of the following: (i) The Universal Tournament, which we will denote as T
1
; (ii) The

Dense Linear Order with no endpoints, which we will denote as (Q, <); or (iii) The Dense
Local Order which we will denote as S(2).

With this classification result, we deduce the following.

Theorem 3.5. Let T be a countable homogeneous tournament. Then Age(T ) is stable if and

only if Age(T ) is NSOP.

Proof. Case-by-case argument akin to the proof of Theorem 3.3.
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Narrowing down Question 2, we are interested in the following:

Question 3. Let M be an ultrahomogeneous relational structure. Is it true that Age(M) is

NSOP if and only if Age(M) is stable?

4 Future Work

The exploration of NSOP in classes of structures raises many interesting questions. We conclude
by briefly discussing some possible future directions.

Firstly, much as in [1], we are interested in seeing if the collapse of NSOP (and NIP) to
stability extends to monotone classes in arbitrary relational languages. The bridge to this
collapse for the case of graphs was superflatness. We believe that by extending this notion to
uniform hypergraphs, and interpreting classes of relational structures in classes of these, we can
answer this question positively.

As discussed above, we also believe that this collapse of NSOP to stability applies to hered-
itary classes as well. This would extend Theorem 3.1 to account for NSOP.

Finally, a question we have not mentioned yet concerns the structural properties of classes
of (possibly dense) graphs with NSOP. The intuition behind NSOP is that it allows for random
configurations and it would be interesting to examine the interplay between NSOP and various
known notions of pseudorandomness from combinatorial graph theory, as in [5].
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Abstract

Bishop’s presentation of his informal system of constructive mathematics BISH was
on purpose closer to the proof-irrelevance of classical mathematics, although a form of
proof-relevance was evident in the use of several notions of moduli (of convergence, of
uniform continuity, of uniform di↵erentiability etc.). Based on Bishop Set Theory (BST),
a reconstruction of Bishop’s theory of sets developed in [8], we associate to many formulas
� of BISH a set Prf(�) of “proofs” or witnesses of �, providing in this way a BHK-
interpretation of a large part of BISH within BST. Abstracting from several examples of
totalities in BISH we define the notion of a set with a proof-relevant equality, and of a
Martin-Löf set, a special case of the former, the equality of which corresponds (partially)
to the equality type of a type in intensional Martin-Löf Type Theory (MLTT). Notions
and facts of MLTT and its extensions (either with the axiom of function extensionality, or
with Vooevodsky’s axiom of univalence) are translated into BST. While BST is standardly
understood through its translation to MLTT, a partial translation in the converse direction
is shown to be possible.

1 On Bishop Set Theory (BST)

Bishop set theory (BST), elaborated in [8], is an informal, constructive theory of totalities and

assignment routines that serves as a “completion” of Bishop’s original theory of sets in [1, 2].

Its first aim is to fill in the “gaps”, or highlight the fundamental notions that were suppressed

by Bishop in his account of the set theory underlying BISH. Its second aim is to serve as an

intermediate step between Bishop’s theory of sets and an adequate and faithful formalisation of

BISH in Feferman’s sense [4]. To assure faithfulness, we use concepts or principles that appear,

explicitly or implicitly, in BISH. The following features of BST in [8] “complete” Bishop’s

theory of sets.

1. Explicit use of a universe of sets.

2. Clear distinction between sets and proper classes.

3. Explicit use of dependent operations.

4. Elaboration of the theory of families of sets.

Here we apply the general theory of families of sets, in order to reveal proof-relevance in BISH.

For all notions and results that are used without explanation or proof we refer mainly to [8, 10],

and also to [6, 9, 12].

The set N of natural numbers is a primitive set in BST. The universe V0 of (predicative) sets is a

special “open-ended” defined totality, which is not defined through a membership-construction,

but in an open-ended way. When we say that a defined totality X is a set we “introduce”

X as an element of V0, but we do not use a corresponding induction principle for V0. The

universe V0 is not a set, but a proper class. To define a set X in V0 we need to provide a

membership-construction for it (without appealing to V0) and to define an equality formula

x =X x0
that satisfies the properties of an equivalence relations. A formula P (x) on a set X is
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an extensional property on X, if 8x,y2X

�
[x =X y & P (x)] ) P (y)

�
. The totality XP generated

by P (x) is defined by x 2 XP :, x 2 X & P (x), and the equality of XP is inherited from =X .

We also write XP := {x 2 X | P (x)}, and we call XP the extensional subset of X generated

by P . E.g., the diagonal of a set (X,=X) is the following extensional subset of X ⇥X

D(X) := {(x, y) 2 X ⇥X | x =X y}.

IfX,Y are totalities, a non-dependent assignment routine f fromX to Y , in symbols f : X  Y ,

is a finite routine that assigns an element y of Y to each given element x of X. The membership-

condition for their totality is considered to be primitive in BST, and their equality is defined

pointwise, w.r.t. a given equality on Y . If X,Y are sets, a function from X to Y , in symbols

f : X ! Y , is an assignment routine from X to Y that respects equality i.e.,

8x,x02X

�
x =X x0 ) f(x) =Y f(x0

)
�
.

Their set is denoted by F(X,Y ). The canonical equality on V0 is defined by

X =V0 Y :, 9f2F(X,Y )9g2F(Y,X)

�
g � f = idX & f � g = idY

�
.

In this case we write (f, g) : X =V0 Y . If X,Y 2 V0 such that X =V0 Y , we define the set

PrfEql0(X,Y ) :=
�
(f, g) 2 F(X,Y )⇥ F(Y,X) | (f, g) : X =V0 Y

 

of all objects that “witness”, or “realise”, or prove the equality X =V0 Y . The equality of

PrfEql0(X,Y ) is the canonical one i.e., (f, g) =PrfEql0(X,Y ) (f
0, g0) :, f =F(X,Y ) f

0
& g =F(Y,X)

g0. In general, not all elements of PrfEql0(X,Y ) are equal. As in [14], Example 3.1.9, if

X := Y := 222 := {0, 1} := {x 2 N | x =N 0 _ x =N 1}, then (id222, id222) 2 PrfEql0(222,222), and
if sw222 : 222 ! 222 maps 0 to 1 and 1 to 0, then (sw222, sw222) 2 PrfEql0(222,222), while sw222 6= id222.

It is expected that the proof-terms in PrfEql0(X,Y ) are compatible with the properties of

the equivalence relation X =V0 Y . This means that we can define a distinguished proof-term

refl(X) 2 PrfEql0(X,X) that proves the reflexivity of X =V0 Y , an operation
�1

, such that if

(f, g) : X =V0 Y , then (f, g)�1
: Y =V0 X, and an operation of “composition” ⇤ of proof-terms,

such that if (f, g) : X =V0 Y and (h, k) : Y =V0 Z, then (f, g) ⇤ (h, k) : X =V0 Z. Let

refl(X) :=
�
idX , idX

�
& (f, g)�1

:= (g, f) & (f, g) ⇤ (h, k) := (h � f, g � k).

It is immediate to see that these operations satisfy the groupoid laws and compatibility condition:

(i) refl(X) ⇤ (f, g) =PrfEql0(X,Y ) (f, g) and (f, g) ⇤ refl(Y ) =PrfEql0(X,Y ) (f, g).

(ii) (f, g) ⇤ (f, g)�1
=PrfEql0(X,X) refl(X) and (f, g)�1 ⇤ (f, g) =PrfEql0(Y,Y ) refl(Y ).

(iii)
�
(f, g) ⇤ (h, k)

�
⇤ (s, t) =PrfEql0(X,W ) (f, g) ⇤

�
(h, k) ⇤ (s, t)

�
.

(iv) If (f, g), (f 0, g0) 2 PrfEql0(X,Y ), (h, k), (h0, k0) 2 PrfEql0(Y, Z), and if (f, g) =PrfEql0(X,Y )

(f 0, g0) and (h, k) =PrfEql0(Y,Z) (h
0, k0), then (f, g) ⇤ (h, k) =PrfEql0(X,Z) (f

0, g0) ⇤ (h0, k0).

Let I be a set and �0 : I  V0 a non-dependent assignment routine from I to V0. A dependent
operation � over �0, in symbols

� :

k

i2I

�0(i),

is an assignment routine that assigns to each element i in I an element �(i) =: �i in the set

�0(i). The membership-condition for their totality A(I,�0) is primitive in BST, and its equality

is defined pointwise w.r.t. the given equalities of each �0(i).

2
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Definition 1. If I is a set, a family of sets indexed by I, or an I-family of sets, is a pair
⇤ := (�0,�1), where �0 : I  V0, and �1, a modulus of function-likeness for �0, is given by

�1 :
k

(i,j)2D(I)

F
�
�0(i),�0(j)

�
, �1(i, j) := �ij , (i, j) 2 D(I),

such that the transport maps �ij of ⇤ satisfy the following conditions:

(a) For every i 2 I, we have that �ii := id�0(i).

(b) If i =I j and j =I k, the following diagram commutes

�0(j) �0(k).

�0(i)

�jk

�ij �ik

I is the index-set of the family ⇤. If X is a set, the constant I-family of sets X is the pair
CX

:= (�X0 ,�X1 ), where �0(i) := X, for every i 2 I, and �1(i, j) := idX , for every (i, j) 2 D(I).
The exterior union, or disjoint union, or the Sigma-set

P
i2I �0(i) of ⇤, and its canonical

equality are defined by

w 2
X

i2I

�0(i) :, 9i2I9x2�0(i)

�
w := (i, x)

�
,

(i, x) =P
i2I �0(i) (j, y) :, i =I j & �ij(x) =�0(j) y.

The Sigma-set of the 222-family ⇤222 of the sets X and Y , where �2220(0) := X, �2220(1) := Y , �2221(0, 0) :=
idX and �2221(1, 1) := idY , is the coproduct of X and Y , and we write X + Y :=

P
i2222 �

222
0(i). The

totality
Q

i2I �0(i) of dependent functions over ⇤, or the Pi-set of ⇤, is defined by

⇥ 2
Y

i2I

�0(i) :, ⇥ 2 A(I,�0) & 8(i,j)2D(I)

�
⇥j =�0(j) �ij(⇥i)

�
,

and it is equipped with the canonical equality of the set A(I,�0).

Proposition 2 (Membership-with-Evidence I (MwE-I)). Let X,Y be sets, and let P (x), where

P (x) :, 9p2Y

�
Q(x, p)

�
,

and Q(x, p) is an extensional property on X ⇥ Y . Let PrfMembP0 : X  V0, defined by

PrfMembP0 (x) := {p 2 Y | Q(x, p)},

for every x 2 X, and let PrfMembP1 :
c

(x,x0)2D(X) F
�
PrfMembP0 (x), PrfMemb

P
0 (x

0
)
�
, where

PrfMembPxx0 := PrfMembP1 (x, x
0
) : PrfMembP0 (x) ! PrfMembP0 (x

0
) is defined by the identity map-

rule PrfMembPxx0(p) := p, for every p 2 PrfMembP0 (x) and every (x, x0
) 2 D(X).

(i) The property P (x) is extensional.

(ii) The pair PrfMembP :=
�
PrfMembP0 , PrfMemb

P
1

�
2 Fam(X).

Extending the operations between sets to operations between families of sets, we define the

following BHK-interpretation of various formulas of BISH within BST.

3
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Definition 3 (BHK-interpretation of BISH in BST - Part I). Let membership conditions x 2
XP as e.g., in Proposition 2. We define

Prf(x 2 XP ) := PrfMembP0 (x).

Let �, be formulas in BISH such that Prf(�) and Prf( ) are already defined. We define

Prf(� &  ) := Prf(�)⇥ Prf( ),

Prf(� _  ) := Prf(�) + Prf( ),

Prf(�)  ) := F
�
Prf(�), Prf( )

�
.

Let �(x) be a formula on a set X, and let Prf� :=
�
Prf�0 , Prf

�
1

�
2 Fam(X), where Prf�0 : X  V0

is given by the rule x 7! Prf�0 (x) := Prf
�
�(x)

�
, for every x 2 X. The Prf-sets of the formulas

8x2X�(x) and 9x2X�(x) with respect to the given family Prf�, where 9x2X�(x) is a formula
that does not express a membership condition or a relation, are defined by

Prf

✓
8x2X�(x)

◆
:=

Y

x2X

Prf�0 (x) :=
Y

x2X

Prf
�
�(x)

�
,

Prf

✓
9x2X�(x)

◆
:=

X

x2X

Prf�0 (x) :=
X

x2X

Prf
�
�(x)

�
.

Due to the definition of the coproduct in Definition 1, the Prf-sets for 9x2X�(x) and for

8x2X�(x) are generalisations of Prf-sets for � _  and for � &  , respectively.

Example 1.1. Let the fact: if (xn)n2N+ 2 F(N+,R) and x0 2 R, then

xn
n�! x0 ) (xn)n2N+ is Cauchy.

If �(xn, x0) is the above implication, then �(xn, x0) of the form �(xn, x0) )  (xn). Its proof

(see [2], p. 29) can be seen as a rule that sends a modulus of convergence C : xn
n�! x0

of (xn)n2N+ at x0 to a modulus of Cauchyness D : Cauchy
�
(xn)n2N+

�
for (xn)n2N+ , where

D(k) := C(2k), for every k 2 N+
. This operation from PrfMemb

Convx0
0

�
(xn)n2N+

�
to

PrfMembCauchy
0

�
(xn)n2N+

�
is a function, and

Prf(�(xn, x0)) := F
✓
Prf

�
�(xn, x0)

�
, Prf

�
 (xn)

�◆
,

Prf
�
�(xn, x0)

�
:= PrfMemb

Convx0
0

�
(xn)n2N+

�
, Prf

�
 (xn)

�
:= PrfMembCauchy

0

�
(xn)n2N+

�
.

2 Martin-Löf sets

The universe V0, the proper class “powerset” P(X) of a set X, the impredicative set Fam(I)
of families of sets indexed by I, the set Fam(I,X) of families of subsets of X indexed by I,
are some of the many examples of totalities studied in [8] equipped with an equality defined

through an existential formula. Next we introduce Martin-Löf sets, as a generalisation of these

totalities, that helps us also to transfer results and concepts from MLTT [5] or HoTT [14] into

BST. So far, only the transition of results and concepts from BISH to MLTT was considered.

4
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Definition 4. Let Y be a set, and (X,=X) a set with an equality condition of the form

x =X x0
:, 9p2Y

�
p : x =X x0�,

where ✓xx
0
(p) :, p : x =X x0 is an extensional property on Y . Let also the non-dependent

assignment routine PrfEqlX0 : X ⇥X  V0, defined by

PrfEqlX0 (x, x0
) := {p 2 Y | p : x =X x0}; (x, x0

) 2 X ⇥X,

together with dependent operations

reflX :

k

x2X

PrfEqlX0 (x, x), �1X :

k

x,x02X

F
✓
PrfEqlX0 (x, x0

), PrfEqlX0 (x0, x)

◆
,

⇤X :

k

x,x0,x002X

F
✓
PrfEqlX0 (x, x0

)⇥ PrfEqlX0 (x0, x00
), PrfEqlX0 (x, x00

)

◆
.

We call the structure bX := (X,=X , PrfEqlX0 , reflX ,�1X , ⇤X) a set with a proof-relevant equal-
ity. If X is clear from the context, we may omit the subscript X from the above dependent
operations. We call bX a Martin-Löf set, if the groupoid laws and the compatibility condition,
described for the universe V0 in section 1, hold.

If bX has a proof-relevant equality, by Definition 3 we get Prf(x =X x0
) := PrfEqlX0 (x, x0

).

Example 2.1. The set of families Fam(I,X) of subsets of the set X indexed by the set I is

a Martin-Löf set. Similarly, one can show that Fam(I,X), the set of families of complemented

subsets of the set X indexed by the set I (see section 4.9 in [8]), and Fam(I,X, Y ), the set of

families of partial functions from the set X to the set Y indexed by the set I (see section 4.8

in [8]) are Martin-Löf sets. We get trivial examples of Martin-Löf sets by using the truncation

of a set (see Definition 8(iv)).

The maps between Martin-Löf sets and the notion of a family of sets over a set bI with a

proof-relevant equality, and the corresponding Sigma- and Pi-sets, are defined in [10].

Proposition 5. If b⇤ := (�0, PrfEqlI0,�2) is a function-like family of sets over the Martin-Löf

set bI, then a structure of a Martin-Löf set is defined on cP
i2I�0(i).

Lemma 6. Let bX be a Martin-Löf set, x0 2 X and let PrfEqlx0
0 : X  V0 be defined by

x 7! PrfEqlX0 (x, x0), for every x 2 X. Moreover, let

PrfEqlx0
1 :

k

(x,y)2D(X)

k

p2PrfEqlX0 (x,y)

F
�
PrfEqlX0 (x, x0), PrfEql

X
0 (y, x0)

�
,

be defined, for every (x, y) 2 D(X), p 2 PrfEqlX0 (x, y) and r 2 PrfEqlX0 (x, x0), by

PrfEqlx0
1

�
(x, y), p

�
:= PrfEqlx0

xy : PrfEql
X
0 (x, x0) ! PrfEqlX0 (y, x0)

r 7! p�1 ⇤ r.

Then \PrfEqlx0 := (PrfEqlx0
0 , PrfEqlx0

1 ) is a function-like family of sets over bX.

5
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Theorem 7. Let bX be a proof-relevant set, x0 2 X and let \PrfEqlx0 := (PrfEqlx0
0 , PrfEqlx0

1 )

be the function-like family of sets over bX from Lemma 6. Let c
P

x2XPrfEqlX0 (x, x0) be equipped
with its canonical structure of a Martin-Löf set, according to Proposition 5. Then for every

(x, p) 2 cP
x2XPrfEqlX0 (x, x0) we have that

(x, p) =cP
x2X PrfEqlX0 (x,x0)

�
x0, reflx0

�
.

Theorem 7 is a translation of the type-theoretic contractibility of the singleton type (see [3])

into BST. If M is the term expressing this contractibility (see also [7]), Martin-Löf’s J-rule
trivially implies M , and it is equivalent to M and the transport. In BISH we do not have the

J-rule, but we have transport in a definitional way only. As Theorem 7 indicates, a definitional

form of M is provable in BST, although there is no translation of the J-rule in BST.

3 Contractible sets and subsingletons in BST

Definition 8. Let (X,=X) be a set.

(i) X is inhabited, if 9x2X

�
x =X x

�
.

(ii) X is a singleton, or contractible, or a (�2)-set, if 9x02X8x2X

�
x0 =X x

�
. In this case, x0

is called a centre of contraction for X.

(iii) X is a subsingleton, or a mere proposition, or a (�1)-set, if 8x,y2X

�
x =X y

�
.

(iv) The truncation of (X,=X) is the set (X, ||=X ||), where

x ||=X || y :, x =X x & y =X y.

We use the symbol ||X|| to denote that the set X is equipped with the truncated equality ||=X ||.

Clearly, a set X is contractible i↵ X is an inhabited subsingleton i↵ X =V0 111. If f : X ! Y
and y 2 Y , the fiber fibf (y) of f at y is defined by

fibf (y) := {x 2 X | f(x) =Y y},

and f is contractible, if fibf (y) is contractible, for every y 2 Y . If f : X ! Y , let fibf : Y  
V0, with y 7! fibf (y), for every y 2 Y . If f is contractible, every fiber fibf (y) is contractible.
A modulus of centres of contraction for a contractible function f is a dependent operation

centref :
c

y2Y fibf (y), with centrefy := centref (y) is a centre of contraction for fibf (y).

Proposition 9. Let ⇤ := (�0,�1) 2 Fam(I).

(i) If ⇥ :
c

i2I �0(i) is a modulus of centres of contraction for �0 i.e., ⇥i is a centre of
contraction for �0(i), then ⇥ 2

Q
i2I �0(i) is a centre of contraction for

Q
i2I �0(i) andP

i2I �0(i) =V0 I.

(ii) If i0 2 I is a centre of contraction for I, then
P

i2I �0(i) =V0 �0(i0).

Proposition 10. Let ⇤ := (�0,�1) 2 Fam(I), ⇥ :
c

i2I �0(i) a modulus of centres of contraction
for �0, and X,Y sets.

(i) If h : I  P
i2I �0(i) is defined by h(i) :=

�
i,⇥i

�
, for every i 2 I, then h is a function and

(pr⇤1 , h) :
P

i2I �0(i) =V0 I.

(ii) F
�
I,
P

i2I �0(i)
�
=V0 F(I, I).

(iii) If X is contractible and Y is a retract (see [10], Definition 6) of X, then Y is contractible.

6
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Theorem 11. Let ⇤ := (�0,�1) 2 Fam(I), and let ⇥ :
c

i2I �0(i) be a modulus of centres of
contraction for �0. If (�, ✓) : F

�
I,
P

i2I �0(i)
�
=V0 F(I, I), where � and ✓ are defined in the

proof of Proposition 10(ii), then
Q

i2I �0(i) is a retract of fib�(idI).

Theorem 11 is the translation of Theorem 4.9.4 in book-HoTT, where in the hypothesis of

the latter the universe is univalent. Next corollary is the translation in BST of the fact that

the univalence axiom implies the principle of weak function extensionality.

Corollary 12. If ⇤ := (�0,�1) 2 Fam(I) and ⇥ :
c

i2I �0(i) is a modulus of centres of contrac-
tion for �0, then ⇥ is centre of contraction for

Q
i2I �0(i).

Conclusion. We briefly described an external realisability interpretation of some part of the

informal theory BISH in BST, where the corresponding realisability relation is Prf(p,�) :, p 2
Prf(�). An important consequence of revealing the witnessing information is the avoidance of

choice. The use of the axiom of choice in constructive mathematics is an indication of missing
data. A BHK-interpretation of a negated formula ¬� is missing. Strong negation introduced in

BISH in [11], facilitates its BHK-interpretation. Proof-relevance is not a priori part of BISH,

but it can be revealed a posteriori. In MLTT and its univalent extensions proof-relevance is

built-in, and many facts are generated or hold automatically by the presence of the J-rule, or
the univalence axiom of Voevodsky. BST-notions, such Martin-Löf sets, permit the translation

of interesting “parts” of MLTT and HoTT into BST in a “definitional”, non-axiomatic way.
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Frege’s Concept of Completeness

Abstract

Existing literature suggests that Frege did not have the concept of completeness. Yet, Frege’s

project is usually understood as finding a formal system from which all arithmetical truths could

be proven. Furthermore, Frege is credited with devising the first calculus complete for first-order

logic. How are we to reconcile these three claims? I argue that Frege did not just stumble across

this complete calculus, but in fact had an early conception of theory- and calculus-completeness.

