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Preface

The Panhellenic Logic Symposium was established in 1997 as a biennial scientific event. It
aims to promote interaction and cross-fertilisation among different areas of logic. Originally
conceived as a way of bringing together the many logicians of Hellenic descent throughout
the world, the PLS has evolved into an international forum for the communication of state-
of-the-art advances in logic.

The 13th Panhellenic Logic Symposium was initially planned to take place in July 2021, in
the city of Volos. However, the outbreak of the pandemic and its continuing repercussions
have forced us to postpone the event to July 2022, with the hope that, by then, the general
situation will allow for an in-person event.

In spite of the singular circumstances, we held a regular submission and reviewing process
this year. We received a total of 16 submissions, of which 13 were accepted and 11 appear
in this collection; we would like to thank the authors of all submitted papers. The reviewing
procedure involved assigning to each submission (at least) two referees, among the members of
the Scientific Committee and some external reviewers; we would like to thank our colleagues
for their diligent work: Antonis Achilleos, Costas Dimitracopoulos, Pantelis Eleftheriou, Vas-
silis Gregoriades, Kostas Hatzikiriakou, Antonis Kakas, Alex Kavvos, Nikolaos Papaspyrou,
Thanases Pheidas, Rizos Sklinos, Ana Sokolova, Alexandra Soskova, Mariya Soskova, Yan-
nis Stephanou, Nikos Tzevelekos, Niki Vazou, and Stathis Zachos, as well as the external
reviewers: Russell Miller, Andre Nies, Frank Stephan, and Jon Williamson.

We collect here, in this volume, the accepted papers of this year’s submission round. A next
round of submissions will happen in 2022; hence, this volume can be considered as the first
installment of the projected comprehensive PLS proceedings, expected to appear finalized
after the end of the actual event, in 2022. This first volume, along with a list of accepted
papers and links to pre-recorded videos of talk presentations (of those authors who chose
to prepare and share with us a first version of their talk this year), appear on the event’s
webpage.

Finally, we would like to thank our invited speakers and our sponsors, who have expressed
their willingness to renew their commitment to our event despite the postponement.

We hope to see you all next summer.
Beijing and Samos, July 2021

Giorgos Barmpalias and Kostas Tsaprounis
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Types of Rational Horn Revision Operators
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Abstract

In this article, we identify some interesting types of rational revision operators that im-
plement Horn revision. In particular, we first define (both axiomatically and semantically)
a class of Horn revision operators based on proper set inclusion of the atoms satisfied by
possible worlds. Furthermore, we show that a well-behaved type of rational revision, called
uniform revision, is Horn-compliant. This is demonstrated by proving that concrete Horn
revision operators implement particular uniform-revision policies.

1 Introduction

Belief revision (or revision) is the process by which a rational agent changes their beliefs, in
the light of new information [7]. A prominent approach that formalizes belief revision is that
proposed by Alchourrén, Gardenfors and Makinson in [1], now known as the AGM paradigm.
Within the AGM paradigm, the agent’s belief corpus is modelled by a logical theory K, also
referred to as a belief set, new information (alias, epistemic input) is represented as a logical
sentence ¢, and the revision of K by ¢ is modelled as a (revision) function * that maps K and
¢ to the revised (new) theory K * . Eight postulates, called the AGM postulates for revision,
axiomatically characterize any rational revision operator, named AGM revision function. It has
been, also, proven that any AGM revision function can be semantically constructed (specified)
by means of a special kind of total preorders over possible worlds, called faithful preorders [8].

Given the nice properties of Horn logic (i.e., the Horn fragment of propositional logic), the
AGM paradigm was modified by Delgrande and Peppas, so that it characterizes the class of
AGM revision functions that map a Horn belief set and a Horn sentence to a (new) revised Horn
belief set [5]; we shall refer to such AGM revision functions as Horn AGM revision functions.

In this article, we first identify (both aziomatically and semantically) an interesting proper
sub-class of the class of Horn AGM revision functions, which is based on proper set inclusion
of the atomic propositions satisfied by possible worlds (Section 4). Furthermore, we prove that
a special type of well-behaved AGM revision functions, called uniform-revision (UR) operators
—introduced in [3] and subsequently studied in detail in [2]— is Horn-compliant, in the sense
that the class of UR operators intersects the class of Horn AGM revision functions (Section 5).
This is demonstrated by proving that a concrete “off-the-shelf” Horn AGM revision function,
proposed in [5], as well as some of the aforementioned inclusion-based Horn AGM revision
functions are, as a matter of fact, particular UR operators.