Heck had briefly suggested this—I pick up on Heck’s work and substantially strengthen its case.

The paper offers several passages of text in support. Furthermore, I maintain that the reading

to the contrary is based on an outdated overall reading of Frege (logocentricity).

1 Introduction

Over the past two decades, there has been a remarkable shift in scholarly attitude towards the role

of semantics and metatheory in Frege’s work. The debate can be broadly divided into two phases,

each dominated by one school of thought: between the mid-1960s and mid-1990s, authors such as

Dreben, van Heijenoort, Goldfarb and Ricketts defended what I shall call the ‘no metatheory’ school

of thought. In their view, semantics and metatheory have no place in Frege’s work. Between the

mid-1990s and mid-2000s, authors such as Stanley, Tappenden, Antonelli, May, Heck and Blanchette

defended largely an opposite position, which I shall call the ‘proto-metatheory’ school.

While the proto-metatheory school has cleared the path towards the possibility and, to a more

limited extent, the existence, of metatheory in Frege’s system, one specific assertion by the ‘no meta-

theory’ school seems to have gone relatively unaddressed: that Frege had no notion of completeness.
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Dreben, van Heijenoort and Goldfarb all maintained that Frege never raised the question of com-

pleteness [van Heijenoort 1967, 326; Dreben and van Heijenoort 1986, 44–45; Goldfarb 1979, 353].

Existing proto-metatheory literature is largely silent on this claim—the only author that disputes it

head-on is Heck [Heck 2007, 33]. Yet, even Heck discusses this claim only briefly, and their position

has not become universally accepted. Dummett, for example, again asserted that ‘Frege did not

have the concept of the completeness of a logical system’ [Dummett 2008, 11].

Thus, in this paper, I will explore the extent to which Frege had the concept of a complete

formal system and the desire to achieve completeness. Let us distinguish between the complete-

ness of a deductive calculus (‘calculus-completeness’) and the completeness of an axiomatisation

of arithmetic (‘theory-completeness’). I will argue that Frege already had ‘proto’-concepts of both

calculus-completeness and theory-completeness, and that these conceptions are central to his work.

By a ‘proto-concept’ I shall mean a concept that captures the fundamental idea but is not fully

developed or formalised.

2 Initial Passages

We begin with a passage Heck quotes from Frege’s 1897 On Mr. Peano’s Conceptual Notation and

My Own [Heck 2007, 33]. In this quotation, Frege speaks about his Begriffsschrift. Frege says:

In order to test whether a list of axioms is complete [original: ‘vollständig’], we have to try and

derive from them all the proofs of the branch of learning to which they relate. And in doing this

it is imperative that we draw conclusions only in accordance with purely logical laws. [...] If

we try to list all the laws governing the inferences that occur when arguments are conducted in

the usual way, we find an almost unsurveyable multitude which apparently has no precise limits.

The reason for this, obviously, is that these inferences are composed of simpler ones. And hence

it is easy for something to intrude which is not of a logical nature and which consequently ought

to be specified as an axiom. This is where the difficulty of discerning the axioms lies: for this

[to discern the axioms] the inferences have to be resolved into their simpler components. By

so doing we shall arrive at just a few modes of inference, with which we must then attempt to

make do at all times. And if at some point this attempt fails, then we shall have to ask whether

we have hit upon a truth issuing from a non-logical source of cognition, whether a new mode

of inference has to be acknowledged, or whether perhaps the intended step ought not to have

been taken at all [emphasis and bracketed comments mine]. [Heck 2007, 33; Heck is using the

2



translation from Frege (1897) 1984, 235]

In the quotation, Frege is looking to ascertain whether a particular axiomatisation of a science is

‘complete’. To determine whether it is, Frege suggests that we have to look at all the inferences

in the science and break those inferences down into small steps. If we are unable to ‘derive’ an

‘inference’, we have to add a non-logical axiom to the axiomatisation, acknowledge an additional

mode of inference, or question the validity of the inference we are attempting to formalise. The

phrase ‘whether a new mode of inference has to be acknowledged’ suggests that Frege understood

that calculus-completeness was not a given, and that the deductive calculus may need to be amended.

Unfortunately, the discussion of completeness in Heck is relatively brief, and the passage from On

Mr. Peano’s Conceptual Notation and My Own is the only textual evidence they present for their

view. Thus, let me pick up from where Heck left off and see if we can strengthen their argument.

To add to the plausibility of the reading that Frege had a proto-notion of calculus-completeness, it

is worth considering a passage in Begriffsschrift :

Since in view of the boundless multitude of laws that can be enunciated we cannot list them

all, we cannot achieve completeness except by searching out those that, by their power, contain

all of them. Now it must be admitted, certainly, that the way followed here is not the only one

in which the reduction can be done. That is why not all relations between the laws of thought

are elucidated by means of the present mode of presentation. There is perhaps another set of

judgements from which, when those contained in the rules are added, all laws of thought could

likewise be deduced [emphasis mine]. [Frege (1879) 1967, §13]

Here, again, Frege appears to be aware of the possibility that a deductive calculus may not be

complete (‘we cannot achieve completeness except by...’). Frege also seems to assert the completeness

of his Begriffsschrift system (‘all laws of thought could [...] be deduced’). He also shows awareness

that there may be different deductive calculi (‘another set of judgements’) that are equivalent.

The prima facie case for Frege having had a proto-concept of theory-completeness seems even

more straightforward. The passage from On Mr. Peano’s Conceptual Notation and My Own already

mentioned testing ‘whether a list of axioms is complete’. However, this passage leaves it somewhat

open what constitutes completeness of axioms. Fortunately, other passages are far more explicit.

Frege’s very project was to find an axiomatisation from which all of arithmetic could be proven. For

example, also in On Mr. Peano’s Conceptual Notation and My Own, Frege writes
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I became aware of the need for a Begriffsschrift when I was looking for the fundamental principles

or axioms upon which the whole of mathematics rests [emphasis mine]. [Frege (1897) 1984, 235;

Heck 2007, 30]

Similar views are also expressed in Frege’s other works. For example, in Formal Theories of Arith-

metic, Frege states:

I here want to consider two views, both of which bear the name ‘formal theory’. I shall agree with

the first ; the second I shall attempt to confute. The first has it that all arithmetical propositions

can be derived from definitions alone using purely logical means, and consequently that they must

be derived in this way [emphasis mine]. [Frege 1984, 114]

3 Objections

What, if anything, speaks against taking these passages at face value? That Frege was searching for a

complete axiomatisation of arithmetic seems hard to dispute. However, to the suggestion that Frege

was aiming for a complete deductive calculus, it may be objected that Frege was using terms like

‘complete’ in the earlier quotes in a different sense from how we use the term today. The objection

that Frege used a different notion than our calculus-completeness can be formulated as follows:

today, we have a notion of calculus-completeness that relates semantic to syntactic consequence. By

(strong) completeness, we mean that, for all sets of sentences � and sentence �: If � |ù �, then

� $ �. Spelling out the definition of � |ù � further:

If for all models M we have pIf M |ù � for all � P �, then M |ù �q , then � $ �.

Given that Frege appears not to have had a notion of ‘for all models M’, the argument would go,

surely he must have had in mind a different notion of completeness than today’s [Dummett 1991,

30].

This objection must be carefully addressed. To begin with, let us distinguish between having a

concept of calculus-completeness and having an idea of how to prove that a calculus is complete.

What can then be conceded is that Frege had no idea of how to prove Begriffsschrift ’s calculus-

completeness. Frege’s approach to establishing calculus-completeness seems to involve a sort of

systematic search to assure ourselves that, in all branches of learning, given the right initial non-
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logical axioms, we are able to derive every truth — and if not to amend the calculus with new modes

of inference until we are. Frege suggests that we ‘try and derive from them [the axioms] all the proofs

of the branch of learning’ and ‘search out those that, by their power, contain all of them [the logical

laws]’. But, as noted, whether he had a sense of how to prove calculus-completeness is separate from

the question of whether Frege had a notion of completeness of a calculus. Frege in fact displays

an awareness that he did not have the means to demonstrate calculus-completeness. Instead, Frege

acknowledges in Boole’s logical Calculus and the Concept-script that he solely managed to make

Begriffsschrift’ s completeness probable:

The fundamental principle of reducing the number of primitive laws as far as possible wouldn’t be

fully satisfied without a demonstration that the few left are also sufficient. It is this consideration

which determined the form of the second and third sections of my book. Here too it would be

wrong to suppose that a direct comparison with Boole’s work is possible. In his case there is

nothing remarkable in the attempt to manage everything with the fewest possible primitive laws.

His only object is to find a brief and practical way to solve his problems. I sought as far as

possible to translate into formulae everything that could also be expressed verbally as a rule of

inference, so as not to make use of the same thing in different forms. Because modes of inference

must be expressed verbally, I only used a single one by giving as formulae what could otherwise

have also been introduced as modes of inference. [...] it wasn’t my intention to provide a sample

of how to carry out such derivations in a brief and practical way: it was to show that I can

manage throughout with my basic laws. Of course the fact that I managed with them in several

cases could not render this more than probable [emphasis mine]. [Frege (1880) 1979, 37–38]

Given that Frege admits that his work renders the completeness of his calculus no more than prob-

able, it is shared ground between those holding that Frege had no concept of calculus-completeness

and those holding that he had a proto-concept that Frege did not know how to prove calculus-

completeness. What divides the two sides are instead questions such as: (i) What evidence is there

that Frege had no concept of ‘for all models M’, rather than a proto-concept? (ii) If Frege had

no proto-concept of calculus-completeness, then how are we instead to understand Frege’s talk of

‘completeness’ in the passages quoted from Begriffsschrift, On Mr. Peano’s Conceptual Notation

and My Own, and Boole’s logical Calculus and the Concept-script? (iii) If on the other hand Frege

had a proto-concept of calculus-completeness, what exactly did it look like?

Thus to address the challenge that Frege had no concept of ‘for all models M’, I will address these

5



questions in order: In section 4, I will first consider arguments that purport to establish that Frege

had no proto-concept of ‘for all models’. In section 5, I will then argue that alternative accounts of

Frege’s talk of ‘completeness’ that have been offered lack textual backing and cannot explain how

Frege in fact developed a calculus that is complete for first-order logic. Finally, in section ??, I

will offer a positive account of Frege’s proto-concept of calculus-completeness based on Blanchette’s

interpretation of Frege’s notion of logical consequence.

4 No Proto-Concept of ‘For All Models’

Members of the ‘no metatheory’ school shared a view of Frege’s philosophy of logic. This shared

view is variously called ‘universality of logic’ or the ‘logocentric view’ [van Heijenoort 1967, 326;

Ricketts 1985, 3]. Goldfarb articulates this view as ‘logic was the system: the results of logic were

simply the logical truths, and were to be arrived at by deriving them in the system’ [Goldfarb 1979,

353]. For van Heijenoort, ‘another important consequence of the universality of logic is that nothing

can be, or has to be, said outside of the system’ [van Heijenoort 1967, 326].

Given this perception of Frege’s philosophy of logic, the ‘no metatheory’ advocates declared that

notions such as completeness are not admissible in Frege’s logocentric system. Goldfarb, for example,

states that ‘metasystematic considerations are illegitimate rather than simply undesirable’ [Gold-

farb 1979, 353]. van Heijenoort maintained that ‘Frege never raises any metasystematic question

(consistency, independence of axioms, completeness)’ [van Heijenoort 1967, 326, emphasis mine]. In

a later paper, Dreben and van Heijenoort claimed that the question of completeness could not even

arise in Frege’s system [Dreben and van Heijenoort 1986, 44]. They write:

To raise the question of semantic completeness the Frege-Russell-Whitehead view of logic as

all embracing had to be abandoned, and Frege’s notion of a formal system had to become

itself an object of mathematical inquiry and be subjected to the model-theoretic analyses of the

algebraists of logic [emphasis mine]. [Dreben and van Heijenoort 1986, 45]

For Goldfarb, Dreben and van Heijenoort, the absence of a concept of completeness is therefore not

coincidental but systematic. Studying completeness requires a notion of metatheory and semantics,

and such a concept is not possible in Frege’s logocentric world view.

Yet, what exactly rules out meta-theory? Goldfarb and van Heijenoort claim that formal reas-
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oning such as in the Begriffsschrift is conducted under a fixed interpretation [Goldfarb 1979, 352;

van Heijenoort 1967, 325]. Call this view Fixed. Goldfarb expresses this view as follows:

For Frege and Russell the propositions of logic contain no non-logical vocabulary: there are no

schematic placeholders which may be assigned one value or another. Every logical formula has

a fixed meaning; there is no question of reinterpreting any sign. [Goldfarb 1979, 352]

Under their reading, there is no useful sense of ‘for all models M’ for Frege. Consequently, the

argument proceeds, there is no notion of semantic consequence, and thus also no useful notion of

completeness [Stanley 1996, 64]. In this light, Frege’s talk of ‘completeness’ just refers to the need

to ensure that the deductive calculus captures the truths of a fixed semantics, and Frege’s talk of

‘acknowledging a new mode of inference’ just means the need to modify the deductive calculus if

the deductive calculus does not capture all truths of this fixed semantics.

This ‘fixed interpretation’ view has been extensively challenged by the ‘proto-metatheory’ school

and can now be considered outdated [Antonelli and May 2000; Heck 2007; Blanchette 2012, 156–

171]. Since addressing the fixed interpretation objection is critical for the purposes of claiming that

Frege had a proto-conception of calculus-completeness, I will briefly outline my position here. Frege

did not hold this ‘fixed interpretation’ view. Instead, Frege held a similar-sounding view that does

permit a ‘for all models’ conception or a close analogue, and consequently a proto-conception of

calculus-completeness. The two views that need to be distinguished are the following:

Fully For Frege, sentences in the Begriffsschrift are to be ‘fully interpreted’ in order to conduct

actual inferences.

Fixed For Frege, formal reasoning such as in the Begriffsschrift is conducted under a single, fixed

interpretation.

We already saw Goldfarb endorse Fixed above. Ricketts similarly held that ‘any sort of talk of

different possible interpretations of an unambiguous statement is, at best, a confused way to get at

what should be expressed by variables’ [Ricketts 1985, 4].

While Fully and Fixed sound similar, the key difference is that under Fully the calculus of the

Begriffsschrift is initially uninterpreted until some interpretation is specified. Different interpreta-

tions for the symbolism could be specified. As such, metatheoretical questions can be raised about

the calculus itself. Under Fixed, by contrast, there is a single interpretation of the calculus.
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The reason Fully is more plausible then Fixed is that Frege does not specify an interpretation

at the beginning of Begriffsschrift. Rather the Begriffsschrift appears in schematic form, with Frege

providing possible interpretations as illustrations. For example, when discussing theorem (5), in

modern notation $ pB Ñ Aq Ñ ppC Ñ Bq Ñ pC Ñ Aqq, Frege provides an illustration in terms

of the magnetisation of a piece of iron and galvanic current flowing through a wire [Frege (1879)

1967, §15 p. 35]. We find similar examples from multiple disciplines in various places in the

Begriffsschrift. The illustrations are not just provided for propositions but also for constants and

functions. For example, when deducing that $ g pbq Ñ p f pbq Ñ p @x pg pxq Ñ f pxqqqq, Frege

provides the example

Let b mean an ostrich, that is, an individual animal belonging to the species, let gpAq mean “A

is a bird”, and let fpAq mean “A can fly”. Then we have the judgment “If this ostrich is a bird

and cannot fly, then it can be inferred from this that some birds cannot fly”.[Frege (1879) 1967,

§21 p. 51]

Thus, following Frege’s practice, propositions, constants and functions in the deductive calculus do

not come with a fixed interpretation like Goldfarb suggested. Instead they can be assigned a specific

interpretation. Therefore, Frege seems to be aware of our modern alternative, a formal language

with separate interpretations. Stanley expresses this observation well:

Now, Frege’s conception of formal theory was remarkably modern. [...] Frege speaks of the

project of giving signs reference. Frege simply does not speak as if his Begriffsschrift expressions

already come with a meaning. Rather, he speaks of semantical stipulations (Festsetzungen) which

assign Begriffsschrift expressions reference. This demonstrates that Frege simply did not think of

the Begriffsschrift as an already interpreted language, for one does not stipulate interpretations

for already interpreted signs. Rather, Frege was treating his theory as an uninterpreted set of

syntactic operations on strings of symbols. [Stanley 1996, 63]

Frege specifies an example interpretation of the Begriffsschrift calculus in part I of Grundgesetze

[Stanley 1996, 64]. Frege’s first-order functions range over courses-of-values and truth-values [Blanchette

2012, 74; Frege (1893) 2016, GG I, §31, p. 48]. However, the specification of an intended interpret-

ation in a specific application—the derivation of arithmetic from logic—does not mean that other

interpretations could not be specified. In fact, to apply the Begriffsschrift calculus to areas like
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physics and geology as Frege had intended, a broader interpretation would need to be specified

[Frege (1879) 1967, p. 7; §4, p. 13].

A possible reason for confusion as to whether Frege held Fixed and Fully is Frege’s insistence

in On the Foundations of Geometry that an ‘actual’ inference is an inference between ‘thought[s]

recognised as true’, rather than a relationship between signs:

[...] There we read, “In this way, one sequence of formal inferences can sometimes be ‘interpreted ’

in different ways.” What can be interpreted is perhaps a sign or a group of signs, although the

univocity of the signs—which we must retain at all cost—excludes different interpretations.

But an inference does not consist of signs. We can only say that in the transition from one

group of signs to a new group of signs, it may look now and then as though we are presented

with an inference. An inference simply does not belong to the realm of signs; rather, it is the

pronouncement of a judgment made in accordance with logical laws on the basis of previously

passed judgments. Each of the premises is a determinate thought recognized as true; and in the

conclusion, too, a determinate thought is recognized as true. There is here no room for different

interpretations [emphasis mine]. [Frege (1906) 1971, 82; Ricketts 1985, 4]

Given an inference is between thoughts recognised as true, propositions expressing these thoughts

need to be true simpliciter—they cannot be true under one interpretation and false under another.

Yet, this passage does not entail that Frege held Fixed rather than Fully. Frege is just insisting

that an inference is between thoughts rather than signs, and those thoughts ought to be fully

determinate. In fact, as Antonelli and May highlight, part III of the 1906 On the Foundations of

Geometry provides a sketch of how metatheoretic results such as independence of axioms may be

derived in Frege’s framework. We will outline and employ Frege’s proposal in section ??.

5 Alternative Understandings of Frege’s Talk of ‘Completeness’

Let us suppose though that we had been convinced of the argument that Frege had no proto-

concept of ‘for all models’, and thus no proto-concept of calculus-completeness. Thus if we cannot

take Frege’s talk of ‘completeness’ at face value, how are we to understand his use of ‘completeness’

or similar talk in the passages quoted so far, and the additional ones to come? In this section, I will

argue that no viable alternative interpretation has been put forward.

Among the authors arguing that Frege had no concept of completeness, only van Heijenoort
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provides a hint of what he perceives the correct interpretation of Frege’s mentions of completeness

to be. According to van Heijenoort, for Frege, ‘the only question of completeness that may arise is,

to use an expression of Herbrand’s, an experimental question. As many theorems as possible are

derived in the system. Can we exhaust the intuitive modes of reasoning actually used in science?’

[van Heijenoort 1967, 327]

van Heijenoort’s comment seems to pick up on Frege’s suggestion in On Mr. Peano’s Conceptual

Notation and My Own. The picture Frege paints here seems to be the following: pick a specific

science (‘branch of learning’). Consider a set of non-logical axioms of this science. Then see if,

with this set of axioms plus the logical calculus, we can derive all the truths in the science that we

recognise as true. If not, one of the following three has to hold: either we are missing a non-logical

axiom (‘hit upon a truth issuing from a non-logical source of cognition’), our calculus is incomplete

(‘a new mode of inference has to be acknowledged’) or the truth in the science we believed is not

actually a truth (‘perhaps the intended step ought not to have been taken at all’).

Yet how exactly is van Heijenoort’s interpretation a different concept of calculus-completeness

than ours? For example, if we hit upon a case in which a new mode of inference does have to

be acknowledged, this is presumably because the calculus is, also in our sense, incomplete. van

Heijenoort does not provide an answer to this. However, we can imagine what he might say. He

could respond that, according to his reading of Frege, Frege operated under a fixed semantics.

Thus semantic implication and calculus-completeness are with respect to that fixed semantics, and

questions of calculus-completeness in the modern sense do not arise.

We have already seen the textual evidence against the fixed interpretation view in section 4.

However, there is an additional argument against van Heijenoort’s alternative reading of ‘complete-

ness’: if Frege had no concept of calculus-completeness or an entirely different concept, it would

be an extraordinary coincidence that Frege nonetheless formulated his nine axioms and two modes

of inference so as to yield a complete first-order calculus in our sense [Liu 2017; Dummett 2008,

11]. What could, other than Frege having a proto-concept of calculus-completeness, explain this

phenomenon?

Providing any account of how Frege came up with the calculus in the Begriffsschrift is difficult

because little is known about its genesis. Any notes or drafts Frege made during the Begriffsschrift ’s

creation have either been disposed of by him or burned subsequently in the 1945 fire that destroyed
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his manuscripts [Wille 2018, 154]. Thus to determine whether Frege could have come up with a

calculus whose first-order part is complete without a proto-concept of completeness, we seemingly

have to resort to estimating how difficult it was for Frege to ‘stumble upon’ such a calculus by chance,

in pursuit of other goals. Note that by ‘stumble upon by chance’, we need to distinguish between

(a) stumbling upon such a calculus with the intention of finding a complete calculus but without

proof that the calculus is indeed complete and (b) stumbling upon such a calculus without such an

intention. (a) would still be confirmation that Frege had a proto-concept of calculus-completeness,

and thus only (b) is an alternative explanation how Frege arrived at a calculus which was indeed

complete for first-order logic. This is what ‘by chance’ is meant to express. In the following, I want

to consider two such ‘stumbling-across’ explanations: one historical and one aim-based.

The first, historical, stumbling-across explanation would be to maintain that (i) Frege’s contem-

poraries had already done most of the required work for a complete first-order calculus, and (ii)

Frege had a detailed understanding of his contemporaries’ writings at the time of writing the Be-

griffsschrift. If assumptions (i) and (ii) were true, it could seem plausible that Frege stumbled across

a complete first-order calculus. The most relevant contemporaries or immediate predecessors are the

Booleans working on algebraic logic—in particular George Boole, Augustus De Morgan and Ernst

Schröder. Boole had pioneered the idea of modelling logical connectives on arithmetic operations

such as +, - and ¨. Thus, to use an example from Boole, if y represents that ‘Gravitation is necessar-

ily present’ and v that ‘A vacuum is necessary’, then ‘If gravitation is necessarily present, a vacuum

is necessary’ is presented as y p1 ´ vq “ 0 [Boole 1854, 219–220]. Either y “ 0 (the antecedent is

false) or v “ 1 (the consequent is true).

However, it appears that, with respect to the Booleans’ work, neither (i) nor (ii) can credibly

proven to be the case. With respect to (i), there are several major differences between algebraic

and Fregean logic: For example, Boole had drawn a distinction between primary and secondary

propositions. Primary propositions ‘express a relation among things’, while secondary propositions

‘express a relation among propositions’ [Boole 1854, 52]. An example of a primary proposition is

‘the sun shines’, whereas ‘if the sun shines the earth is warmed’ is a secondary proposition [Boole

1854, 52]. Boole then developed separate ‘methods’ for primary and secondary propositions [Burris

2018, 6.1, 6.2]. The Begriffsschrift, by contrast, avoids such a division and constitutes a single logic

[Frege (1880) 1979, 14].
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With respect to (ii), that Frege had a detailed understanding of his contemporaries’ writings

at the time of writing the Begriffsschrift, there also appears to be a lack of evidence. Wille and

Sluga, for example, argue that there is no evidence to support the view that Frege, at the time of

writing Begriffsschrift, had any knowledge of algebraic logic [Sluga 1987, 96; Wille 2018, 73]. All

one can say for sure is that, after the Begriffsschrift was published and criticised for not taking into

account the work of the algebraic school, Frege wrote pieces such as Boole’s logical Calculus and the

Concept-script to provide a detailed defence of the merits of the Begriffsschrift over algebraic logic.

Thus, without clear evidence for (i) and (ii), there seems to be little support for the alternative

explanation of the Begriffsschrift ’s calculus-completeness that Frege largely copied what his con-

temporaries had already done. As Wille puts it, ‘Frege did not have anything comparable to resort

to, which makes the resulting axioms system even more impressive, also in its systematic elegance’

[Wille 2018, 154].

We now move to the second, aim-based, ‘stumbling-across’ explanation of the calculus-completeness

of the first-order part of Begriffsschrift. According to this explanation, what Frege really aimed to

achieve was to prove a number of propositions regarding sequences in part III of Begriffsschrift. The

deductive system Frege provided was then merely what was required to prove the propositions of

part III, and consequently the completeness of the first-order part of Begriffsschrift is simply a by-

product of Frege’s ambition to prove the propositions in part III. The question is therefore: was the

calculus of Begriffsschrift’s aim solely to prove the propositions in part III, or are the propositions in

part III partially to illustrate the power of the calculus, in lieu of a completeness proof? Fortunately

Frege provides the answer. In Boole’s logical Calculus and the Concept-script, Frege tells us about

the intent of part II and III of Begriffsschrift:

The fundamental principle of reducing the number of primitive laws as far as possible wouldn’t be

fully satisfied without a demonstration that the few left are also sufficient. It is this consideration

which determined the form of the second and third sections of my book. [Frege (1880) 1979, 37]

Frege makes a similar remark at the beginning of part III of the Begriffsschrift, where he says that

‘the derivations that follow are intended to give a general idea of the way in which our ideography

is handled, even if they are perhaps not sufficient to demonstrate its full utility’ [Frege (1879) 1967,

p. 55, §23]. That the propositions in part III are partially to illustrate the power of the calculus

makes sense because, as noted earlier, Frege acknowledged that he did not have the means to prove
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the completeness of his calculus. Thus part of the reason Frege uses part III of the Begriffsschrift

to demonstrate propositions about sequences is to illustrate the ability of his calculus to prove even

fairly complex propositions.

Consequently, both the historical and the aim-based ‘stumbling-across’ explanations of the

calculus-completeness of the first-order part of Begriffsschrift appear to lack textual backing, and

can therefore not explain how Frege in fact arrived at a complete first-order calculus.

It is often said that, for Frege, the distinction between first- and second order logic was less

important than it is for us today. One may thus wonder: if Frege attributed no special relevance to

first-order logic, then how can the completeness of the first-order part of Begriffsschrift be of explan-

atory value in the debate about whether Frege had a proto-conception of completeness? However,

the response is straightforward: the claim is not that Frege was trying to devise a calculus that was

complete for first-order logic specifically. Rather, Frege was trying to formalise a deductive system

that was complete. By his own admission, Frege never obtained a proof that his deductive system

was complete [Frege (1880) 1979, 37–38]. With the benefit of Gödel’s incompleteness theorems, we

know that the best possible result was a deductive system that was complete for first-order logic.

This best-possible result is what Frege has achieved with the Begriffsschrift, and it is a legitimate

question what explains this achievement.

It is important to keep in mind though that this is just additional circumstantial evidence for the

view that Frege had a proto-concept of calculus-completeness—the primary evidence are the earlier

text passages where Frege employs this proto-concept. Thus, I believe, alternative interpretations

that do not take Frege’s talk of completeness at face-value are not convincing.

13



References

Antonelli, Aldo, and Robert May. 2000. ‘Frege’s New Science’. Notre Dame Journal of Formal Logic

41 (3): 242–270.

Blanchette, Patricia. 2012. Frege’s Conception of Logic. Oxford, New York: Oxford University Press.

Boole, George. 1854. An Investigation of the Laws of Thought. London: Walton and Maberly.

Burris, Stanley. 2018. ‘George Boole’. In The Stanford Encyclopedia of Philosophy, Summer 2018,

edited by Edward Nouri Zalta. Metaphysics Research Lab, Stanford University.

Dreben, Burton, and Jean van Heijenoort. 1986. ‘Gödel 1929: Introductory Note to 1929, 1930 and

1930a’. In Kurt Gödel: Collected Works, by Kurt Gödel, edited by Solomon Feferman, I:44–59.

New York: Oxford University Press.

Dummett, Michael. 1991. Frege: Philosophy of Mathematics. London: Bloomsbury Academic.

. 2008. ‘Gottlob Frege (1848-1925)’. In A Companion to Analytic Philosophy, edited by

Aloysius Patrick Martinich and Ernest David Sosa, 6–20.

Frege, Gottlob. (1879) 1967. ‘Begriffsschrift, a Formula Language, Modeled upon That of Arithmetic,

for Pure Thought’. In From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931,

edited by Jean van Heijenoort, translated by Stephen Bauer-Mengelberg, 1–82. Harvard Uni-

versity Press.

. (1880) 1979. ‘Boole’s Logical Calculus and the Concept-script’. In Posthumous Writings,

edited by Hans Hermes, Friedrich Kambartel and Friedrich Kaulbach, translated by Peter Long

and Roger White, 9–46. Oxford: Basil Blackwell.

. (1893) 2016. Basic Laws of Arithmetic. Translated by Philip A. Ebert and Marcus Rossberg.

Oxford: Oxford University Press.

14



Frege, Gottlob. (1897) 1984. ‘On Mr. Peano’s Conceptual Notation and My Own’. In Collected

Papers on Mathematics, Logic, and Philosophy, edited by Brian McGuinness, 234–248. Oxford:

Basil Blackwell.

. (1906) 1971. ‘On the Foundations of Geometry’. In On the Foundations of Geometry and

Formal Theories of Arithmetic, translated by Eike-Henner W. Kluge, 49–112. New Haven and

London: Yale University Press.

. 1984. ‘Formal Theories of Arithmetic’. In Collected Papers on Mathematics, Logic, and

Philosophy, edited by Brian McGuinness, 112–121. Oxford: Basil Blackwell.

Goldfarb, Warren David. 1979. ‘Logic in the Twenties: The Nature of the Quantifier’. The Journal

of Symbolic Logic 44 (3): 351–368.

Heck, Richard Kimberly. 2007. ‘Frege and Semantics’. Grazer Philosophische Studien 75 (1): 27–63.

Liu, Yang. 2017. ‘Frege’s Begriffsschrift Is Indeed First-Order Complete’. History and Philosophy of

Logic 38 (4): 342–344.

Ricketts, Thomas Grant. 1985. ‘Frege, The Tractatus, and the Logocentric Predicament’. Noûs 19

(1): 3–15.

Sluga, Hans. 1987. ‘Frege against the Booleans’. Notre Dame Journal of Formal Logic 28 (1): 80–98.

Stanley, Jason. 1996. ‘Truth and Metatheory in Frege’. Pacific Philosophical Quarterly 77 (1): 45–70.

Van Heijenoort, Jean. 1967. ‘Logic as Calculus and Logic as Language’. Synthese 17 (3): 324–330.

Wille, Matthias. 2018. Gottlob Frege: Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache

des reinen Denkens. Klassische Texte der Wissenschaft. Springer Spektrum.

15



Dynamic Approximation of Self-Referential Sentences
(for Philosophical Logic)

Vladimir A. Stepanov1

CC FIC CSC RAS, Moscow, Russia
vastvast@yandex.ru

Abstract

Non-classical logic via approximation of self-referential sentences by dynamical systems
are consistently presented. The new 6-valued truth values <T,va,A,V,av,F> (here A=Liar,
V=TruthTeller) are presented as a function of the classical truth values xi 2 {0, 1}, which
resulted in a philosophical standpoint known as Suszko’s Thesis. Three-valued truth tables
were created corresponding to Priest’s tables of the same name (Priest, 1979). In the
process of constructing 4-valued truth tables, two more new truth values (va, av) were
revealed that do not coincide with the four original ones. Therefore, the closed tables turned
out to be 6-valued. Prof Dunn’s 4-valued truth tables are compared with our 4-valued truth
tables. De Morgan’s laws are confirmed by six-valued truth tables. Constructed 3-, 4- and
6-valued lattices obeying De Morgan’s laws.

Many of the results are new.

Introduction

Sentences that refer to themselves are called self-referential. The most popular of these is
the ”Liar” sentence. It can be noted that the study of self-referencing admits two possible
approaches:

external - which describes the reaction of self-referential sentences to the system under
study. These include the popular studies of Priest in 1978 (LP), see (Priest, 1978); and
(Dunn, 2019);

internal - when the emphasis is on the study of the structure of self-referential sentences,
which began with Peirce in 1855 (Michael, 1975). We will devote our article to this last
approach.

The constructive analysis of the Liar sentence was carried out by Charles Peirce (Michael,
1975), who, as far as we know, was the first to notice in his lectures in 1864-1865, that self-
referential sentences generate an infinite sequence of substitutions into themselves. This is the
first application of the principle, which in the second half of the 20th century was called ”turning
a vicious circle into a generating circle”.

We are talking about the S icon, which first appeared in the article (Johnstone, 1981):
Q =df SQP . According to the meaning, S indicates that the entire expression belongs to self-
referencing, and introduces the entire self-referential construction to the rank of WFF. The Liar
sentence: SQ ⇠ TQ. (Formulas in the author’s annotation; we do not decipher them).

1 Basic definitions

We define a dynamic approximation of self-referential sentences, which for the Liar and the
TruthTeller, generates three-valued Kleene logic, and allows us to obtain new 4- and 6-valued
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truth tables (Stepanov, 2021). We fix the self-referencing of the sentence using a special self-
referencing icon: Sx, which is placed in front of the predicate P (x). We call the predicate P (x)
the core of a self-referential sentence. A self-referential sentence looks like this:

SxP (x). (1)

Expression (1) obeys the axiom of self-reference (Feferman 1984):

SxP (x)$ P (SxP (x)). (2)

Peirce (Michael, 1975) applied (2) to infinite Liar sentence:

SxP (x)$ P (P (P (...SxP (x)...))). (3)

Let’s break it down into iterative steps:

SxP (x) ⇡ SxP (x) =< x,P (x), P (P (x)), . . . > . (4)

The right-hand side of expression (4) will be considered as an approximation ⇡ of a real self-
referential sentence SxP (x). The sign SxP (x) is used to denote the result of the approximation.
Expression (4) is the definition of the trajectory of a dynamical system of the form ({0, 1}, P (x))
with orbits < Pn(x), n 2 Z+ >, where Pn(x) = P (Pn�1(x)), (Konev et al., 2006). Consider
the case when the kernels of self-referential sentences P (x) are composed of Tr(x) using the
propositional connectives equivalence and negation:

P (x) 2 {Tr(x),¬Tr(x), T r(x)$ Tr(x), T r(x)$ ¬Tr(x)}. (5)

It is easy to see that expression (4) is periodic, with a maximum period of 2. This means that the
second and third terms of the sequence (4) determine the entire remaining infinite sequence.
Therefore, in our case, we rightfully shorten the definition of a self-referencing quantifier as
follows:

SxP (x) =< x,P (x), P (P (x)) > . (6)

The variable x and the predicates P (x) from (5) in our case take values from {0, 1}.

Definition 1: For SxP (x) *) {< 1, P (1), P (P (1)) > , < 0, P (0), P (P (0) > .} :
¬SxP (x) *) ¬{< 1, P (1), P (P (1)) > , < 0, P (0), P (P (0) >}
¬SxP (x) *) {¬ < 1, P (1), P (P (1)) > , ¬ < 0, P (0), P (P (0) >} (7)
¬SxP (x) *) {< ¬1, P (¬1), P (P (¬1)) > , < ¬0, P (¬0), P (P (¬0) >}

This is the table for the negation symbol:

SxP (x) ¬SxP (x)
{< 1, 1, 1 >;< 0, 1, 1 >} = T F = {< 1, 0, 0 >;< 0, 0, 0 >} (False)
{< 1, 0, 1 >;< 0, 1, 0 >} = A A = {< 0, 1, 0 >;< 1, 0, 1 >} (Antinomy, Liar)
{< 1, 1, 1 >;< 0, 0, 0 >} = V V = {< 0, 0, 0 >;< 1, 1, 1 >} (Void,TruthTeller)
{< 1, 0, 0 >;< 0, 0, 0 >} = F T = {< 0, 1, 1 >;< 1, 1, 1 >} (True)

Definition 2:We define two-place connectives o 2 {^,_,!, } for two S-formulas SxP (x) and
SxQ(x). We study such a variant of two-place connectives, when the trajectories of estimates
of the formula SxP (x) of the one branch (x = 1 or x = 0) interact with the trajectories of the
formula SxQ(x) of the same branch (x = 1 or x = 0, respectively):

2
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SxP (x) o SxQ(x) *)
{< 1, P (1), P (P (1)) >,< 0, P (0), P (P (0) >}o{< 1, Q(1), Q(Q(1)) >,< 0, Q(0), Q(Q(0)) >}=
{< 1, P (1), P (P (1)) > o < 1, Q(1), Q(Q(1)) >,< 0, P (0), P (P (0)) > o < 0, Q(0), Q(Q(0)) >}=

{< 1o1, P (1)oQ(1), P (P (1))oQ(Q(1)) >,< 0o0, P (0)oQ(0), P (P (0))oQ(Q(0)) >}.

Example.: F^V=
= {< 1, 0, 0 >,< 0, 0, 0 >} ^ {< 1, 1, 1 >,< 0, 0, 0 >}
= {< 1, 0, 0 > ^ < 1, 1, 1 >,< 0, 0, 0 > ^ < 0, 0, 0 >}
= {< 1, 0, 0 >,< 0, 0, 0 >}=F.

2 Main results

Let’s compare Kleene-Priest tables with our tables on our rules for A and V:

Kleene-Priest p Hypothesis: p = A Hypothesis: p = V
^ t p f
t t p f
p p p f
f f f f

⌘

^ T A F
T T A F
A A A F
F F F F

⌘

^ T V F
T T V F
V V V F
F F F F

Lemma 1: 1. The sentences Liar (A) has the tabular model, coinciding with tabular model
Liar (p) of Priest (Priest, 1979) and, accordingly, the same evidential theory.
2. The sentences TruthTeller (V) has the same configuration tabular model, coinciding with
configuration tabular model Liar (p) of Priest (Priest, 1979).
Lemma 2: When constructing the interaction of V and A, new truth values were obtained:
A^V={< 1, 0, 1 >,< 0, 0, 0 >}=av=¬(va),
A_V={< 1, 1, 1 >,< 0, 1, 0 >}=va=¬(av).
The author has not come across any statement in the literature that the sentences A^V and
A_V have a similar assessment of the truth of av and va. This is a new result!

Our table Our table
^ T A V F
T T A V F
A A A av F
V V av V F
F F F F F

_ T A V F
T T T T T
A T A va A
V T va V V
F T A V F

For comparison, here are the Dunn tables:

(Dunn, 2019) (Dunn, 2019)
^ T B N F
T T B N F

B B B F F

N N F N F
F F F F F

_ T B N F
T T T T T

B T B T B

N T T N N
F T B N F

3
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These are the complete 6-valued tables:

¬
T F
va av
A A
V V
av va
F T

^ T va A V av F
T T va A V av F
va va va A V av F
A A A A av av F
V V V av V av F
av av av av av av F
F F F F F F F

_ T va A V av F
T T T T T T T
va T va va va va va
A T va A va A A
V T va va V V V
av T va A V av av
F T va A V av F

Lemma 3: The next four lattices are DeMorgan lattices, á la (Leitgeb, 1999):
{ F  av  A  V  va  T } ; ( 1  2  3  3  4  5 ) :

T

q A =Liarq
F

q T

q V =Truth
Teller

q
F

q
�
av =(A^V)
q@
AV @

qva =(A_V)
�

F = {< 100 >,< 000 >} = 1q�av = {< 101 >,< 000 >} = 2q@
AV = {< 101 >,< 010 >} = 3@

q va = {< 111 >,< 010 >} = 4
�

q T = {< 111 >,< 011 >} = 5

DM3A DM3V DM4VA DM6

Our truth-values are finite estimates of infinite periodic classical sequences of kernels of self-
referential statements. This is consistent with Suszko’s principles of transforming non-classical
truth-values through a set of classical truth-values.
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8-valued non-deterministic semantics for modal logics

In this paper, we show that modal logics obtained by combinations of axioms K,T,D,4,5,B have an intuitive

non-deterministic characterization that is at most 8-valued.

Our starting point is the propositional modal system H which does not have any axioms for modal language

except the Dual axiom. One can think about this system as the propositional logic in an extended language

by two modal operators that are interdefinable. We construct an 8-valued non-deterministic semantics for H,

where the values represent modal status of the formula. So they not only convey the information whether a given

formula is true but also whether it is possible or/and necessary. These is summarized by the following table:

Table 1: Meaning of values

Value Status of the sentence
T♦ !ϕ,♦ϕ,ϕ (necessary, possible and true)
T !ϕ,¬♦ϕ,ϕ (necessary, not possible and true)
t♦ ¬!ϕ,♦ϕ,ϕ (not necessary, possible and true)
t ¬!ϕ,¬♦ϕ,ϕ (not necessary, possible and true)
f♦ ¬!ϕ,♦ϕ,¬ϕ (not necessary, possible and false)
F !ϕ,¬♦ϕ,¬ϕ (necessary, not possible and false)
F♦ !ϕ,♦ϕ,¬ϕ (necessary, possible and false)
f ¬!ϕ,¬♦ϕ,¬ϕ (not necessary, not possible and false)

Based on this semantics we will show how to extend it for logics with arbitrary combinations of axioms: D, T,

B, 4, 5. In order to regain the rule of necessitation we apply the Kearn’s m-th level valuations. By doing so,

we obtain semantics for all the normal modal logics definable by the mentioned axioms. As a byproduct of this

procedure we also obtain a semantics for logics where the rule of necessitation is restricted only to the theorems

that does not use necessitation1

While some of these results are already known, we complete the overall picture and simplify it by providing

reductions that minimize the number of values. We also emphasize on the use of more economical axiomatizations

that do not incorporate axioms that become redundant in the presence of the necessitation rule. In this process,

some logics are coupled with non-normal (in the sense of lacking the necessitation rule) companions.
1Roughly we get the rule of necessitation used in the logic S1.

1
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To get a better grasp of non-deterministic semantics consider the following example: 2-valued (V, V ′) table

for the connective ◦:

◦ V V ′

V V V, V ′

V ′ V ′ V, V ′

Notice how, for the value associated with the V ′ column, the table does not single out a single value, but a set

{V, V ′} of them, indicated in the abbreviated form by V, V ′ in our table. We call these tables non-deterministic.

Non-deterministic semantics are based on such a generalization of (many-valued) tables. Since the interpretation

of connectives can give a non-empty set of truth-values instead of a single one, the valuation function singles out

one of the possible values given by the set. In other words, this means that the interpretation of a connective

assigns a non-empty set of values (i.e an element of the power set of values minus the empty set) to the complex

formula.2

This allows for introducing new interpretations for an otherwise extensional reading of a connective, mak-

ing it possible to semantically characterize logics that cannot be characterized by finitely many valued (de-

terministic) approaches. Examples of this can be found in [Jorge and Holik, 2020, Avron and Zamansky, 2007,

Pawlowski and Urbaniak, 2018] and [Coniglio et al., 2019]. In this paper, we deal with finitely many-valued char-

acterizations of modal logics that cannot be captured by deterministic tables, as those studied in [Dugundji, 1940].

According to Dugundji’s theorem one cannot provide a finitely-many valued deterministic semantics for modal

logics between S1 and S5.3

The way to bypass the Dugundji’s theorem is to start with a non-deterministic characterization of a modal

logics that does not validate the rule of necessitation and strengthen it with the method on mth-level valuations.

Roughly speaking, this method reduces the set of admissible valuations by removing those, according to which

the tautologies of the logic are not necessary.

So far, approaches of this kind were developed for capturing modal logics weaker than K [Ivlev, 1988], for K,

T, S4, S5, KD, KB and KTB [Kearns, 1981, Coniglio et al., 2015, Omori and Skurt, 2016].

No systematic study of non-deterministic semantics has hence been conducted for such variety of modal logic

that includes all the logics of the modal cube portrayed in the Stanford Encyclopedia of Philosophy entry on

modal logic [Garson, 2021].
2The relation between this type of semantics and the possible world semantics or neighbourhood semantics has not yet been

studied. However, it seems that non-determinsitic semantics allows one to capture modalities that are too weak to be capturable in
the neighbourhood semanitcs.