2 Basic Notations and Conventions

We shall be working with a propositional language £, built over a finite, non-empty set P of
atoms, using the standard Boolean connectives, and governed by classical propositional logic.
For a set of sentences I" of £, Cn(I") denotes the set of all logical consequences of T'; i.e.,
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Cn(T) = {cp elL:TE <p}. A theory, also referred to as a belief set, K is any deductively closed
set of sentences of £; i.e., K = Cn(K). The set of all theories is denoted by K.

A literal is an atom p € P or its negation. For a set of literals @, |Q| denotes the cardinality
of Q, and @ denotes the set of negated elements of Q; i.e., Q = {~l:1 € Q}. A possible world
(or, simply, world) r is any consistent set of literals, such that, for any atom p € P, either p € r
or —p € r. The set of all possible worlds is denoted by M. The set of all atoms satisfied by
a world r € M is denoted by rT; i.e., r™ = r N P. For a sentence (set of sentences) ¢ of L,
[¢] is the set of worlds at which ¢ is true. Possible worlds will, occasionally, be represented as
sequences of literals, and the negation of an atom p will be represented as p.

A clause (i.e., a disjunction of literals) is called a Horn clause iff it contains at most one
atom; e.g., aV—-bV ¢, where a, b, ¢ are atoms. A Horn formula is a conjunction of Horn clauses.
The Horn language Lp is the maximal subset of £ containing only Horn formulas. The set
of all Horn theories is denoted by H. The Horn logic generated from Ly is specified by the
consequence operator Cnp, such that, for any set I" of Horn formulas, Cng(I') = Cn(T) N Ly.
The atoms-intersection of two worlds r,r’ € M is a world denoted by » N" 7/, and defined as
follows: rN* /' = (r* Nr'*)U (P — (rf Nr'+)).! An arbitrary formula (or theory) ¢ is Horn
(i.e., p € L) iff r,7" € [p] entails r NF 7’ € [¢].

A preorder < over a set V' is called total iff, for all r,7’ € V, r <1’ or v/ < r. The strict part
of < is denoted by <; i.e., r <7’ iff r <7’ and v’ £ r. The symmetric part of < is denoted by
~; e, ra ! iff r <7 and ' <X r. Also, min(V, X) denotes the set of all <-minimal elements

of V; ie,, min(V,=x) = {r eV:forall? € V, if v/ <r, then r < 7“’}.

3 AGM-Style Horn Revision

Within the AGM paradigm, the revision-process is modelled as a (binary) function * that maps
a theory K and a sentence ¢ to the revised (new) theory K x ¢; i.e., x : Kx £+ K. The AGM
postulates for revision —which are not presented herein due to space limitations— axiomatically
characterize all rational revision functions, the so-called AGM revision functions.? Katsuno and
Mendelzon proved that any AGM revision function can be semantically specified with the use
of a special type of total preorders over all possible worlds, called faithful preorders [8].

Definition 1 (Faithful Preorder, [8]). A total preorder < over M is faithful to a theory K iff
the < -minimal worlds are those satisfying K; i.e., min(M, <g) = [K].

Intuitively, » <x ' holds whenever r is at least as plausible (relative to K) as r'.

Theorem 1 ([8]). For every theory K and any sentence ¢ of L, an AGM revision function x
can be defined (specified) by means of the following condition:

(Fx)  [K* o] =min([¢], 2K).

3.1 The AGM Paradigm in the Horn Setting

Since satisfiability in the Horn setting —i.e., evaluating whether ¢ € H is true, where H € H
and ¢ € Ly— can be determined in linear time [6, 9], Horn revision has gained great interest.
A notable approach, in this regard, constitutes the work of Delgrande and Peppas [5]. In that
work, the authors aziomatically characterized the class of Horn AGM revision functions, by

LFor instance, {a,b,c} Nt {a, ~b, ~c} = {a, ~b, ~c} and {—a,b,c} NT {a, b, ~c} = {-a, =b, ~c}.
2See [7, Section 3.3] or [10, Section 8.3.1] for a detailed presentation of the AGM postulates for revision.
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strictly strengthening the class of AGM revision functions, with the aid of an extra postulate
that supplements the AGM postulates for revision — for details, the reader is referred to [5].
We recall that a Horn AGM revision function * is an AGM revision function that maps a Horn
theory and a Horn formula to a (new) revised Horn theory; i.e., * : H x Lp — H.