3The question whether one can provide a direct non-deterministic semantics for those systems has been answered negatively in
[Grätz, 2021]
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In this paper, we fill this gap and rework the logics found in the works cited above in order to guarantee a more

economical axiomatization while preserving modularity over the presence of the necessitation rule and, in some

cases, a reduction of the number of values will be given. As a consequence, axiomatizations which do not include

necessitation are not closed under the rule of substitutivity of equivalents.4 The following table summarizes all

the results w.r.t the entry on The Stanford Encyclopedia of Philosophy:

Figure 1: Table of results with respect to SEP entry

K K4 K5 KB K45 KB4 =
KB5 =

KB45

KD KD4
KD5

KDB
KD45

KT KT4
KTB

KDB4 =
KDB5 =

KDB45
=

KT5 =
KT45

=
KTB4 =

KTB5 =
KTB45

8 values 6 values 4 values

Before reductions

K5 KB K45 KB4 =
KB5 =

KB45

KD5
KDB

KD45
K KD K4 KD4

KTB
KDB4 =

KDB5 =
KDB45

=

KT5 =
KT45

=
KTB4 =

KTB5 =
KTB45

KT KT4

8 values 6 values 4 values 3 values

After reductions
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Abstract 
The axioms of Arithmetic are widely known among mathematicians. They have 

been named Dedekind-Peano axioms, although there was no collaboration between 
the two mathematicians. But there is no concrete evidence that one knew the other's 
work at the time he was writing his own. The aim of this work is to study the 
similarities and differences in the presentations of the texts of the two 
mathematicians and to investigate any influences between each other. 

1 Introduction 
In 1889 the Arithmetices principia, nova methodo exposita by Giuseppe Peano was 

published. A year earlier, in 1888, Was sind und was sollen die Zahlen? was published; by 
Richard Dedekind. These two works presented the foundation of Arithmetic. Peano’s Arithmetic 
is the most generally accepted official basis of arithmetic, but the initial presentation of the 
axioms by Peano differs considerably from the form known today.  

Some writers talk about Dedekind-Peano’s axioms instead of Peano’s axioms. How much 
did Dedekind's work affect Peano's work? What are the similarities and differences between the 
two texts? According to Kennedy, Peano did not see Dedekind's book until his own was 
published (Kennedy, 2002). But why does the author himself, in the introduction to his work 
states that the work of Dedekind was very useful (Peano, 1889)? In the introduction to the first 
edition of his work, Dedekind states that the preparation of his presentation was done before the 
publication of his work in sequels, but only from 1872 to 1878, he was able to commit to a text, 
which many mathematicians considered and discussed with him (Dedekind, 1888). In short, 
Dedekind had a public debate on the foundation of Arithmetic for at least five years, during which 
Peano according to Kennedy (Kennedy, 2002), studied at the University of Turin (1876-1880). It 
is therefore very likely that Peano had come into contact with Dedekind's attempt to establish 
Arithmetic at that time. After all, according to Volterra in the second half of the 19th century, 
there were contacts between Italian and German universities (Volterra, 1908). Below we will 
study the similarities and differences between the two texts. 



2 Method and Objective 
In the second half of the 19th century, the foundations of most mathematical theories were 

laid. Many mistakes were made while trying to establish the foundations and questions were 
asked in an attempt to correct the mistakes. Peano in the early years of his career was involved in 
correcting mistakes, to the point that Segre calls him a “mistake hunter” (Segre, 1994). In his 
introduction to the Arithmetices principia, nova methodo exposita, Peano expresses the view that 
the difficulty of foundations is due to the ambiguity of language and that it is very important to 
examine carefully every word we use (Peano, 1889). Thus, he sets as the goal of his work the 
presentation of a method that emerged after the examination of the problem as well as an 
application on Arithmetic. As he wrote, his book was an introduction to logical symbolism. His 
method is nothing more than the use of a symbolic language.  

Dedekind, on the other hand, shows particular interest in the study of the axiomatic 
properties of numbers as well as in isolating the properties from their numerical character so that 
they can be incorporated into more general concepts, as he himself mentions in his letter to 
Keferstein (Dedekind, 1890). In that letter, Dedekind responds to Keferstein's critique of Was sind 
und was sollen die Zahlen? and especially the concept of the chain 1 , defending his work. 
Dedekind begins with informal references to some basic principles of set theory, beginning with 
the definition of the important concept of chain. A few years later, in the introduction to the third 
edition of his book, he would express his concern, because in the meantime doubts had arisen 
about the credibility of the important foundations of his conception. (Dedekind, 1888).  

3 The number, the axioms and the propositions 
Peano did not give definitions for fundamental concepts of arithmetic, such as number, the 

unit, and successor. As he pointed out "from a practical point of view, the question seems to have 
been resolved, that is, it is not convenient in a teaching to give a definition of number, as this idea 
is very clear to students and each definition has only the result of confusion." (Peano, 1891). The 
definition of number was also the point of Russell's strong criticism of Peano's Arithmetic (Segre, 
1994). 

In contrast, Dedekind gives an extremely complex definition using the concept of chain: 
 

«71. Definition. A system N is said to be simply infinite when there exists a similar2 
mapping φ of Ν into itself such that N appears as the chain (44) of an element not 
contained in φ(Ν). We call this element, which we shall denote in what follows by the 
symbol 1, the base-element of Ν, and say that the simply infinite system Ν is ordered by 
this mapping φ. If we retain the earlier convenient symbols for images and chains (§4) 
then the essence of a simply infinite system Ν consists in the existence of a mapping φ of 
Ν and an element 1 which satisfy the following conditions α, β, γ, δ:  

                                                α. Ν΄ ϶ Ν. 

                                                β. Ν = 10. 

                                                γ. The element 1 is not contained in Ν΄. 

                                     δ. The mapping φ is similar. 

[…] 

                                                 
1 37. Definition. K is called a chain when K΄ ϶ K. (Dedekind, 1888) (Let φ be a mapping of the system K. Then K΄ = 

φ (K)). 
2 26. Definition. A mapping φ of a system S is said to be similar or distinct, when to different elements α, b of the 

system S there always correspond different images a΄ = φ(a), b΄ = φ(b). (Dedekind, 1888) 



   73. Definition. If in the consideration of a simply infinite system Ν ordered by a 
mapping φ we entirely neglect the special character of the elements, simply retaining their 
distinguishability and taking into account only the relations to one another in which they 
are placed by the ordering mapping φ, then these elements are called natural numbers or 
ordinal numbers or simply numbers, and the base-element 1 is called the base-number of 
the number-series Ν.» (Dedekind, 1888) 

The axioms given by Peano in his original text are nine of which four refer to the relation 
of equality. A few years later, in Rivista di matematica 1 he somewhat transforms his system by 
giving the five known axioms that are still characterized today as Peano axioms: 

 
«1. 1 ε 3 N 

  2. + ε N\4N 

  3. a, b ε N .5 a + = b + : Ͻ6 . a = b 

  4. 1 -7 ε N + 

          5. s ε K . 1 ε s . s + Ͻ s : Ͻ . N Ͻ s» (Peano, 1891) 

It is worth noting here that Peano makes the following comment: "The previous 
sentences are due to Dedekind, however, there is a slight difference in the statement of 
sentence 5" (Peano, 1891). It is obvious that the first four axioms of Peano are indeed identical 
to those which Dedekind incorporated in his definition of natural numbers. The 5th axiom, 
which is nothing more than mathematical induction, is given by Peano as an axiom while 
Dedekind proves it as a proposition: 
 

«80. Theorem of complete induction (inference from n to n΄). In order to show that a 
theorem holds for all numbers n in a chain m0, it is sufficient to show, 

  ρ. that holds for n = m, and 
  σ. that from the validity of the theorem for a number n of the chain m0 its validity for 
the following number n΄ always follows. 
 
This results immediately from the more general theorems (59) or (60). The most 
frequently occurring case is when m = 1 and therefore m0 is the complete number-series 
Ν.» (Dedekind, 1888) 
 

Then, both authors give and prove a series of properties of natural numbers as well as 
basic operations. Peano does not define addition while all its properties are proven using 
induction. Additionally, subtraction, multiplication, and powers are defined recursively. Dedekind 
follows a similar path for properties and operations within natural numbers, with the main 
difference being the recursive definition of addition.  

A comparison in the style of the two texts one can easily see that Peano's text uses the 
language of logic as a tool, while Dedekind instead wanted to reduce these "axioms" to deep 
logical principles, so that propositions could be made for him. (Kahle, 2021). Moreover, on one 
hand Arithmetices principia, nova methodo exposita is easier to read but does not fully prove all 
the properties of numbers considering that the reader can practice the method on his own by 
proving the sentences. On the other hand, Dedekind's book is much more detailed but also more 

                                                 
3 «The sign ε means is.» (Peano, 1889) 
4 «Essendo a e b delle classi, con a\b intenderemo «segno che messo dopo un a produce un b.»» (Since a and b are 

classes, with a \ b we mean «a sign that put after a produces a b.») (Peano, 1891) 
5 «To show the order in which they should be taken, we use parentheses, as in algebra, or dots, ., :, .·., ::, and so on. 

[…] Then ab.cd means (ab)(cd)» (Peano, 1889) 
6 «The sign Ͻ means one deduces.» (Peano, 1889) 
7 «The sign – is read not.» (Peano, 1889) 



difficult for the reader. Finally, Peano's presentation is much closer to what we know today about 
Arithmetic.  

4 Conclusions 
When Was sind und was sollen die Zahlen? was published, Dedekind was a famous 

mathematician. He worked on the foundations of Arithmetic for several years and for which he 
exchanged views with other mathematicians of his time. It is very likely that the discussion was 
transmitted through the various editions to Turin where the young Peano lived and studied. Peano 
in the early years of his career worked as an assistant professor at the University of Turin and 
more specifically as an assistant to Genocchi. At that time, his research interest was to look for 
errors in the notes of Calculus, which he taught, to correct them and to offer a lesson as 
comprehensible as possible to his students. In his view, the errors were due to natural language, 
so he studied a way to express the theories he studied in symbolic language, which was also 
Leibniz's vision. It is not excluded that all this time he came to contact with Dedekind's effort. 
Immediately after the Arithmetices principia, nova methodo exposita, Peano publishes the I 
Principii Di Geometria Logicamente Esposti in which he attempts to apply his method in 
Geometry as well. In 1897, at the 1st World Mathematical Congress in Zurich, he presented his 
papers, and claimed to have answered Leibniz's question:  

 
«After two centuries, this “dream” of the inventor of the infinitesimal calculus has 
become a reality…. We now have the solution to the problem proposed by Leibniz. I 
say “the solution” and not “a solution”, for it is unique. Mathematical logic, the new 
science resulting from this research, has for its object the properties of the operations 
and relations of logic. Its object, then, is a set of truths, not conventions.» (Kennedy, 
2002) 
 

While Peano's international exposure was mainly at the 1900 Conference in Paris where 
his school dominated the discussions, it then focused on constructing a technical language as well 
as teaching.  

It is obvious that the two mathematicians started from a different starting point and with a 
different goal. Peano's main goal was to apply a symbolic language to a theory, within the 
framework of formal logic, while Dedekind was interested in the foundation of Arithmetic, 
something he had been studying and discussing for about 17 years. Their work presents the same 
theory with different methods of approach. It is possible that Peano knew Dedekind's studies and 
used them to apply his method of translating a mathematical theory into symbolic language. What 
is certain is that after the publication of Arithmetices principia, nova methodo exposita, Peano 
read Was sind und was sollen die Zahlen?, given that he "omitted" four of his original positions, 
resulting in 4 of the final 5 to being similar to those of Dedekind. As well as that he went into the 
process of explaining why he does not consider it necessary to get involved in trying to grasp the 
meaning of number, something that did not seem to bother him in its original version. 

One of the main differences between the two texts is the definition of number. While 
Peano insists on the non-necessity of definition, Dedekind creates a new concept, that of the 
chain, aimed at definition in set theoretic terms. Another important difference between the two 
texts has to do with mathematical induction. While Peano accepts it as an axiom, Dedekind 
presents it as a theorem, which he proves. 

 Finally, I think it is remarkable that although the names of both mathematicians are 
inextricably linked to Number Theory, and while Peano mentions Dedekind in both the 
Arithmetices principia, nova methodo exposita and Rivista di matematica 1, Dedekind makes no 
mention of Peano, not even to the introduction of the third edition of his work in 1911, 27 years 
after first edition and 22 years after the publication of Arithmetices principia, nova methodo 
exposita. And last but not least, no evidence was found to prove any meeting of the two 
mathematicians nor any attempt to communicate each othter, in any way. 
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Abstract

There has been a resurgent interest in formalizing the notion of ‘algorithm’. In this
paper, I discuss the relation between algorithms and computations, point to some tensions
inherent in our informal concept of an algorithm, and discuss some trade-o↵s between
competing desiderata for any proposed formal definition.

1 Introduction

The idea of an algorithmic procedure is almost as old as mathematics itself (see, e.g., [3]). Never-
theless, despite the long-standing prevalence of algorithmic methods in mathematics, attempts
to formalize the concept of an ‘algorithm’ itself are relatively recent, and they are mostly a
spin-o↵ from the impressive conceptual advancements in understanding how to demarcate the
computable functions. As is well known, this understanding came about as the result of seminal
work in the 1930s, by Turing, Gödel, Church, Kleene, Rosser, Herbrand, and others.

The formalisms of Church, Rosser and Kleene (�-calculus), Gödel and Herbrand (general
recursion) and Kleene (µ-recursion) were soon proved equivalent and turned out later to capture
what we now consider the correct class of number-theoretic computable functions. However,
from a conceptual point of view, these particular formalisms lacked convincing power regarding
their completeness, for there seemed to be no compelling reason why (e.g.) the general recursive
or the �-definable functions would include all and only those functions that can be calculated
by purely mechanical means. A great reluctance to accept Church’s thesis (in this form) was
expressed by Gödel’s famous comment to Church that such approaches were “thoroughly unsat-
isfactory”. The situation changed radically when Turing’s [19] analysis came along, which fo-
cused on the process of computation itself, by breaking it down into its conceptual constituents;
this provided a low-level analysis of what can (and cannot) ultimately be achieved by purely
mechanical and elementary steps, carried out by an (idealized) human agent. Turing’s analysis
was widely conceived as conclusive, and the Church-Turing thesis (CTT) became a universally
accepted foundation for computer science, and especially computability and complexity.

The fact that Turing’s analysis focused on the process of computation, together with the
(seemingly innocuous) tacit assumption that what is meant by a “mechanical process of com-
puting a function” (aka “e↵ective procedure”) coincides with what is meant by “execution of an
algorithm” led to the widely held view that the CTT and the Turing Machine (TM) formalism
explicate the notion of algorithm. As a result, this view has become part of the folklore of logic
and computer science (CS).1 However, Turing does not mention ‘algorithms’ at all in [19], and
while Church [4] does use the term, he is not concerned with the process of computation itself
(only with the extension of the concept of ‘computable function’). In actual fact, then, the
1930s developments did not concern the (intentional) concept of algorithm per se but solely the
demarcation of the class of computable functions (which is an extensional concern).

1
See, e.g., [16, 3,102] and [11, 246] for two examples of this view being clearly articulated.
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When did the interest in the idea of algorithm itself come along? Markov’s [12, 13] seem
to be among the very first works that claimed to define ‘algorithms’. But Markov’s definition
was a narrow one (not too di↵erent from a Turing program), unable to capture the informal
notion in its generality. But, without an intentionally good definition of algorithms, it was still
a conceptual possibility that one could follow a procedure that is much more permissible than
Markov’s —yet would still seem algorithmic— and get to compute a function that’s beyond the
class of partial recursive ones. To rule out such scenarios Kolmogorov and Uspenskii (K&U)
set out to give the first full-fledged formal definition of algorithms, in a work so influential [10]
that some of the ideas it introduced are still found today (even implicit) in almost every work
in the area. But what is exactly the relation between algorithms and computable functions?

2 Algorithms and computation: A marriage made in heaven?

Computability is a semantic notion. A function is computable if it is such that its values
can be identified by a process of computation; that is, by following a mechanical procedure.
But the process of computation is syntactic and symbolic. In carrying out a computation, an
agent (human or otherwise) deals with concrete entities (symbols on paper, physical voltages,
etc.). Insofar as algorithms are understood as specifying mathematical computations, then,
they specify procedures over symbols. Shapiro echoes exactly this view:

Mechanical devices engaged in computation and humans following algorithms[..] do
not encounter numbers themselves, but rather physical objects such as ink marks
on paper. Since strings are the relevant abstract forms of these physical objects,
algorithms should be understood as procedures for the manipulation of strings, not
numbers. ([18, p.14]; emphasis added)

Thus, on a view that sees algorithms as specifying actual computations, algorithms are pro-
cedures for manipulating symbols and, hence, synonymous to e↵ective procedures. They are
tightly interlocked with the representations of the data they operate upon. Given some vocabu-
lary and a representation of the input by strings of symbols from this vocabulary, an algorithm
is a stepwise procedure for combinatorily manipulating these symbols and obtaining a result,
which is a representation of the computed function’s output. Since a schoolchild in ancient
Rome would be taught a di↵erent combinatory sequence of steps for multiplying two 3-digit
integers from a schoolchild in ancient Greece (owing to the di↵erent notation systems), the two
children would have mastered di↵erent algorithms for obtaining the product of two numbers
(and the same holds for multiplying two integers today in, say, decimal and binary notations).

This presupposition is clearly seen embedded in Markov’s as well as in K&U’s approach
to defining algorithms: “Without fixing a standard way of writing numbers, to speak of the
algorithm computing [the value of a function from its input] would make no sense.” [10, fn.2].
What is more, if one goes further and simply identifies algorithms to Turing programs, then
the above presupposition becomes also reflected in the dominant contemporary approach to
real computability, in terms of Type-2 Turing Machines (TTE) [21]. As some key results in
this area indicate, when Turing computations are extended to uncountable domains (such as
R) computability of functions acquires a strong dependence on the employed representations.2

The strong association of algorithms with computation has placed the concept of ‘algorithm’
at the heart of computer science. Since it is indeed a dominant view that algorithms specify

2
For example, there is no (Type-2) Turing machine —hence no algorithm either— that computes the function:

g(x) = 3x (g : R ! R) on the decimal representation. Yet, the same function is (almost trivially) computable

on the base-3 representation.

2
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computations, statements about specific properties of algorithms (including existence) are sta-
ples in areas such as computability and complexity theory. Consider, e.g., assertions like “there
is no algorithm that decides the validity for any first-order sentence” or “if P 6= NP, there is
no algorithm that solves the Boolean satisfiability problem in polynomial time.”

3 The third in the marriage: Mathematical practice

Despite the well-received view of algorithms and computations as being tightly interlocked,
one quickly notices non-negligible conceptual problems. The view of algorithms as specify-
ing computations does not quite square with prominent uses of the term in certain areas of
mathematical practice. To wit, recall that algorithms have also been the subject-matter of the
long-standing field of numerical analysis. Numerical algorithms concern continuous problems,
and their purposes, very often, include identifying (exactly or approximately) solutions of (sys-
tems of) equations, guiding linear interpolation, etc. Typical examples include the bisection
method, least-squares fitting, Gaussian elimination, Newton’s method, and many others.

It does not seem natural to say that algorithms like the aforementioned specify computations
(i.e., syntactic procedures) in the same sense that we saw in the previous section. They definitely
do not specify exact sequences of steps to the smallest detail, in the sense that any specified
sequence would have to change, had the employed notation (or representation) changed as well.
Rather, numerical algorithms are developed and analyzed without any consideration of notation
or representation, and they are naturally thought of as each one possessing a natural structure
and identity of its own; a structure and identity that are invariable under changes in how
data are represented and in what the exact order of operations is.3 This attitude toward the
fundamental idea of an ‘algorithm’ is an explicit motivation behind the Blum-Shub-Smale (BSS)
model of real computability [2] as well as Moschovakis’s foundational approach to algorithms
(e.g., [14, 15]). As L. Blum puts it:

We want a model of computation which is more natural for describing algorithms
of numerical analysis, such as Newton’s method [..] Translating to bit operations
would wipe out the natural structure of this algorithm. [1, 1028]

Indeed, attending to the long-standing study of numerical algorithms and their purposes
([3], [6]) shows that it would be stretching a point to say that (e.g.) Newton’s method is a
mechanical procedure for pushing symbols around, in the sense found in works on algorithms
like [13], [10], [9], and others. In stark contrast to the multiplication example from above —i.e.,
di↵erent algorithms for di↵erent notations— Newton’s algorithm arguably remains the same
(abstract) entity, regardless of what notation is used or what the exact order of operations is.

One might try to remedy this apparent discrepancy between the two understandings of al-
gorithms just described by saying that numerical algorithms still specify computations, albeit
at some “higher level” of abstraction. That is, they still report mechanical procedures, but by
abstracting away from any particular details of the process (such details can always be filled
in later). But, as usual, the devil hides in the details: consider that a good many numerical
algorithms specify as essential steps comparisons between real numbers; think, for example,
the bisection algorithm. This creates a conceptual gap between numerical algorithms and ac-
tual mechanical computations, because comparing two reals is in fact not e↵ectively decidable.
More precisely, comparisons (and identity) are not decidable by a (Type-2) TM [21]; they are

3
This holds also for CS algorithms; think, e.g., of the Mergesort algorithm. But, for reasons that will only

briefly be touched upon here, the case for numerical algorithms is stronger, because the existence of their natural

structure is orthogonal to whether they are realizable by a TM (which is not the case with CS algorithms).

3
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only (negatively) semi-decidable. As a result, if we adopt an extended version of the CTT
(an ‘Uncountable-CTT ’) to the e↵ect that “the e↵ectively computable real-valued functions
are exactly the functions that are computable by a Type-2 TM” —which is a very natural
assumption—, then most numerical algorithms will turn out not to be e↵ectively computable.
This indicates that the link between algorithms and e↵ective procedures/mechanical compu-
tations has to be severed. But now a fundamental question arises: how, and to what extend,
should the above considerations be taken into account by any attempt to define algorithms?

4 A tension in definitions: inclusive or specialized?

Mathematical definitions often face challenges imposed by a strong tension between generality
and inclusiveness on the one hand and domain-specific fecundity on the other. Regarding al-
gorithms, we have, on the one hand, the desire to include under some unified formal concept
both algorithms over countable and uncountable domains; in particular, both e↵ective proce-
dures and numerical algorithms; but, ideally, the definition might also go some distance toward
subsuming additional related notions such as parallel algorithms and geometric constructions,
so that a uniform study of all these notions could become possible. This desideratum for in-
clusiveness pushes in the direction of a formal concept that is as abstract as possible. More
specifically, we would like to have a formal explicatum of ‘algorithms’ such that: (a) the identity
of any algorithm is not essentially dependent on the representations of the data it operates upon
or on the finest-grained details of its evolution (so it is not essentially a↵ected by implemen-
tation details); (b) it lends itself to a spectrum of primitive operations of variant strengths (a
desideratum that is best served by a model/structure/level-theoretic view of algorithms, since
in that case a step can be any primitive operation defined as such by the model/structure/level
itself); (c) it retains its applicability to particular domains, so it does not contradict funda-
mental results of the more specific instances of the same concept (i.e., it should preserve basic
theorems of computability theory or of numerical analysis). The formal approaches by Blum et
al. [2], Gurevich (e.g., [7, 8]), and Moschovakis (e.g., [14, 15]) all satisfy the first two conditions,
for they all o↵er formal concepts that are representation-invariant and level-relative (though
not necessarily e↵ective), trying purposely to capture algorithms that go beyond Turing pro-
grams, while TTE is mainly the only model with a wide scope (it applies to both countable
and uncountable domains) which satisfies (c) (though it does not satisfy a and b).

On the other hand, the desire for the formal counterpart to be such that it lends itself to
interesting relations with well-entrenched concepts pushes in the direction of a formal concept
with a significantly narrower domain of application than in the previous case. More specifically,
we would like to have a formal explicatum of algorithms such that (a0) it retains as much as
possible the intentional character of the informal processes it purports to formalize; (b0) more
importantly, it would feature in deep theorems and connect to other well-established concepts,
such as those from complexity theory. Formal approaches like K&U machines [10], (ordinary or
Type-2) TMs [21], and BSS machines [2] are successful models in these regards but, predictably,
each one meets only one of the two conditions and in a particular domain. As I discuss next,
K&U fares better in (a0) and applies to discrete algorithms, while BSS and (ordinary or Type-2)
TMs fare better in (b0) and apply solely to either discrete or real algorithms but not both.

5 How the existing definitions meet the di↵erent needs

A main upshot of the above discussion is that it seems a Herculean task to find a formal
explicatum of ‘algorithms’ that respects all our intuitions and expectations together. This is

4
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not an unusual situation in logic and mathematics. In many other cases, however, a certain
formal concept among the rivals (capturing some of what we consider the essential features of
the intuitive idea) catches on and becomes the “orthodoxy”, on account of being successful in
providing interesting results (‘continuity’ being a case in point). But in the case of algorithms
most formal frameworks have been fruitful already, even though some of them are genuinely
incompatible (e.g., TTE vs. BSS).

The way I see the situation, then, is that ‘algorithm’ is a cluster concept; this means that
in order to be able to give preference to any particular framework, the community first needs
to have decided on which intuitions and goals to prioritize. In what follows, I will consider
some of the (conflicting) intuitions and possible di↵erent goals. Undoubtedly, there are many
intuitions about algorithms that most mathematicians would agree on. Here I will focus only
on those that I think practitioners might rather disagree.

Symbolic vs. Abstract : Is the identity of an algorithm relative to the vocabulary of symbols
it operates upon? For example, by changing from a decimal to a binary notation, would we have
di↵erent algorithms of (say) multiplication or one algorithm with di↵erent implementations?
At its heart, the question concerns the extent to which the precise sequence of steps bears on
the identity of an algorithm. Based on common informal characterizations of algorithms in
logic texts (commonly to the e↵ect that “an algorithm is a precise, step-by-step procedure...”)
any di↵erence in the exact sequence of steps (caused by the di↵erent notations) would give rise
to a di↵erent algorithm. But based on the (also) common practice of assigning specific names
(e.g., ‘Euclid’s algorithm’) and properties (e.g., asymptotic running costs) to various algorithms,
“small variations” in steps should not a↵ect the algorithm’s identity. To give an example of
what is at stake: in sequentially executing a Mergesort, does the algorithm change if we
stipulate that the left-most possible merge operation is to be executed first (and the right-most
one second) or if we stipulate the opposite? Intuitively, we might want to say that it is always
the same algorithm, which is just implemented di↵erently; so algorithms are abstract objects
in a sense. But, then, such an abstract notion with no additional constraints may be too broad
to underpin algorithmic analyses, for, it may allow of “algorithms” that trivially accomplish
complicated tasks within just one step.4 This is because, in practice, the way to exclude
such unrestricted cases is by assuming that the algorithms that are suitable for underpinning
complexity analyses are those that are easily couched in some formal model of computation ([5])
from the first machine class (fn.5). But this leads us back to granting conceptual priority to
machine models, i.e., entities that have sensitive dependence on notational choices. The formal
concepts of (Type-2) TMs, K&U machines, ASMs (Gurevich), BSS machines (Blum et al.)
and recursors (Moschovakis) tackle these questions di↵erently. But there seems to be no way
of ranking our preferences for these concepts on the basis of how well they address the above
questions, unless one has already decided on answers to the above questions pre-formally.

Absolute vs. Relative: Are algorithms absolute entities, whose existence is a yes-or-no mat-
ter, or relevant with respect to some structure/model/level of abstraction, whose existence
is dependent on the defined primitive operations over the stipulated entities in the struc-
ture’s/model’s/level’s universe? While a choice on this matter may have no significant bearing
on algorithms over countable domains, it does make a di↵erence in the case of uncountable
domains, for the latter approach may give rise to algorithmic steps that even involve infinitary
labor on a symbolic configuration within one step —e.g., a complete operation between two
irrational numbers— and to functions that would be deemed algorithmically computable with-

4
Consider a TrivialSort(B) algorithm for sorting a list B, whose sole instruction reads: “Return sort(B)”.

The unique step of this algorithm is e↵ective (since e↵ective sorting algorithms exist) and the algorithm is very

e�cient (running time is O(1)). Clearly this is an undesirable “algorithm” for purposes of algorithmic analysis,

for, if accepted, it would lead astray our analyses of the complexity of sorting tasks. The example is from [5].
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out being e↵ectively computable (an example is the floor function). A related dilemma has to
do with the notion of an algorithmic step, and whether any such step is required to be “local”
in the sense of some pre-fixed suitable metric or just in relation to the stipulated primitive
operations within the given structure/model/level in which the algorithm lives. TMs (ordinary
and Type-2) and K&U machines can be seen as formalizing an “absolute” view of algorithms
and steps, while BSS, ASMs and recursors can be seen as capturing a “relative” view.

Turning now to trade-o↵s between goals, it seems di�cult to single out a formal explicatum
on hopes that it would be responsive to all the linguistic and technical practices in mathematics
and computer science. An important issue is complexity theory. Can we single out a formal
explicatum that would underlie a unified complexity theory for both computer science and
numerical analysis? To answer, consider that in computational and mathematical practice we
grant (discrete and numerical) algorithms intrinsic asymptotic running time costs. As Dean
[5] notes for the discrete case (but also holds for the numerical one), such asymptotic costs
must be preserved by any particular machine model that aspires to formalize these algorithms.
Ordinary TMs (or equivalent models) satisfy this condition for the discrete case. Therefore,
such models support a rich theory of classical complexity and a network of powerful theorems.
But the TM model is too narrow to express algorithms in their generality, and it violates the first
two inclusiveness desiderata from above (a and b).5 And when it comes to computations over
uncountable domains, although the TTE-framework o↵ers also a relevant complexity theory for
real computation [21], it is however too “low-level” to be naturally used by practitioners [17].
Recall after all that Type-2 TMs cannot compute comparisons between reals, which are staples
in numerical algorithms. Finally, the BSS formalism, which accepts highly-idealized TMs that
operate on exact real numbers as unanalyzed entities in an algebra (so it permits comparisons
in a single step) does provide a rich complexity theory for numerical analysis (so it satisfies a,
b, and c0). But a BSS machine is far too powerful to be a first machine class, so it cannot be a
formal concept that relates to the concepts of classical complexity theory for discrete problems.

The upshot is that formal concepts that turn out to be successful in theorem-generation (in
particular, those that support a rich complexity theory in some particular domain) achieve this
goal at the expense of generality, violating either (a) or (b) or even (c). On the other hand,
Gurevich’s and Moschovakis’s frameworks fare much better at the generality desideratum. But,
as Dean [5, p.54] notes, their achieved generality comes at the cost of severing the foundational
link between the practice of informal algorithmic analysis (concerning discrete algorithms) and
the complexity costs of first class machine models.

6 Conclusions

I have proposed that there is no unambiguous and uniform way in which the concept of algo-
rithm functions in mathematical and computational practice. Consequently, there is no unique
informal concept that could serve as the yardstick by which we evaluate the success of the formal
concepts purporting to explicate it. The inherent tensions in our long-time use of algorithms
can be alleviated by deliberately sharpening the informal concept in advance. And yet there is
a number of di↵erent ways of trading o↵ inclusiveness against strength of results, which makes
it possible that in the end we will have more than one formal notion of ‘algorithm’ established
in the theoretical and practical discourse.

5
In fact, the situation is worse, because there are additional restrictions for those TMs that found complexity

classes. Such machines form an (equivalence) class, called the first machine class, which imposes restrictions on

the computational power of its members. First machine class models must be powerful enough to handle repre-

sentation of numbers in binary, but no so powerful as to allow parallel computations with arbitrary branching

(see [20]). As it becomes apparent, this pushes even stronger in the direction of a specialized formal concept.
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Abstract

In this paper, I will present the motivation for using non-monotonic rule-based logical program-
ming to model legal reasoning and its main limitations caused by the notion of truth in legal practice.
I use Answer Set Programming (ASP) as a toy example of such programming methods. In §1, I intro-
duce the origins of the problem of modelling legal reasoning using logic and the basics of ASP. In §2.1,
I argue why legal reasoning can be construed as rule-based reasoning focusing on the subsumptive-
deductive character of the former. In §2.2, I demonstrate how non-monotonicity can model defeasible
reasoning and the presumption of innocence - both inherent core characteristics of legal reasoning.
Moreover, in §2.3, I contend that rule-based logical modelling is one of the few programming methods
that render modelling of legal reasoning useful for legal practice, in contrast with more popular and
e�cient black-box AI methods. Moving to §3, I focus on the most persistent and critical limitations
to the proposed modelling method induced by the conception of truth in legal practice; that of inter-
pretation and the notorious in normative logic(s) (?) Jørgensen’s dilemma. Finally, in §4, I conclude
on the future direction of the proposed modelling method.

Keywords: rule-based logical programming, non-monotonicity, legal reasoning, subsumption, de-
feasible reasoning, interpretative concepts, Jørgensen’s dilemma, explainable models - XAI

1 Introduction

The idea of using logic to systematize legal reasoning precedes the Fregean revolution of formalising
logic and the burst of logical systems that spawned from it. Probably the most characteristic such e↵ort
was Christopher Columbus Langdell’s1 “Selection of Cases on the Law of Contracts”2 in which Langdell
construes Law as a logical system of principles and doctrines like any “proper” science. Langdell’s ideas
were immediately met with criticism with some even characterising them as “logical theology” [17]. Oliver
Wendell Holmes3 - one of the most prominent Langdell critics - contended that “[t]he life of the law has
not been logic; it has been experience.”. Particularly, Holmes argued that since Law is shaped by moral,
political, and historical factors, it can not be “dealt with as if it contained only the axioms and corollaries
of a book of mathematics”. There is something more to it. The gist of his criticism is perfectly summed
up in Susan Haack’s article about that debate: logic is for legal reasoning “something, but not All” [17].

It has been more than a century since Langdell’s ideas, and the debate regarding the logical for-
malisation of legal reasoning is still going on. Two pivotal points in that debate have been: (a) the
realisation that a formal logic of norms4 - if it is even possible - would di↵er from the classical formal
logic of propositions. Jørgensen’s 1937 paper “Imperatives and logic” ([19]) is usually the reference point
of the dichotomy between a logic of norms and a logic of propositions.; (b) the emergence of symbolic

1C. C. Langdell (1826-1906) was an American jurist, academic and the first Dean of Harvard Law School [20, 17].
2According to [17], the first edition was published in 1871. A more contemporary publication of the last edition is [21].
3O. W. Holmes (1841 – 1935) was a U.S. Supreme Court Justice [17] and one of the most influential American legal

scholars of the 20th century (the third most-cited one) [30]
4Laws can be construed as norms. What di↵erentiate them from other norms (e.g., ethical ones) is that they are binding

[32].



logical programming that was aspiring to simulate human expert reasoning. In [25] published in 1988 -
one year after the first-ever International Conference on AI and Law (ICAIL-1 ) - one can already find a
substantive review of the pros and cons of logical programming of legal reasoning. The reader can have a
look at [29] published in 1986 for an elaborate e↵ort of formalising the British Nationality Act using the
logical programming language of Prolog. In this position paper, I weights in on contemporary aspects of
that debate taking a clear stance in favour of the use of non-monotonic rule-based logical programming as
a modelling method of legal reasoning. Despite that, in §3, I concede that Haack is still right; rule-based
modelling characterises some parts of legal reasoning, “but not All”.

1.1 Answer Set Programming (ASP) as a rule-based logical programming
method

To make my case, I will use as an example a particular rule-based logical programming method that
has actually been used to model legal - and normative in general - reasoning (see e.g., [6, 12, 23]), that
of Answer Set Programming (ASP). In the classical “vanilla” ASP, a programme ⇧ is a set of rules of
the form head :- body., where head is an atom a and the body consists of combinations of literals Li,
where each Li can either be an atom a or its default negation not a [13]. The default negation of a can
be construed as the case in which we have not proven yet that a is the case, while the classical negation
(symbolized as -a, where -a is also an atom in contrast with not a) can be construed as the case in which
we have actually proven that a is not the case [2, 12]. An atom a (or its classical negation -a) is said to
be proven whenever it appears to the head of rule whose body is satisfied. When we have the edge case
where body(rule) = ; (i.e., a:-. or its shorthand a.) a is always proven. Hence, we call rule a. and the
atom a itself a fact.

For every programme ⇧, its output is the stable model of ⇧, where a stable model can be construed as
a regular logical model of ⇧ which includes only those atoms which have been proven. Or alternatively,
a stable model of ⇧ can be construed as the ✓ �minimal model of all logical models compatible with
⇧ [13]. ⇧’s stable (or ✓ �minimal) models are called answer sets. Since facts a. and -a. are always
proven, the facts of a programme ⇧ necessarily belong to any answer set of ⇧. For instance, assume the
programme ⇧1 := {a:-b.,b}. Since b is a fact it has to belong to any model of ⇧1. At the same time,
since the body of a:-b. is satisfied, then its head (i.e., a) has also to belong to any model of ⇧1. Since a
and b are the only atoms proven, the answer set of ⇧1 is AS1 = {a, b}.

Finally, apart from atoms, ASP syntax has predicates of arity n (e.g., loves/2 is a predicate with
arity 2) and variables which in contrast with atoms start with capital letter (e.g., Person is a variable
and person is an atom). A predicate whose arguments are atoms is also considered an atom (e.g.,
loves(achilles,patroclus) is an atom). Those details of ASP syntax are enough to make my case in
the arguments that follow.

2 Modelling legal reasoning: why ASP

2.1 Legal reasoning as rule-based reasoning

The construal of legal reasoning as rule-based reasoning is quite common in the literature [5]. One
way to perform such a construal is to view a legal inference as an inference whose premisses consist of
both particular facts and general rules [22]. Let us borrow an example of such a rule from [16, p.679]: “If
x lives in Italy for more than 183 consecutive days over a 12-month period, then x is obliged to pay taxes
in Italy on their worldwide income.”. What gives the aforementioned rule a character of generality is that
it is applicable to any x that belongs to the concept C1 :=“living in Italy for more than 183 consecutive
days over a 12-month period”.5 In the particular case where x = Alice, we have the following inference:

5According to MacCormick in [22], C1 should have been considered a predicate and not a concept. However, I would like
to stay as ontologically neutral as possible, and hence, I construe C1 as a concept assuming that a concept is a more general
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Example 1.
(n1) If x lives in Italy for more than 183 consecutive days over a 12-month period,
then x is obliged to pay taxes in Italy on their worldwide income.

(general rule)

(p1) Alice lives in Italy for more than 183 consecutive days over a 12-month period. (particular fact)
(n2) Alice is obliged to pay taxes in Italy on their worldwide income. (conclusion)

As MacCormick argues [22], Example 1 is a subsumptive-deductive inference: the particular fact in (2) is
subsumed by the general concept C1 of (1), and hence, we end up with the normative inference (3).

Let us see now how we can model Example 1 by using rule-based programming. A rule-based model
is a model that consists of rules �(x) )  (x) and facts �(a), where �,  , � are propositional functions,6

x is a variable and a is a term without free variables. Whenever �(a) is true, then for every rule i of the
form �(x) )  i(x) we have that  i(a) is true [16]. When they appear in the code of a programme ⇧, rules
model norms and facts model propositions [16]. Specifically, �(x) )  (x) is interpreted as “Whenever
�(x) is the case, then  (x) should be the case.” and the fact �(a) is interpreted as “�(a) is the case.”.
Usually, the output has only facts like  (a). In the output (not in the programme), those facts can be
interpreted as norms: “According to the programme ⇧, the fact  (a) must be the case.”. Let’s see now
a modelling of Example 1’s inference using rule-based programming:

Example 1 (Continuing Example 1 from p.3). Assume that  (x) :=“x pays taxes in Italy on their
worldwide income.”, �(x) :=“x lives in Italy for more than 183 consecutive days over a 12-month pe-
riod.”. Then, a rule-based model of the subsumptive-deductive inference in p.3. would be the following:
Mtaxes := {�(x) )  (x),�(Alice)}. Its output is outputMtaxes = { (Alice)}. In the lingo of ASP,
this model can be written as ⇧taxes := {taxes2Italy(X):-italy183(X)., italy183(alice).} where
“taxes2Italy” is used in the place of “ ” and “italy183” is used in the place of “�”. Its answer set is
AStaxes = {taxes2italy(alice)}.

2.2 The non-monotonicity of legal reasoning

A distinctive characteristic of ASP is that it is non-monotonic. Non-monotonic logic can be summed
up in the following way: assume that you have a set of premisses P and from them, you can infer a set of
conclusions C. In non-monotonic logic, if you add more premisses p1, p2, ...pn to P , there is a possibility
that C will change. This is not possible in logics like classical propositional logic or classical first-order
logic which are both monotonic [12, 34].

Non-monotonicity is necessary for incorporating in our model the presumption of innocence which
is central in the legal tradition of liberal democracies [35]. Specifically, in every trial, the proposition
p :=“The defendant is innocent.” is considered a true conclusion of the facts of the case F by default.
However, the Court may update its facts - e.g., the Court may accept DNA evidence f against the
defendant - and based on that evidence, the truth value of p may change. The change of p’s truth value
(i.e., claiming that F |= p, but F [ {f} |= ¬p) can only happen if we allow for non-monotonic inferences.

Let us have a look on how ASP can incorporate that rationale. Assume two ASP programmes ⇧innoc

and ⇧guilty respectively:

innocent:- not evidence. innocent:- not evidence.
guilty:- evidence. guilty:- evidence.

evidence.

⇧guilty = ⇧innoc [ {evidence.}, i.e., ⇧guilty includes all the premisses of ⇧innoc. However, its answer
set is di↵erent than that of ⇧innoc: ASguilty = {guilty} 6= ASinnoc = {innocent}. Hence, the non-
monotonicity. What allows the non-monotonicity in this example is the default negation of evidence.

notion than that of a predicate. Moreover, in §3.1, I introduce the problem of interpretation which is a problem about legal
concepts. Hence, I have to introduce the notion of “concept” in my ontology and its role in legal reasoning before describing
a problem about it. The literature I use in my construal of legal concepts and the problem of interpretation is: [9, 28, 33].

6Their arities can vary.
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Specifically, in ⇧innoc, evidence is not a fact, and hence, it is considered negated by default; if there are
no proven evidence of the contrary, we assume that the defendant is innocent. However, once we have
proven evidence of his guilt (i.e., once we include the fact evidence.), evidence is no longer negated by
default and consequently, the defendant is guilty.

Apart from the presumption of innocence, what makes non-monotonicity vital for the modelling of
legal reasoning is that it allows us to model the defeasibility of the involved rules. Specifically, there are
always situations in which although prima facie the facts of a case fall under the general concepts involved
in a given rule, that rule is not applicable after all (it is “defeated”) [16]. Ganascia [12] gives such an
example using Kant’s landmark example about categorical imperatives:7

Natural Language Answer Set Programming
John is hiding. proposition(john_hidding).
If O.J. finds John, he will murder him. person(oj). consequences(know(oj, john_hidding), murder).
Lying about John’s hideout is immoral. immoral(lie(P, PP)) :-

person(P), proposition(PP), not non_deserve(P, PP). #show immoral/1.

output: immoral(lie(oj, john_hidding))

In the “Natural Language” column, one can see the Kantians’ argument: lying to O.J. is immoral, even
if by saying the truth John would be murdered. Indeed, the answer set of the ASP model of the natural
language sentences contains the atom immoral(lie(oj, john_hidding)), whose semantical interpreta-
tion is that it is immoral to lie to O.J. about John’s whereabouts. Kant critics though would argue that
lying should be acceptable if saying the truth leads to undesired consequences, like John’s murder. This
objection can be incorporated into the ASP programme of the “Answer Set Programming” column by
adding the following code:

immoral(A) :- consequences(A,murder), non_deserve(M, N).
non_deserve(P, PP) :- person(P), proposition(PP), consequences(know(P, PP),murder).

new output: immoral(know(oj,john_hidding))

The additional code makes the atom non_deserve(oj, john_hidding) true, while previously it was
false by default. While it was false by default, the body of the rule immoral(lie(P, PP)):- person(P),
proposition(PP), not non_deserve(P, PP). was satisfied (see the red-lettered not in the initial ASP
programme). But now that is not the case. Hence, the atom immoral(lie(oj,john_hidding)) is no
longer proven and hence, it is not contained in the new answer set. At the same time, due to the new rule
immoral(A):- consequences(A,murder), non_deserve(M,N)., the atom immoral(know(oj,john_hidding))
becomes a fact and therefore, it is included in the new answer set. I.e., now it is not immoral to lie to O.J.
On the contrary, what is immoral is O.J. learning about John’s hideout. This case of deafisibility can be
construed either as a case of conflicting rules (e.g., the rule of “not killing” conflicting with the rule of
“not lying”) leading to the defeasibility of the rule whose harm is the “lesser” of the two (lex inferioris).
Or as a case of exclusionary rules, i.e., certain cases of lying are excluded from the rule of “not lying” and
the foregoing situation is such a case [16].

2.3 The necessity of explainability

In both chapters §2.1 & §2.2, my justification for the use of non-monotonic rule-based logical pro-
gramming as a modelling method of legal reasoning is based on its resemblance to the experts’ reasoning
process (e.g., defeasible reasoning, subsumption). A reasonable objection to that approach is to question
why that resemblance is a valid justification in the first place. Why not to use other AI methods that do

7The fact that Ganascia’s example is about ethical rules does not make it irrelevant to legal rules. Legal rules can be
construed as special cases of ethical rules [33].
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not resemble the experts’ reasoning - like the supervised machine-learning method of SVM (see e.g., [4])
- which are more widely used, have better accuracy, and are less computationally complex [1, 15].

I do not doubt that there are applications in which such alternatives would actually be a better mod-
elling option. Having said that, in a large number of possible applications their practical importance is
essentially zero.8 Prima facie, that sounds like a very bold statement. But is it not. I will provide two
arguments for my claim:

(2.3.1) In legal practice, the truthfulness of an inference like p :=“The defendant is innocent.” is grounded
on the authority of a particular group of legal experts which is authorised by law. E.g., in a criminal trial,
it is the judges that have the authority to decide the truthfulness of p and not e.g. the lawyers of the
defence and the prosecution. In other practices though, like the practices of empirical sciences or medical
practice, the truthfulness of a proposition is independent of the beliefs of any group of domain-experts; a
patient has cancer independently of whether the doctors agree or not. In other words, in legal practice,
truth is established by a group of authorised experts in virtue of their authority, while in other practices
truth is pre-exists in an expert-independent reality (ordo essendi9) [3].

This distinction has the following consequence: in most practices, an algorithm is practically useful
as long as its output coincides with the ordo essendi independently of whether it resembles the experts’
rationale since that rationale does not have any influence on the ordo essendi. We may even end up with
algorithms whose performance is higher than that of the experts since the experts’ rationale may not be
the optimal way to discover the ordo essendi. This can not the case in legal practice. The authorised
experts’ reasoning is the optimal way to find the truth since, without that reasoning, there is no such
thing as truth. Consequently, when an algorithm substitutes experts that have the authority to establish
a legal truth, then that algorithm “has” the obligation to provide a justification for the truthfulness of
its outputs similar to the justification that the authorised experts would have provided had the algorithm
not substituted them.

(2.3.2) Any automated process used in legal practice needs to be able to be challenged legally. If your
online speech activity is censored by upload-filters,10 you should be able to protest to that censorship, and
the platform employing the upload filters should be able to defend their output. Hence, there needs to be
a justification of why given this specific input (your online speech activity) the algorithm’s output (the
censorship) should be legally acceptable. That justification should have a form that makes it amenable
to evaluation by legal experts - and black-box programming methods like SVM do not satisfy that re-
quirement [1, 15]. How could legal experts argue about complex probabilistic optimization functions? Are
those functions even meaningful at all? Note that this explainability requirement is not simply a unilateral
opinion among legal practitioners, but it has also started being incorporated into o�cial legislation to
protect the public’s interest, as one can see for instance in paragraph 2 of Article 13 of the Genereal Data
Protection Regulation (GDPR) which dictates that the “data-subject” whose data is processed by “auto-
mated decision-making” should be provided with “...meaningful information about the logic involved”
[14, 27].

3 Is truth compatible with rule-based logical modelling?

8For an overview on the applications of AI in legal practice have a look at [24] for the private sector and [10] for the
public sector. The applications for which argument (2.3.1) holds are mostly those of the public sector. The strong hesitance
of the the public sector to adopt AI toolkits is essentially grounded on that argument.

9Term borrowed from [8].
10An upload filter is an algorithm that identifies and regulates unlawful online user-generated data like child pornography,

terrorist propaganda, and hate speech [27].
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3.1 The problem of interpretation

In §2.1, we have seen how subsumption works in the rule-based modelling of legal reasoning: if the
particular facts of a case fall under the general concepts of the rules of a given normative system, we
infer the conclusion that follows from the application of those rules to those facts. In this inferential
schema, we need to distinguish between the inference that follows from the application of the rules to
the facts that they subsume and the decision that those facts are indeed subsumable by those rules.
The latter is a necessary pre-requisite of the former. The decision-making process of the authorised legal
experts deciding whether the facts of a case are particular instantiations of the general concepts involved
in the rules they want to apply is called interpretation [22]. Therefore, for the conclusion of a legal
inference like that of Example 1 to be true, the respective interpretation has to be true. I.e., the truth
of a subsumptive-deductive inference supervenes on the truth of the interpretation. Consequently, if a
model can not decide about the truth of the latter but takes it as a given input, then that model does
not provide a self-contained representation of legal reasoning.

Example 1’s proposed rule-based model ⇧taxes is such a non-self-contained model. One could propose
to expand it to a rule-based model ⇧0

taxes that also incorporates interpretation. To do so, we need to
introduce a new ASP programme ⇧intrp to model interpretation and then define ⇧0

taxes as ⇧0
taxes :=

⇧taxes [⇧intrp. As a rule-based model, ⇧intrp will include rules and facts. The rules will be rules about
whether an atom a (e.g., alice) belongs to the concept C1. That means that we need to include a rule of
the form �1(x) ^ �2(x) ^ ... ^ �n(x) ) �(x) (for the definitions of C1 and �(x) see §2.1). Regarding the
facts of the model, they would be the facts about the atom a that allegedly satisfy the foregoing rules. In
case that indeed a belongs to the concept C1, the answer set of ⇧intrp will include the atom italy183(a).

In order to decide on the rules that determine whether an atom a belongs indeed to a concept C, it
should be the case that there are specific fixed criteria of whether a belongs to C. If that is the case, C
is what is called a criterial concept [33]. Prima facie, C1 is such a concept. Essentially, the criteria of
whether an entity belongs to it are in its name: to belong to the concept of living in Italy for more than
183 consecutive days over a 12-month period one has to live in Italy for more than 183 consecutive days
over a 12-month period.11 However, in principle, legal concepts are not criterial, but interpretative ones:
the criteria under which an entity a falls under a legal concept C are decided each time by a group of the
authorised experts and they are inevitably influenced by their background beliefs - mainly political and
ethical ones [9, 33]. A prime such example is the decision of whether fetuses belong to the concept of
human. Therefore, those criteria are anything but fixed. What should also be noted, is that the influence
of the background beliefs in the interpretation of a concept is not a defect of legal reasoning that legal
experts want to eliminate, but quite the opposite: plurality of background beliefs and the openness to
disagreements is the only way to secure a unilaterally accepted conception of justice, and for some, an
objective one [9, 28, 33]. Concluding, by accepting the thesis that interpretation should be influenced by
the background beliefs of the authorised experts, we concede that there can not be a set of fixed rules
⇧interp. Haack is still right: rule-based logical programming models some aspects of legal reasoning (the
subsumptive-deductive part), but not all of it - at least not the part of interpretation.

Let us see this limitation in an actual example in the ASP literature. Morris [23] used ASP to model
a rule of conduct among legal professionals practicing in Singapore. Inter alia, Morris’ ASP programme
has to model rules that refer to businesses that “...[detract] from, [are] incompatible with, [derogate]
from the dignity of the legal profession...”. Therefore, Morris uses rules that include the predicates
detracts_from_dignity_of_legal_profession/1, incompatible_dignity_of_ legal_profession/1,
derogates_from_dignity_of_legal_profession/1. A business belongs to one of the three aforemen-
tioned unary predicates based on how the authorised experts interpret the word “dignity”, but also the
words “detract”, “incompatible”, and “derogate”. In a colloquial discourse, the latter three words are
often used interchangeably; if an interlocutor had said that a business’ activity detracts from the dignity
of the legal profession instead of saying that it derogates that dignity, we would have considered that they

11One can still come up with borderline cases for which that criterion is contestable. For instance, what if someone was
planning to leave Italy before the 123rd day but could not do so due to an accident?
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meant exactly the same thing. But in legal practice, no words in a regulatory document are redundant;
interchangeability is not possible. This is a prime example of the fine-grained job legal experts have to
do when they interpret and of the inherent inability of ASP to perform such a semantical analysis by
appealing to fixed sets of rules.

3.2 Jørgensen’s dilemma: is a logic of norms at all possible?

In §2.1, I recommended the use of rules to model norms. By doing so, I exposed rule-based logical
programming to the same criticism that any candidate logic of norms face, like the notorious Jørgensen’s
dilemma [3, 16, 18, 31, 32]. Let us have a closer look at it. A logic of norms is basically a logic of
imperatives, where an imperative does not have to be construed necessarily as a grammatical mood, but
as the content of an imperative speech act - like a command [18]. E.g., it can be both s1 =“Don’t do that!”
and s2 =“You ought not to do that!”, where s2 is not in an imperative mood, but it is nonetheless an
imperative speech act whose content is the same as that of s1. Now if we construe a rule as an imperative,
then the premisses of a legal inference consist of both imperative (general rules) and indicative (facts)
speech acts [3, 22]. Hence, for a legal inference to be valid, it has to be the case that whenever those
imperative and indicative speech acts are true, then the conclusion is always true. However, what does
it mean for an imperative speech act - e.g., s1 - to be true? Admittedly, imperatives do not take a truth
value! At the same time though, there seems to be a clear distinction between normative inferences which
are reasonable (e.g., Example 1) and normative inferences which are not (e.g., Example 2):

Example 2. This is an example drawn from Danish philosopher Jørgen Jørgensen’s 1937 “Imperatives
and logic” paper ([19]) in which he introduced the dilemma. The coinage “Jørgensen’s dilemma” was
coined in 1944 by Danish philosopher and jurist Alf Ross in a paper of the same name ([26]) in which he
tried to provide his own answer to the dilemma [32].

1. Love your neighbor as yourself! (imperative)
2. You love yourself. (indicative)
3. Do not love your neighbor! (unreasonable conclusion)

The contrast between the inability of imperatives to take truth values and the intuition that there
is a clear distinction between reasonable and unreasonable normative inferences leads to the notorious
Jørgensen’s dilemma consisting of the following two horns:

i. Logic examines whether from true premisses we can infer a true conclusion. Since some premisses
of a normative inference can not be assigned a truth value (the premisses that are imperative speech
acts), normative inference are not amenable to logical treatment. In other words, there can not be
a logic of norms.

ii. However, (i) seems counterintuitive to many real-life cases of normative inferences like Example
1 which seems a fairly reasonable inference and like Example 2 which seems a fairly unreasonable
inference. In other words, from simple real-life examples, there seems to be a clear-cut way to
logically distinguish between reasonable and unreasonable normative inferences. If that is the case
though, we would have to concede that logic is not limited to examining whether from true premisses
we can infer a true conclusion; it has to be expanded to something more than truth-preservation.

Both of those choices seem costly. If we choose horn (i) and reject horn (ii), then we satisfy the
intuition that logic is about truth-preserving inferences but we reject the intuition that there exists a
logical distinction between reasonable and unreasonable normative inferences. If we choose horn (ii) and
reject horn (i), then we satisfy the intuition that there exists a logical distinction between reasonable
and unreasonable normative inferences, but we reject the intuition that logic is about truth-preserving
inferences forcing us to introduce new metaphysical counterparts of truth (e.g., “valid” inferences next
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to “true” inferences) as well as delineate the relations among all those counterparts (e.g., which valid
inferences are also true inferences).

My personal preference so far is to choose the latter; it is an intuitive decision stemming from the
intuition that there are more metaphysical counterparts to “truth” that characterise inferences. Fox [11]
introduces a logical calculus of such counterparts. For instance, they recommend that instead of saying that
a norm n is true, we should say that a norm n is satisfied by a subject � (n Satisfied�). They label those
notions under the umbrella term “judgements” J (J ::= P True | P False | I Satisfied� | I unSatisfied�,12

where P is a proposition and I is a norm) and they propose a set of inference rules regarding those
judgements. E.g.:

I1 Satisfied� I2 Satisfied�
(I1 ^ I2) Satisfied�

,
P True I Satisfied�

(P ! I) Satisfied�
.

For the reader that wants to look for more alternative solutions to the dilemma, I recommend the following
literature: [16, 18, 32].

4 Conclusion

The arguments in favour of the use of non-monotonic rule-based logical programming to model legal
inference are in no way exhausted in this paper. The same goes for the description of its limitations.
Having said that, I hope that I have convinced the sceptical reader about the current realistic potential
of the proposed modelling method. And if I have not, due to the inevitable necessity for models of legal
inference that resemble the experts’ reasoning delineated in §2.3, I hope I have made a strong case as to
why we should continue pursuing ways to counter the problems that hinter self-su�ciency of that method
- like the problems of interpretation and Jørgensen’s dilemma. For the former, it is my strong belief that
we should look for more reasoning methods - apart from deduction (normative subsumptive-deductive
inference in particular) - to be able to model the decision-making process of when a particular fact is
subsumable by a general rule. For instance, we could use analogical and/or counterfactual reasoning to
compare past cases of applications of the same rule with the current case (appealing to legal precedent)
[7, 5]. As for Jørgensen’s dilemma, I have already stated in §3.2 that my intuition is to generate a logical
calculus for metaphysical counterparts of truth in the meta-language of normative inferences following
Fox’s [11] paradigm. However, considering my current lack of expertise, this may end up being the wrong
way; we will only know if we try.
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in machine learning. Artificial Intelligence and Law, 29:149–169, 2021.

[2] Felicidad Aguado, Pedro Cabalar, Jorge Fandinno, David Pearce, Gilberto Perez, and Concepcion Vidal.
Revisiting explicit negation in answer set programming. Theory and Practice of Logic Programming, 19(5-
6):908–924, 2019.

[3] Carlos E. Alchourrón. Limits of logic and legal reasoning. In Carlos Bernal and Carla Huerta, editors, Essays
in legal philosophy. Oxford University Press, [1992] 2015.

[4] Nikolaos Aletras, Dimitrios Tsarapatsanis, Daniel Preoţiuc-Pietro, and Vasileios Lampos. Predicting judicial
decisions of the European Court of Human Rights: a natural language processing perspective. PeerJ Computer
Science, 2:e93, 2016.

[5] Larry Alexander and Emily Sherwin. Demystifying legal reasoning. Cambridge University Press, 2008.

[6] Theo Aravanis, Konstantinos Demiris, and Pavlos Peppas. Legal reasoning in answer set programming. 2018
IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI), pages 302–306, 2018.

[7] Giorgio Bongiovanni, Gerald Postema, Antonino Rotolo, Giovanni Sartor, Chiara Valentini, and Douglas
Walton, editors. Handbook of legal reasoning and argumentation. Springer, Dordrecht, 2018.

12This is not the complete version of Fox’s Backus-Naur form of judgements J .

8



[8] Willem R. de Jong and Arianna Betti. The classical model of science: a millennia-old model of scientific
rationality. Synthese, 174(2):185–203, 2010.

[9] Ronald Dworkin. Justice for hedgehogs. Belknap Press of Harvard University Press, 2011.

[10] European Commission for the E�ciency of Justice. European ethical Charter on the use of artificial intelligence
in judicial systems and their environment. printed by the Council of Europe, 2019.

[11] Chris Fox. Imperatives: a judgemental analysis. Studia Logica: An International Journal for Symbolic Logic,
100(4):879–905, 2012.

[12] Jean-Gabriel Ganascia. Modelling ethical rules of lying with answer set programming. Ethics and Information
Technology, 9:39–47, 2007.

[13] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. Answer set solving in practice.
2012.

[14] Biyce Goodman and Seth Flaxman. European union regulations on algorithmic decision-making and a “right
to explanation”. AI Magazine, 38, 2017.
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Argumentation: Reasoning Universalis
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Abstract. We examine the question of whether argumentation can form
the basis for any form of reasoning, informal or formal logical reasoning.
We propose that argumentation provides the wider framework encom-
passing uniformly all reasoning with strict or formal logical reasoning
being a special boundary case. We also attempt to link this unifying role
of argumentation with Aristotle’s original investigation into reasoning
and the formation of logical systems.

1 Introduction

Logic is traditionally separated into two forms: Formal Logic at the founda-
tions of Mathematics and Science and Informal Logic as the study of human
reasoning at large. These two forms of logic are generally considered to be very
di↵erent. Yet they are both concerned with understanding the nature of human
thought and, in fact, they share the same roots in Aristotle’s work1. In this work
we are interested in the question of whether formal and informal logic can be
placed under a single framework and, if so, to understand their distinguishing
features. In other words, we are interested in finding a universal form of reasoning
that would be able to capture both informal and formal reasoning. In answering
this question we will also attempt to link our proposal to the origins of the study
of reasoning in Aristotle and how Aristotle’s study can help in forming a unified
view of reasoning. In a sense, the distinction of the two forms of logic seems to
have evolved with the development of these over the last few centuries drawing
them more and more apart.

In order to be concrete we will consider that Formal Logic is represented by
Classical Logic (or simply Propositional Logic). For the case of Informal Logic it
is more di�cult to select a representative example. It is important though to re-
alize that in the study of Informal Logic, within the humanities and particularly
in Philosophy, scholars have been equating informal reasoning with argumen-

tation. The entry on Informal Logic in the Stanford Encyclopedia of Philosophy
(https://plato.stanford.edu/entries/logic-informal/) states:

1 All statements in this paper relating to Aristotle are to be understood as hypotheses
posed by the author in the context of his extremely limited knowledge of Aristotle’s
work. They are therefore subject to disproval by any Aristotelian scholar. They
are made in an attempt to understand how Aristotle, as the first logician and his
general study of systematizing human reasoning, relates to current attempts in AI
to formalize and automate human reasoning.



Though contributions to informal logic include studies of specific kinds or
aspects of reasoning, the overriding goal is a general account of argument
which can be the basis of systems of informal logic that provide ways to
evaluate arguments. Such systems may be applied to arguments as they
occur in contexts of reflection, inquiry, social and political debate, the
news media, blogs and editorials, the internet, advertising, corporate and
institutional communication, social media, and interpersonal exchange.
In the pursuit of its goals, informal logic addresses topics which include,
to take only a few examples, the nature and definition of argument, cri-
teria for argument evaluation, argumentation schemes, fallacies, notions
of validity, the rhetorical and dialectical aspects of arguing, argument di-
agramming (“mapping”), cognitive biases, the history of argument anal-
ysis, artificial intelligence (AI), and the varying norms and rules that
govern argumentative practices in di↵erent kinds of contexts.

One field which studies Informal Logic, in the sense of human reasoning at
large, is that of AI, where the aim to formalize and automate common sense
reasoning was set as an early foundational problem. This resulted in the search
for and development of a plethora of new logics for AI, called non-monotonic

logics, starting with the logic of Circumstantiation for formalizing the Situation
Calculus, a system for common sense reasoning about the e↵ects of actions and
the change they bring about [9]. These new logics aimed to capture the non-
monotonicity feature of human inference recognizing that it should be possible to
abandon, in contrast to the monotonic inference of formal classical logic, earlier
inferences in the face of new relevant information. Non-monotonicity was needed
to render the inference flexible, in the same manner as human do when drawing
inferences, to missing or ambiguous information and tolerant to (apparently)
contradictory information.

Nevertheless, these new non-monotonic logics were developed based on the
same formal and strict underpinnings of Classical Logic making it di�cult to
deliver on their promise of “AI systems with common sense” and “human-like
natural intelligence”. Then in the 1990s, it was shown (see e.g. [1]) that using
argumentation it was possible to reformulate (and in some cases extend) most,
if not all, known logical frameworks of non-monotonic reasoning in AI. This AI
approach to argumentation, sometimes referred to as Computational Argu-

mentation, was motivated and to some extent grounded on earlier foundational
work [19, 13, 14] on argumentation in Philosophy and Cognitive Science. The re-
sult of reconciling non-monotonic logics through argumentation resulted in a
strong focus on Computational Argumentation as a way of capturing human
reasoning in AI along the same frame of interest as that of Informal Logic. For
example, argumentation can provide a principled approach to knowledge repre-
sentation and reasoning about actions and change [12] and applied to problem
of narrative comprehension akin to the way humans perform this task [2].

Similarly, following recent work in the Psychology of Reasoning that strongly
supports the link of argumentation to human reasoning (e.g. [11, 10]) we can syn-
thesize the framework of computational argumentation with cognitive principles



to form a framework, called Cognitive Argumentation, aiming to model hu-
man reasoning in its various forms. This framework has been shown to cap-
ture well the human empirical data from several di↵erent experiments that are
traditionally used in Cognitive Science to evaluate cognitive models of human
reasoning. These empirical evaluation domains include “Syllogistic Reasoning”
with experiments on how humans reason on the original Aristotelian syllogisms,
the “Selection Task” where humans are tested on the way they reason about
conditionals and the “Suppression Task” where the non-monotonic nature of
human reasoning is observed [16–18]. Cognitive argumentation accounts for the
data in a cognitively adequate way that also reflects well the variation of human
reasoning across the population.

We will therefore accept that human or informal reasoning is a matter of
argumentation and ask whether argumentation can also encompass formal logic.
Hence we will be interested in whether argumentation can be given some formal
structure and how this might also cover formal classical deductive reasoning.
We will argue that this is possible so that both informal but also formal logic
can be captured uniformly within the same formal structure of argumentation.
Argumentation is the wider framework encompassing all reasoning with strict
or formal logical reasoning being a special boundary case.

2 Formal Argumentation

Argumentation is a process of considering the alternative positions that we can
take on some matter with the aim to justify or refute a standpoint on the matter.
It can take place socially, i.e. within a group of entities, in a debate where
entities argue for di↵erent standpoints, or within a single entity where the entity
contemplates or reasons internally about the various standpoints on the matter,
in order to decide on its own stance on the matter.

Argumentation has the general form of a dialectical process of (i) starting
with some argument(s) directly supporting some desired standpoint or conclu-
sion, then (ii) considering various counter-arguments against the initial argu-
ment(s) and (iii) defending against these counter-arguments, typically with the
help of other arguments as allies of the initial arguments. The process repeats
by considering further counter-arguments against these new allied defending ar-
guments, until we have formed a coalition of arguments that stands “well”
as a case for the standpoint or conclusion of interest.

We therefore have an “argumentation arena” where arguments attack and
defend against each other in order to support their claims. This arena of argu-
mentation can be captured by a formal argumentation framework which in
an abstract form can be simply given as a tuple, hArgs,ATT i, where Args is a
set of arguments, ATT is an attack (typically non-symmetric) relation between
arguments. Note in this minimal formalization of argumentation frameworks,
ATT , serves both the purpose of identifying counter-arguments but also defense-
arguments, as arguments attacking back (under ATT ) a counter-argument.



Given an argumentation framework we need to formalize, through some nor-
mative condition, the notion that a subset of arguments stands well as a case
of arguments. In fact, the dialectical process of argumentation indicates how to
give a suitable semantics to formal argumentation. The dialectic argumentation
semantics is defined via a relation ACC(�,�0) between any two sets of argu-
ments �,�0. This relation specifies the acceptability of the set of arguments
� under the context where the set �0 of arguments is considered as given and
so a-priori acceptable. Informally, the relative acceptability of ACC(�,�0) is
defined recursively to hold when the argument set � can render all its attacking
(or counter-arguments) non-acceptable in the context of accepting �0 together
with �. This acceptability relation is formally defined as the least-fixed point of
a naturally associated operator satisfying the following (see [5] for the technical
details):

ACC(�,�0) holds, i↵ � ✓ �0, or, for any A such that (A,�) 2 ATT (A
attacks �), A 6✓ �0[�, and there exists D such that (D,A) 2 ATT (D defends
against A) and ACC(D,�0 [� [A) holds.

Then the acceptable or case subsets of arguments are defined as those
that are acceptable in the context of the empty set, i.e. the subsets � for which
ACC(�, ;) holds. Such acceptable subsets of arguments can be computed fol-
lowing the fixed point definition of acceptability. This is illustrated by figure 1.

Fig. 1. Dialectic Acceptability/Non-Acceptability of Arguments

The left hand part of this figure, under the heading of Computational Argu-
mentation in AI, shows this dialectic acceptability semantics in terms of labelled
trees. Red nodes indicate attacking counter-arguments whereas green nodes in-
dicate defending arguments. The termination conditions for the acceptability
(respectively the non-acceptability) of the root argument are shown in terms of
a defense (respectively an attack) node belonging to the branch above it. These



complement the base termination conditions of the non-existence of an attacking
(respectively defending) argument.

3 Formal Logic as a case of Argumentation

This semantics of argumentation was used to reformulate the formal logical
reasoning of classical Propositional Logic in terms of argumentation. Argumen-
tation Logic [8] is defined as a realization of the above abstract argumentation
framework and its semantics. The arguments are made up of sets of proposi-
tional formulae and the attack and defense relations are defined through the
incompatibility between formulae and their negation. It is then possible to show
that Argumentation Logic is logically equivalent to classical deductive reasoning
whenever the given theory of premises that we are reasoning from is classically
consistent [7]. The correspondence shows that classical truth models correspond
to cases of acceptable subset of formulae, with cases though existing even when
the given theory is inconsistent.

Non-surprisingly, as in most works that aim to bring formal logic closer to hu-
man reasoning, e.g. the early example of Intuitionistic Logic, the central element
for this result of reformulating formal logical reasoning in terms of argumentation
lies in the way that Reductio ad Absurdum is captured within the framework
of argumentation. This is done by identifying structurally self-defeating (or
fallacious) arguments and relating these to indirect logical proofs, i.e. proofs
requiring Reductio ad Absurdum, within Propositional Logic.

Informally, a self-defeating argument, S, is one that “turns on itself” by
rendering one of its attacking arguments acceptable in its own context of S.
This means that the self-defeating argument renders the arguments that it needs
for its defence, against some attacking counter-argument, non-acceptable. More
formally, we can define a self-defeating argument S as one for which there exists
a counter-argument A such that ¬ACC(A, ;) and ACC(A,S) hold. So, although
the attack A is in general (i.e. when we do not take any argument to be as given)
non-acceptable under S this attack is rendered acceptable. Hence S brings about
its own defeat and non-acceptability. The simplest example of a self-defeating
argument is one that attacks itself, since in its own context its self-attack is
acceptable.

For a more elaborate example of a self-defeating argument let us consider
an example from the argumentation-based reformulation of formal logic, related
to how we can derive the excluded middle law in Argumentation Logic. This
is illustrated in the right part of Figure 1 where we see that the negation of
the law, i.e. ¬(q _ ¬q), is shown to be non-acceptable. This is because this is
attacked by the formula q, as from q we can directly derive q _ ¬q. This attack
by q can only be defended by taking on the opposing position of ¬q. But this
defense is attacked by the root formula of ¬(q _ ¬q) since, as in the above
attack, we can directly derive q _ ¬q from ¬q. Computationally, we see that
an attack belongs to the branch above indicating the non-acceptability of the



root argument/formula. Hence we see that the argument ¬(q _ ¬q) renders its
required defense non-acceptable and thus indirectly also itself non-acceptable.

Posing a hypothesis as a premise in a Reductio ad Absurdum proof cor-
responds to considering a context in which the hypothesis as an argument is
accepted. Then the hypothesis leading to an inconsistency corresponds to the
dialectic argumentation process leading to the non-acceptability of a (necessary)
defending argument in the context of the posited argument. This correspondence
is exact when the propositional theory of given premises is classically consistent
in which case the non-acceptability of a formula argument also means the ac-
ceptability of the complement of the formulae, in the same way that Reductio ad
Absurdum is used to derive the complement of the posited hypothesis. For the
general case where the given theory under which we are reasoning is inconsistent
then this latter step does not hold and we can have that both a formulae and
its complement are non-acceptable. This signifies that we cannot have a position
on such formulae. Nevertheless, this does not mean that the whole reasoning of
Argumentation Logic trivializes but only that for some isolated formulae we are
completely agnostic.

In summary, the classical formal reasoning is captured as a special case of
argumentation were a logical conclusion emerges as the result of contemplating
arguments for and against the conclusion. Argumentation Logic is constructed
by adopting a set of direct proof rules as basic argument schemes together with
the recognition of self-defeating arguments to cover the indirect proofs through
Reductio ad Absurdum. Both the basic argument schemes and the notion of self-
defeating arguments are structures that are content independent as it is expected
from a framework of formal logical reasoning. This is in contrast with informal
reasoning which, although it is captured under the same framework of argumen-
tation, the various constructs of argument schemes, attacks and defenses depend
on the content of arguments and the dynamically changing environment in which
the reasoning takes place. Importantly, the paraconsistent2 form of argumenta-
tive reasoning can be understood as a smooth extension of strict classical logical
reasoning, in cases where indeed the given premise information is contradictory
[6].

4 Aristotle: The origins of Systems of Reasoning

We will now briefly look into Aristotle’s work on dialectic argument from a
contemporary argumentation perspective. Specifically, we will examine the re-
semblance between the basic acceptability semantics that we have argued above
unifies informal and formal reasoning, with the method of Aristotle for dialectic
argumentation found in the books of Topica.

In these books Aristotle considers the wider context of what today we asso-
ciate with informal reasoning and laid argumentation as the foundational element

2 It is evident that Argumentation Logic is related to Paraconsistent Logics [15] which
similarly consider how we can define forms of reasoning that do not trivialize under
inconsistent premises.



of reasoning. His study of dialectic argument is extensive and quite thorough in
an attempt to provide a pragmatically e↵ective method of applying argumenta-
tion to support a position or a claim. He categorizes the di↵erent possible posi-
tions in terms of four types of “predicables” and goes into great length to give,
for each di↵erent type of predicable, elaborate prescriptions (topoi) or strategies
of how to go about supporting, attacking and defending each particular type of
position.

From a contemporary point of view these topoi can be linked to the notion
of argument schemes [21, 20] that associate premises to a position or to the
contrary of a position, together with the pragmatics or heuristics to follow when
carrying out the process of argumentation, as for example in the pragma-dialectal
approach to argumentation in [3]. Interestingly, irrespective of the particular
details of each topos the purpose of dialectic argumentation when applying the
topoi is to arrive at a refutation. Aristotle states that the purpose of Topica
(100a18�22) is:

To discover a method by which we shall be able to reason from gen-
erally accepted opinions about any problem set before us and shall
ourselves, when sustaining an argument, avoid saying anything self-

contradictory (copied from Rigotti and Greco, 2019:8 [4]).

At the very general level the strategy of dialectic argumentation in Aristotle
is to bring the opposite view into a situation which is unacceptable because
it is self-contradictory. Aristotle describes how this strategy can be executed
through a process between a Questioner and an Answerer. This process can be
understood as a semi-formal computational structure consisting of three stages:

(a) Opening: The Questioner presents a statement to which the Answerer
can reply either yes or no. The overall aim of the Questioner is to force the
Answerer to accept that his answer is self-contradictory and thus not reasonable.
(b) Interrogation: The Questioner introduces questions to the Answerer to
establish beliefs that the Answerer holds. The aim of the Questioner in this stage
is to gather such beliefs from the Answerer that would allow him to build a strong
argument against the Answerer’s claim. (c) Conclusion: Once the Questioner
has all the information he needs he reveals to the Answerer the counter argument,
which he builds through a syllogism based on premises that the Answerer has
accepted. The fact that this is build through a syllogism means that this is quite
a strong argument and cannot be dismissed. Hence the Answerer has no option
than to accept that his initial position is in contradiction with his other beliefs,
i.e. his case is self-contradictory.

In this adversarial process, the goal for the Answerer is to prevent the Ques-
tioner from succeeding by reasonably rejecting the premises that would lead him
in self-contradiction. The di�culty for the Answerer lies in realizing the counter-
argument that the Questioner has in mind to build so that he can be careful on
the beliefs he accepts during the second interrogation stage.

We can then observe a resemblance between this method of Aristotle for di-
alectic argumentation and the notion of acceptability and non-acceptability of



arguments that we have presented above as the unifying foundation of contem-
porary informal and formal reasoning. The central task in Aristotle to arrive at
a self-contradiction is analogous to the identification of self-defeating arguments
under the formal notion of acceptability of arguments. Just like the dialectic
method of Aristotle concludes with the exposition of a contradiction in the be-
liefs held by the Answerer, in the same way the computational trees of accept-
ability (see figure 1 and termination conditions for non-acceptability) closes with
an attacking argument playing also the role of a needed defending argument in
the same dialectic branch of the tree, thus rendering the defending argument as
self-defeating and non acceptable. Let us illustrate this correspondence through
an example, shown in figure 2.

Fig. 2. Example of Aristotle’s Dialectic Argument

In the leftmost box of the figure we see the questions asked by the Questioner.
We assume that the Answerer has answered yes to all these questions. The
Questioner can then re-construct an explicit dialectic argumentation process
(seen in the middle box of the figure) where the attacking counter-argument of
c1 is revealed together with the fact that the proposed defense d1 against this,
i.e. to use “Thebes as an ally”, is in conflict with the original position of the
answerer of “waging war on Thebes” and therefore could not for a coalition with
the initial argument of a1. The rightmost part of the figures shows the abstract
computational structure of this argumentation process and how it ends up with
the non-acceptability of the initial argument supporting the original position of
the answerer3.
3 Strictly speaking the attacking argument a10 is not the same as a1 but has the
same e↵ect of terminating the branch at an attack level. The only way to defend
against a10 is either by an argument against its premise of waging war on Thebes
or an argument against Thebes being an ally. In either case this new defense will be
attacked either by a1 or by a3 resulting in the non-acceptability of the branch.



5 Conclusions: Reasoning in AI

One of the main tasks of today’s AI is to understand, formalize and e↵ectively
compute human reasoning. If we accept, as we are proposing in this paper, the
universality of argumentation for reasoning, indeed that Reasoning is Argumen-
tation, then we are led to re-enact Aristotle’s study of argumentation in the
Topica. Just like Aristotle studied how to conduct argumentation in an e↵ective
way and proposed di↵erent topoi as guidelines for achieving this we can carry
out an analogous study for the e↵ective realization of computational argumen-
tation in AI. To do so we need to consider, as Aristotle did, the dynamic and
uncertain nature of the environment in which argumentation takes place where
the computational process of argumentation should adapt to new information
and in many cases be guided to actively seek new relevant information. There
is of course one major di↵erence: Aristotle’s argumentative reasoning was to be
carried out by the “machine of the human brain” whereas in AI the machine
is a poor artifact of the human brain. Nevertheless, we can draw on the study
of argumentation over the centuries in philosophy, the psychology of reasoning
and other disciplines to help us in this task of an e↵ective process of reasoning
through argumentation. In any case, the study from a modern perspective of
Aristotle’s extensive work on the good practice of argumentation, as for exam-
ple in the recent work of [4], could provide us with valuable insights for the
development of AI.
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1 Introduction

Let L be a first-order language rich enough to express the basic laws of syntax, and let LT be
L augmented by a fresh unary predicate T (for “true’). A disquotation sentence is a sentence
of the form

Tp�q $ �,

where � is any sentence of LT and p�q is a structurally descriptive name of �. A disquotation
set is a set of disquotation sentences. A disquotational theory of truth is a theory of truth
presented as the first-order consequences of a theory of syntax together with a distinguished
disquotation set.

The disquotation sentences represent a central component of our naive concept of truth,
however, due to the Liar paradox, the set of all disquotation sentences of LT is inconsistent
with the basic laws of syntax.

A natural reaction to this fact is aiming to the goal of “retaining as many disquotation
sentences as it is possible”. We will refer to this goal in the following as to the maximality
principle. McGee [5] first tried to formalise the maximality principle and proved a theorem
which undermines it under several respects.

For the purposes of this paper, we will work in Halbach’s setting [3], assuming that L is the
first-order language of arithmetic in which the basic laws of syntax are represented via a fixed
Gödel coding. Let PA denote Peano Arithmetic. McGee’s Theorem, reworded in Halbach’s
setting and notation, is the following statement (cfr. [3, Theorem 19.2, p. 269]):

Thm 1.1 (McGee’s Theorem 1). Let � be a set of sentences of LT consistent with PA. Then
there is a disquotation set � such that

1. for all � 2 �, � [ PA ` �,

2. � [ PA is consistent,

3. any disquotation set that properly includes � is inconsistent with PA,

4. � [ PA is complete.

From Theorem 1.1 (or from its proof) several bad consequences follow for the programme
of maximising the set of all consistent (with PA) disquotation sentences:



1. (Non-axiomatisability) No maximal consistent disquotation set is axiomatisable.

2. (Arbitrariness) There are many mutually incompatible maximal consistent disquotation
sets and no evident criterion for choosing among them.

3. (Unwanted consequences) Each maximal consistent disquotation set has unwanted conse-
quences making it unplausible as a theory of truth.

4. (Poorness) Restricting ourselves to only those disquotation sentences which belong to all
maximal consistent disquotation sets leaves us with a very poor theory of truth.

The first consequence, non-axiomatisability, obviously blocks the hope for an axiomatic
disquotational theory of truth based on the maximality principle. Even worse, the other conse-
quences of McGee’s theorem represent bad news for semantic theories of truth too, for instance,
for the aim of a (metatheoretic) definition of truth required to entail a maximal disquotation
set. McGee’s strategy to overcome the arbitrariness issue is to look at those disquotation sets
which belong to all maximal consistent disquotation sets. This move obviously avoids arbi-
trariness and arguably helps to exclude some, if not all, unwanted consequences of maximal
consistent disquotation sets. However, McGee shows that applying this strategy we are left
with a disquotational theory only including disquotation sentences which are already provable
from PA alone, like the Truth-teller sentences. By contrast, we put as a (very minimal) require-
ment for a theory of truth that it includes at least all Tarski biconditionals, namely, all those
disquotation sentences Tp�q $ � in which � is an arithmetical sentence.

McGee’s theorem shows that if we want to work out a decent disquotational theory of truth
from the maximality principle we need to restrict in some way the disquotation sets we allow
to be maximised. We are mostly interested in investigating what happens if we apply McGee’s
strategy by interpreting “possible”, in the statement of the maximality principle (“retaining as
many disquotation sentences as it is possible”), by some metatheoretic property strengthening
mere consistency.

A first step in this line of research was made by McGee himself who, in the same article,
considered to replace “consistent with PA” with “consistent by !-logic”. Later, Cieśliński [2]
proposed to replace “consistent with PA” with “conservative over PA”. McGee and Cieśliński
results show that non-axiomatisability, arbitrariness and unwanted consequences still a↵ect
these proposals. Moreover, it easily follows that applying McGee’s strategy to these sets of
maximal disquotation sets still leaves us with very poor theories of truth.

2 Definitions and disquotation: A general limitative re-
sult

McGee’s “consistent by !-logic” and Cieśliński’s “conservative over PA” can be understood as
first steps towards a disquotation set being an “implicit definition” of truth. For, every implicit
definition is model-theoretically conservative over PA and in turn this property implies both
consistency by !-logic and conservativity over PA. Unfortunately, we already know that the
Liar paradox together with Beth’s theorem rule out the possibility of an implicit definition of
truth: For, by Beth’s theorem, an implicit definition of truth would be equivalent (over PA)
to an explicit definition of T in terms of the arithmetical language; by our assumption, this
definition should imply all Tarski biconditionals, so contradicting Tarski’s indefinability of truth
theorem.



A natural move, then, is to turn our attention to some metatheoretic property which lies “in
between” being model-theoretically conservative and being an implicit definition. One idea is
to move from total implicit definitions to only partial implicit definitions. The model-theoretic
condition characterising a set of sentences ⌃ as being an implicit definition of T over PA is
that for every model M of PA in the language of arithmetic there exists exactly one expansion
M+Z which models ⌃. In particular, this means that ⌃ “fixes the extension of T” in the sense
that, given a model M of PA the extension of T is forced by ⌃ to be represented by the set Z
of individuals of M. We can ask less than this. We can ask that ⌃ only fixes the extension of
T inside its “range of significance”.

The idea that a predicate comes with a “range of significance” is quite natural: For instance,
when we speak about a number being “odd”, we implicitly assume that the predicate “odd” is
not to be applied to everything, not even to all “numbers”, but only to the “natural numbers”.
In other words, the natural numbers constitute the range of significance of the predicate “odd”.
When we understand what the range of significance of a predicate is, we can content ourselves
with a conditional definition of the predicate, rather than seek for a fully explicit definition.
For instance, if we want to define “odd” we can say that “a natural number is odd i↵ it is not
divisible by two”. This is a conditional definition, in the sense that we give a definition which
applies only to those individuals which fall under the range of significance of the predicate. We
simply do not care about the meaning of the expression “x is odd” when x is not a natural
number.

If � is an arithmetical formula defining the range of significance of a unary predicate P, a
conditional definition of P (over PA) has the form

8x (�(x) ! (Px $  )), (1)

where  is another arithmetical formula where only the variable x occurs free.
By Beth’s theorem, a set of sentences ⌃ is equivalent (over PA) to a conditional definition

like (1) i↵ ⌃ satisfies the following model-theoretic property:

8M (M |= PA ) 9Z ✓ �(M) 8Y ✓ M (M+ Y |= ⌃ , Y \ �(M) = Z)). (2)

In words: For every model M of PA in the language of arithmetic there exists exactly one
subset Z of the domain of M such that an expansion M+ Y models ⌃ i↵ Y agrees with Z on
the interpretation in M of the range of significance �.

When the predicate T has to mean “true”, the pre-theoretic intuition is that its range of
significance is given by the set of all sentences of the language LT (by contrast, we do not
care about the application of “true” to non-sentences, namely, to natural numbers which do
not code sentences of LT). However, we have already seen that this assumption leads to a
contradiction with Tarski’s indefinability theorem. The Liar Paradox suggests to us that the
range of significance of T should be a proper subset of LT: At the very least, a subset which
excludes any Liar sentence. Since we have troubles with defining what the range of significance
of T is to be, we can replace the formula � in (2) by a variable X and try to maximise it.
More precisely, we say that ⌃ is a partial implicit definition (in the following we will often omit
“implicit” in order to be shorter) of T if and only if the following condition holds:

8M (M |= PA ) 9X ✓ M 9Z ✓ X 8Y ✓ M (M+ Y |= ⌃ , Y \X = Z)). (3)

Clearly, the notion of a partial implicit definition is intermediate between the notion of a
model-theoretic conservative theory and the notion of an implicit definition, as required: On
the one hand, if ⌃ is a partial implicit definition, then for every model M simply take Y = Z



to obtain a model of ⌃ which witnesses conservativity; On the other hand, if ⌃ is an implicit
definition, then it is also a partial implicit definition having the entire domain of M as its range
of significance. Hence we could look for maximal disquotational partial implicit definitions of
truth.

However, the above notion of partial implicit definition does not couple very well with
disquotation. For one thing, according to the way we have defined this notion, the set of all
Tarski biconditionals, is not a partial definition as it would be expected. Following Bays [1]
we think that this fact is not to be ascribed to a weakness of the Tarski biconditionals, it is
rather a by-product of our notion of partial definition. What we actually expect to be fixed by
the Tarski biconditionals is the extension of T when applied to genuine arithmetical sentences,
not to individuals that some (non-standard) model of PA thinks to be arithmetical sentences.
In other words, the intended range of significance of T is the set of all sentences of LT qua
syntactic objects: It is not given by a formula representing this set in Peano Arithmetic whose
interpretation can vary from one model of PA to another.

Bays’ remark about the Tarski biconditionals, extended to all disquotation sentences, leads
us to modify the notion of partial definition as follows: We say that ⌃ is a rigid partial implicit
definition of T if and only if the following condition holds:

9X ✓ ! 8M (M |= PA ) 9Z ✓ M 8Y ✓ M (M+ Y |= ⌃ , Y \X = Z)). (4)

It can be proved that maximising the range of significance of rigid partial definitions is the
same as maximising the theories and that maximal disquotational rigid partial definitions of T
do exist. Unfortunately, the same objections raised against the properties of being consistent
with PA, consistent by !-logic, and conservative over PA, still apply to the notion of being a rigid
partial definition: There are too many incompatible disquotational rigid partial definitions, no
apparent criterion for choosing among them, and the set of disquotation sentences belonging to
all of them does not even include the set of all Tarski biconditionals.

This result is not surprising at all. Both McGee’s and Cieśliński’s limitative results rely
on the fact, discovered by McGee, that “every set of sentences can be given the form of a
disquotation set” or, more precisely, that for every set of sentences ⌃ there exists a disquotation
set � which is equivalent to ⌃ modulo Peano Arithmetic. From this it follows that, as long as
we are concerned with a metatheoretic property which is preserved by equivalence modulo PA,
there is no gain in coupling this property with that of having the form of a disquotation set.
For this reason, once one has realised that properties of sets of sentences such as consistency,
conservativity or being a partial definition are too general for characterising a predicate, one
adds nothing by further requiring that the sentences involved should be disquotation sentences.

3 The largest intrinsic rigid disquotational partial defini-
tion of truth

The moral we get from the previous section is that to be a disquotation set per se does not
characterise truth. However, when we look at the set of all Tarski biconditionals we recognise
that it does characterise truth for the language of arithmetic. Why it is so? The reason is that
the set of all Tarski biconditionals not only partially fixes the extension of truth (in Bays’ sense),
but it does so for the same set of sentences for which the disquotation sentences are assumed
to be true. In other words, the set of sentences for which we assume the disquotation sentences
and the range of significance of T coincide. This is the characteristic feature of Tarski’s theory
of truth which is missed by the applications of the maximality principle we have seen above.



Let us modify once again our notion of “disquotational partial definition” in order to get
profit from Tarski’s lesson. For any set of sentences X, let TB(X) denote the set of all dis-
quotation sentences built up from X, namely, TB(X) = {Tp�q $ � | � 2 X}. We say that
a disquotation set TB(X) is a disquotational rigid partial definition of truth if and only if the
following condition holds:

8M (M |= PA ) 9Z ✓ M 8Y ✓ M (M+ Y |= TB(X) , Y \X = Z)). (5)

Condition (4), coupled with the assumption that ⌃ is a disquotation set, can be used to
characterise ⌃ as being a disquotational (rigid) partial definition “of T”, but nothing implies
that “T” has to mean “true”. The predicate T could be used to mean, for instance, “prime
number greater than two”, and in this case we would obtain that the largest rigid partial
definition of T does exist and that its range of significance is the set of all odd numbers:
However, we could axiomatise this partial definition by a set of disquotation sentences as well
as with any other set of sentences (in this case we could even use an explicit conditional partial
definition for the same purpose). Only adding the requirement that the disquotation sentences
are built from the sentences of the range of significance of T we obtain a condition which makes
use of disquotation in a relevant way and that makes our partial definition “of T” a partial
definition “of truth” for its range of significance.

More precisely, observe that Condition (5) is obtained from Condition (4) by performing
two moves. The first one is that of assuming that ⌃ is a disquotation set, namely, a set of
sentences of the form TB(X) for some set X of sentences of LT. This move (trivially) makes
⌃ “materially adequate”, as a theory of truth, for the set of sentences X. The second move is
that of assuming that ⌃ is a rigid partial definition of T which determines exactly X as the
range of significance of T. With Condition (5) in our hands we can try once again to apply the
maximality principle: This time the general limitative result described in Section 2 no longer
applies, because Condition (5), contrary to Condition (4), is a metatheoretic property of TB(X)
which is not preserved by equivalence modulo PA. It is in this sense that we said above that
Condition (5) “makes use of disquotation in a relevant way”.

Using Condition (5) we still obtain that there are many incompatible maximal disquotational
rigid partial definitions of truth and that, apparently, we do not have a criterion for choosing
among them. Yet, McGee’s strategy of taking the set of all disquotation sentences which belong
to all maximal disquotation sets still applies and we get a disquotational rigid partial definition
of truth (the largest intrinsic one, in the ordered-theoretic sense of “intrinsic”), call it TB(⇥),
which is not “poor” in an obvious way: Indeed we can show that TB(⇥) properly includes the
set of all Tarski biconditionals.

Finally, to support the claim that TB(⇥) is an interesting (read: not poor and unlikely
to have unwanted consequences) disquotational theory of truth, we can prove a further result.
Being a disquotational rigid partial definition of truth, TB(⇥) satisfies Condition 5, hence, for
every model M of PA, TB(⇥) uniquely determines the subset ZM of those sentences of ⇥ which
are true in every expansion of M to a model of TB(⇥). We can prove that, in particular, taking
M to be the standard model of arithmetic, the range of significance ⇥ and the valuation ZM
coincide with the domain and the extension (respectively) of the largest intrinsic fixed point of
Kripke’s monotone operator using Van Fraassen’s supervaluation [4, p. 711] .

References

[1] Timothy Bays. Beth’s theorem and deflationism. Mind, 118(472):1061–1073, 2009.
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Abstract

We build on previous work on monitors for hyperproperties, where we propose a logic
for specifying properties over sets of traces that can be monitored with circuit-like non-
communicating monitors for violations at runtime. In this paper, we propose an epistemic
multi-agent logic framework for proving the correctness of distributed and communicating,
runtime verification protocols over hyperproperties. Our protocols use monitors that can
communicate and accumulate information. To verify the correctness of such a protocol,
we can describe communication with epistemic statements that can be then used to derive
a proof in an epistemic logic. We then present an example epistemic proof of correctness
for a given communication protocol over a specific property that requires communicating
monitors, and therefore is not included in the original fragment. This is a step towards a
general epistemic framework for the verification of distributed monitoring systems.

1 Introduction

The field of runtime verification provides methods for checking whether a system satisfies an
intended specification at runtime. This runtime analysis is done through a computing device
called a monitor that observes the current run of a system in the form of a trace and attempts
to infer the satisfaction or violation of the specification by the system or its run [1,4,5,7,12,16].
Recent work focuses on monitoring for hyperproperties, which are properties of sets of traces,
introducing novel monitoring setups that process multiple traces [2,6,11]. A centrepiece in this
line of work has been the specification logic Hyper-LTL [8]. Intuitively, Hyper-LTL uses trace
variables and allows for quantifying these variables over a set of traces that can represent a set
of system runs, or a collection of local executions of di↵erent system components. Hyper-LTL
can use these trace variables to refer to the satisfaction of propositional variables at specific
traces, and thus express relationships between local events.

We use the specification logic Hyper-µHML instead of Hyper-LTL, and we build on previous
work on monitorability and monitor synthesis for µHML, which is a reformulation of the µ-
calculus, and Hyper-µHML is its extension to hyperproperties [1, 3, 13]. The logic µHML

allows for straightforward translations from well-known temporal logics such as LTL, and, at
the same time, has an intuitive synthesis for monitors [1, 13]. The current paper extends the
work from [3], where the authors give a monitor synthesis from a fragment of Hyper-µHML

with good correctness and complexity guarantees. However, just like Hyper-LTL and unlike
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the fragment from [3], Hyper-µHML can define dependencies over di↵erent traces, which can
introduce additional latency when monitoring at runtime. The monitoring framework in [3]
kept the processing-at-runtime cost minimal by restricting the type of properties it verified to
a fragment of Hyper-µHML that e↵ectively does not allow multiple traces to be referred to
in the scope of the same quantifier. Therefore, local monitors do not need to communicate in
order to detect violations.

In this work, we consider an extension of the circuit-like monitors from [3] that allows
monitors to communicate. We observe that there can be more than one correct way to monitor
for a given property, and a monitoring system can be engineered with specific goals, such as to
minimise the communication overhead or to preserve certain privacy or robustness properties.
Therefore, one needs to consider alternatives to a uniform monitor synthesis, which need to
be proven correct. We propose a framework for using epistemic logic to prove the correctness
of the communication strategy of distributed monitoring protocols. Then, we give an example
of describing communications between monitors with epistemic statements and using these to
prove that a monitoring protocol can detect all violations of a specification. Our goal is to
extend this framework in future work, so that one can prove the correctness of monitoring
systems for more general properties and for more notions of correctness.

2 Preliminaries

2.1 The Specification Logic

We present Hyper-µHML, the logic that we use to specify hyperproperties. Hyper-µHML

extends the linear-time interpretation of µHML [14, 15, 17] by allowing quantification over
traces. We assume two disjoint, countably infinite sets: a set ⇧ of trace variables and a set V
of recursion variables; and a finite set Act of events or actions. We define Act⇧ = {a⇡ | a 2
Act and ⇡ 2 ⇧}. A set A ✓ Act⇧ is called consistent if for all a⇡1 , b⇡2 2 A, a = b or ⇡1 6= ⇡2.
Events in a consistent set can occur simultaneously on di↵erent traces.

Definition 1. Formulae ' 2 Hyper-µHML are constructed by the following grammar:

' ::= 9⇡' | 8⇡' | ' ^ ' | ' _ ' |  
 ::= tt | ff | [A] | hAi |  ^  |  _  | maxx. | minx. | x,

where ⇡ 2 ⇧, x 2 V , and A ✓ Act⇧ is consistent. When A = {a⇡}, we may simply write [a⇡] 
or ha⇡i instead of [A] or hAi .

Semantics. The semantics of Hyper-µHML is given over a finite set of infinite traces T over
a finite set of actions Act and it is a natural extension of the linear-time semantics of µHML.
We require an environment ⇢ that maps recursion variables to sets of traces, and an assignment
⌧ : ⇧ ! T of trace variables to traces in T . Let T 0

⌧ = {a⇡ | ⌧(⇡) = at for some t 2 Act
!},

TX
⌧ = {t | ⌧(⇡) = at for some t 2 Act

!}, and let ⌧+ : ⇧ ! T be defined such that ⌧+(⇡) = t,
where ⌧(⇡) = at. We only give the case for the universal modality here:

T, ⌧, ⇢ |= [A] i↵ A ✓ T 0
⌧ implies TX

⌧ , ⌧+, ⇢ |=  .

We use the standard notation T |= ' to denote that the set of traces T satisfies ' (and
similarly for T 6|= '). The work in [3] demonstrates how to monitor for the fragment Hyper1-
sHML of this logic, which does not allows nested trace quantification, diamonds, disjunctions,
or least-fixpoints, using circuit-like monitors.

2
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^

{1,1}
sMinit �!⇤

^

{1,1,1}

_

{1,1,1}

m1,1 m2,1 m1,2 m2,2 m2,3m1,3

a! b.a.b! b!

no
{0, 1}sM

no
{1, 0, 0}

_

{0,1,1}

no no yes m2,2 m2,3yes

a! a.b! b!

Figure 1: The circuit monitor for the formula in Example 1 over T = {a!, b.a.b!, b!}.

Example 1. The Hyper
1
-sHML formula 8⇡[a⇡]ff ^ 9⇡[b⇡](maxx.([a⇡]ff ^ [b⇡]x)), over the

set of actions {a, b}, states for a set of traces T , that no trace starts with a, and b! 2 T .

2.2 The Circuit Monitors Model

In this section, we give the intuition behind the monitor design in [3]. Circuit monitors are
composed of a hierarchy of gates, connected in a circuit-like structure and instrumented over a
finite set of traces T . Each trace t2T is assigned a fixed set of regular monitors that correspond
to the local properties to be verified and are at the bottom layer of the structure. Monitors
assigned to the same trace run in parallel [1] and observe identical events, whereas those assigned
to another trace also run in parallel but completely isolated from other traces. When monitors
reach a verdict, yes, no or end, they communicate it to the smaller gates connecting them. These
then evaluate to some verdict themselves and propagate their evaluation upward through logic
gates until the root of the circuit reaches a verdict as well.

Definition 2. The language Cmonk of k-ary monitors, for k > 0, is given through the following

grammar:

M 2 Cmonk ::=
_

[m]k |
^

[m]k | M _M | M ^M

m ::= yes | no | end | a.m, a 2 Act | m+ n | rec x.m | x

Cmon is the collection of infinite sequences (Mi)i2N of terms that are generated by substituting

k = i, 8i 2 N, in a term M in Cmonk.

The notation [m]k corresponds to the parallel dispatch of k identical regular monitors m,
where k = |T |, with T = {t1, . . . , tk}. The circuit monitor

V
[m]k evaluates to a yes verdict if all

sub-monitors evaluate to yes verdicts, and a no verdict if at least one sub-monitor evaluates to
a no verdict. Otherwise, if all sub-monitors evaluate to some verdict but none of the previous
criteria is met, it evaluates to end. The evaluation of

W
[m]k is symmetric, whereas the evaluation

of the _ and ^ gates over them follows similar rules.
Figure 1 from [3] illustrates the circuit monitor and its evaluation for the formula in Exam-

ple 1. The notionmi,j signifies that monitormi is instrumented with trace j, where monitorsm1

andm2 respectively monitor for the local properties 8⇡[a⇡]ff and 9⇡[b⇡](max x.([a⇡]ff^[b⇡]x)).
Given a formula ' 2 Hyper1-sHML and a set of traces T , we can synthesise a circuit monitor

M through the recursive function SynT (�) : Hyper1-sHML !Cmon defined in [3].

3
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Proposition 1 (from [3]). For a formula ' 2Hyper1-sHML and a set of traces T , we have

that SynT (') is a violation complete monitor for ' over T , in that SynT (') outputs a verdict

no if and only if T 6|= '.

2.3 Epistemic Logic

Definition 3 (Multi-agent modal logic). For a set of agents A, a formula � in the multi-agent

modal logic is defined as:

� ::= > | ? | p | ¬� | � ^ � | Ki� | CG�

where p is an atomic formula, i 2A, and G✓A. Implication and disjunction can be defined

from the other operators as usual.

We use the standard multi-agent S5 semantics for epistemic formulas with common knowl-
edge, as seen, for example, in [10]. Later on, we also use a natural deduction proof system for
multi-agent S5. One would need a more intricate logic to fully analyse monitoring frameworks,
but as the following section demonstrates, sometimes the above epistemic logic su�ces to prove
the correctness of a protocol.

3 Epistemic Analysis of Communication Protocols

The fragment Hyper1-sHML that was introduced in [3] is quite restricted. This allows for
a uniform, correct monitor synthesis that does not require the monitors to communicate. In
this section, we consider monitoring systems with a communication protocol, which allows us to
monitor for more involved properties. In contrast to [3], instead of giving a monitor synthesis for
a larger fragment of Hyper-µHML, we focus on proving the correctness of the communications
part of a monitoring framework that might have not been produced by an automated synthesis.

3.1 Two Protocols for Two Quantifiers

We consider the example of the following Hyper-µHML formula, which uses two nested quan-
tifiers:

' = 8⇡8⇡0max x([p⇡, p⇡0 ]ff ^ [p⇡, p⇡0 ]x ^ [p⇡, p⇡0 ]x)

Formula ' states that all traces ⇡ and ⇡0 must agree on all events p. Said otherwise, if p is
observed in some trace, then all traces must have p at that time as well. The setup of circuit
monitors from Section 2 cannot handle properties similar to this one. More specifically, all local
monitors would only be able to observe the value of their own traces regarding p and produce
the verdict end when asked for the transition [p⇡, p⇡0 ]. However, the latter cannot happen as the
transition specified contains at least one step on a trace that the monitors are not instrumented
on.

The following monitoring setup would succeed in detecting the violations of '. If p occurs
in some trace, then there are two possible scenarios: (i) either all other traces have p as well
or (ii) at least one trace does not have p. The key point is that in the case of a violation of
the property ', there must be some traces that do not agree on p. Thus, should we design
a naive communication protocol where every monitor instantaneously communicates with all
other monitors after each event it observes, to inform them about whether or not it observed p,
at least a few of the monitors would indeed observe this violation. Naturally, such a protocol
would produce a great number of messages while it runs.
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Figure 2: Communication Protocol for formula '

In order to reduce the significant communication overhead of the above approach, we can
use fewer messages and compensate for the lack of information via epistemic reasoning. For
instance, consider a protocol where, after observing an event, each monitor communicates with
exactly one agent (the one to its right) and receives exactly one message from another agent (the
one on its left). Both messages are identical in nature, whereby they inform the receiver whether
the sender observed p or not. We refine this further by allowing monitors to communicate only
when p is observed since the absence of a message can convey the negation of this statement as
shown by the dashed line in Figure 2.

A logician could easily recognise that the above protocol detects a violation of the property
described above through the following basic epistemic reasoning. Assume that there are two
traces ⇡, ⇡0 that do not both have p. If all agents are assigned some order in which they
will perform the described communication protocol, there will be two consecutive agents whose
values of p do not match, and both of them will be able to deduce that the property is violated.
For instance, monitors m2 and m3 in Figure 2 detect a violation of ' since the former received
p but it observed q, whereas the latter observed p but didn’t receive anything, from which it
can infer that m2 didn’t observe p.

Remark 1. In the worst case, two monitors will be able to infer the no verdict, while all the

others produce the end verdict. However, this is su�cient for the gate on the higher level to

produce the no verdict as well, giving us violation completeness for the specific property '.

In what follows, we demonstrate how to prove the correctness of the protocol that we
discussed, using epistemic logic.

3.2 Proving Correctness

A first attempt at presenting a correctness proof for the communication protocol discussed
above is modelling each monitor as an agent r2A. The protocol is modelled thought sentences
in epistemic logic that are obeyed in each round, where a round is the time during which an
event is observed by all agents.

As is described, a monitor (agent r) can observe the occurrence of the event p on trace r
(denoted pr), in which case it has to inform the monitor assigned to the same property on the
trace “on its right” about this occurrence. We denote the “next” agent as r + 1 mod k, where
k is the total number of traces. Thus, in a round i we first prove that with the protocol we
mentioned it is always the case that a monitor r + 1 knows whether p1 or pr. The natural
deduction proof for this can be seen in Table 1, given in the appendix due to lack of space.

that a violation of the property ' occurs the behaviour of the monitors will be in accordance
with the guarantees provided by the epistemic natural deduction proof given in Table 2. Note
that since a violation has occurred it means that there exists traces (and thus monitors r0, r1
such that pr0 and pr1 .
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Having established this inference, we use it to prove that when a violation of the property
occurs in round i, (i.e., 9r09r1pr0 ^ pr1) then there is some agent j that detects the violation.
The proof of this inference can be seen in Table 2 in the appendix.

We remark that one can use a similar approach to prove the correctness of monitoring
setups for more interesting properties. For example, propositional variables in the epistemic
syntax can be used to encode the violations of arbitrary monitorable formulas; the (eventual)
detection of such a violation encoded by p by the monitor on trace i can be written as Kip,
and its monitorability as p ! Kip. Then, we can proceed as above.

4 Conclusion and Future Work

In this work we present an initial attempt to incorporate multi-agent epistemic reasoning to the
analysis of distributed runtime verification protocols. The key aspect of our approach is to first
design a protocol for sharing information and then prove formally that it provides correctness
guarantees.

Besides the verification of distributed monitoring setups, one of our aims is to eventually
produce a sound synthesis algorithm for communication protocols such as the one given in [3]
(Proposition 1). However, there are several obstacles that remain to be incorporated into this
reasoning framework before reaching this goal. The first shortcoming is the static way in which
epistemic logic has been incorporated, which constrains the proofs to be done in a round-by-
round fashion as they are currently. We aim to model the exact content of a communication
into an epistemic action that occurs and has an outcome of the models of a formula. Our
approach here would be to incorporate Dynamic epistemic logic [9] so that the temporal aspect
of a proof is not introduced externally.

Moreover we have not yet formally extended the monitoring setup to include monitors that
can synchronise and produce these communications, and we have not assigned any sort of formal
semantics to such a syntactical modification. Thus, to fully perform the upgrade we need also
to adapt the implementation to mach the capabilities of the theory.

Finally in order to automate the synthesis of a communicating monitor setup, after having
performed the above steps, we want be able to extract from a proof for a certain epistemic
theorem into a communication protocol. For example a theorem we would like to test for
Hyper-µHML formulae could be formulated as ¬' ! 9iKi¬'. In such a scenario one would
want to synthesise a valid monitoring setup from potential tableau proof of this statement. Of
course, the semantics of the epistemic operator in the above formula would need to be defined
as part a more complex language that will be able to refer to past and future situations.

Finally, our contribution, even though we only present one specific protocol-property pair,
can also provide privacy guarantees. Specifically, instead of our protocol, all of the trace
observation could be done in a central fashion, or in a distributed one but where every event
is fully broadcast to all agents. However, it is easy to see that both such scenario allow for
also security breaches, as all information is gathered in one place which can be compromised.
Our alternative allows not only for less communication- and thus smaller overhead at runtime-
but also minimises the amount of information exchange, which ensures that for example a
compromised node will only gather partial information about the system. Thus our e↵ort is
a step towards enabling the formal verification of concurrent systems though faster and more
secure distributed monitoring mechanisms.
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Appendix 1 - Natural Deduction Proofs

1 8r : CA(pr $ Krpr)

2 8r : CA(Krpr ! Kr+1pr)

3 pc

4 Kc+1pc ! pc S5 axiom.

5 pc ! ¬Kc+1pc prop Thm (4)

6 ¬Kc+1pc !e, (3,5)

7 Kc+1¬Kc+1pc S5 axiom (6)

8 Kc+1

9 pc ! Kcpc C (1)

10 Kcpc ! kc+1pc C (2)

11 ¬Kc+1pc Kee (7)

12 pc assumption.

13 Kcpc !e, (9,12)

14 Kc+1pc !e, (10,13)

15 ? ¬e (11,14)

16 pc ¬i (12,15)

17 Kc+1(pc) Kci (8,16)

Table 1: Deduction of the non-occurrence of pc from agent c+ 1

In Tables 1 and 2, lines 1 and 2 are using the quantification not as part of the syntax, but
over the number of agents to indicate the existence of k many real premises corresponding to
the relative line - one for each agent. There we model the communications taking place as part
of the protocol though epistemic premises. Line 1 describes that all agents are operating on a
distributed monitoring scenario where all agents can know whether p or ¬p on each round, and
are aware that this is the protocol applied ot all of them. Line 2 encapsulates the communication
of the observance of p in a similar fashion. Assuming on round i we have a violation, we have
that 9⇡, and 9⇡0 where due to the argument given above, ⇡0 = ⇡+1 mod k such that p⇡ ^ p⇡0 .
Thus we show that there exists some trace c, where the relative monitor (agent) will observe
the appropriate events that enable it to deduce [Kc(pc ^ pc)].
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1 8r : CA(pr $ Krpr)

2 8r : CA(Krpr ! Kr+1pr)

3 pc

4 pd

5 Kcpc !e (1,3)

6 Kc+1pc !e (2,4)

7 Kc+1Kc+1pc S5 axiom (6)

8 c+ 1

9 (pr0+1) _ pr0+1 taut.

10 pc+1 assumption

11 Kc+1(pc+1) !e (1)

12 Kc+1pc S5 axiom (6)

13 pc S5 axiom (12)

14 pc ^ pc+1 ^i (10,13)

15 Kc+1(pc ^ pc+1) S5 axiom (14)

16 [Kc+1(pc ^ pc+1)] _ pc+1 _i (15)

17 pc+1 assumption

18 [Kc+1(pc ^ pc+1)] _ pc+1 _i (17)

19 [Kc+1(pc ^ pc+1)] _ pc+1 _e (16,18)

20 c+ 2

21 . . . (8-19)

22 [
^

r2A
pr] _ [

_

r2A
[Kr(pr�1 ^ pr)]]

23 [
^

r2A
pr] assumption

24 pd ^e (23)

25 ? ¬e (4,24)

26 ¬([
^

r2A
pr]) ¬i (23,25)

27

_

r2A
[Kr(pr�1 ^ pr)] prop. Thm (22,26)

Table 2: Epistemic guarantees of correctness of round i
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