Now, consider the following constraint on a total preorder < over M, which is faithful to
a theory K, introduced by Zhuang and Pagnucco in [11].

(H) Ifr=~gr, thenrntr <gr.

Condition (H) says that whenever two worlds r and r’ are equidistant from the beginning of
a preorder <, then the world 7 Nt /, resulting from their atoms-intersection, cannot appear
later in <g. The results of Delgrande and Peppas [5], along with important results established
by Zhuang and Pagnucco in [11], entail the following representation theorem.

Theorem 2 ([11, 5]). Let x be an AGM revision function, and let {2k} xex be the family of
total preorders over worlds that correspond to *, by means of condition (Fx). Then, x is a Horn
AGM revision function iff {=k}kex satisfies condition (H).

3.2 Basic Horn Revision

Delgrande and Peppas not only axiomatically characterized AGM-style Horn revision, but also
proposed some interesting concrete Horn AGM revision functions [5]. In this subsection, we
present one of their proposals, which is inspired by the Hamming-based Dalal’s approach [4].
The basic Horn revision function, denoted by o, is defined as the (unique) Horn AGM
revision function induced, via condition (Fx), from a family {<g}gen of total preorders over

M, that satisfies the following constraint.
(BH) 7=y iff |rT| <]t

Condition (BH) orders the relative plausibility of worlds according to the number of atoms
they satisfy; notice that (BH) uniquely specifies <p, thus, ¢ is unique.

4 Inclusion-Based Horn Revision

In this section, we introduce a new proper sub-class of Horn AGM revision functions, based on
proper set inclusion of atoms of worlds. First, we introduce the next definition.

Definition 2 (Atoms-Ordered Theory). Let K be a consistent theory of L. We shall say that
K is atoms-ordered iff the atoms of the worlds of [K] are totally ordered with respect to proper
set inclusion; i.e., for any two worlds r,v' € K|, either r™ C r'* or 't CrT.

On that premise, consider the following postulate (PI). The semantic condition that corre-
sponds to (PI) is condition (PIS), also presented below, which constrains a total preorder <x
over M, which is faithful to a theory K.

(PI)  For any consistent ¢ of £, K * ¢ is atoms-ordered.

(PIS) [Ifr ~k 1/, then either r* C r'* or r'* C rt.
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According to (PIS), the faithful preorder <f is defined so that the atoms of the non-
K-worlds of every equivalent class (layer) of < are totally ordered with respect to proper
set inclusion. An example of a faithful preorder that respects condition (PIS) is shown
below, for P = {a,b,c} and the Horn belief set H = Cny((-aV b) A —c) — notice that
[H] = {{a,b, ~c}, {—a, b, ~c}, {~a,—b,~c}}.

abe _ abc
L abce —

abe <H = <H abc
= abce —
abc abe

Theorem 3 establishes the connection between postulate (PI) and constraint (PIS).

Theorem 3. Let x be an AGM revision function, and let {Xk}xex be the family of total
preorders over M that correspond to *, by means of condition (Fx). Then, % satisfies postulate
(PI) iff {2k} kex satisfies condition (PIS).

Proof. For the left-to-right implication, assume that * satisfies (PT). We show that {<x}xex
satisfies (PIS). Let r, ' be two worlds of M, such that r ~k 7’. Define ¢ to be a sentence of
L, such that [¢] = {r,r'}. Then, condition (Fx) entails that [K x @] = {r,r'}. Therefore, from
condition (PI), we have that either r™ C 7't or '* C r*, as desired.

For the right-to-left implication, assume that {=<x}recx satisfies (PIS). We show that =
satisfies (PI). For any consistent sentence ¢ of L, it follows, from condition (Fx), that all worlds
in [K * ¢] are equally plausible, with respect to K. That is, for any two worlds r, 7" € [K x ¢],
it is true that r =~k 7’. Hence, from (PIS), we have that either »* C »'* or 't C r*. This
again entails that K x ¢ is atoms-ordered, as desired. ]

The next theorem shows that any AGM revision function that respects postulate (PI) is a
Horn AGM revision function.

Theorem 4. Let * be an AGM revision function. If x satisfies postulate (PI), then x is a Horn
AGM revision function.

Proof. Let H be a Horn belief set, and let <y be the faithful preorder that % assigns at H, via
(Fx). Since x satisfies (PI), <y satisfies (PIS). It suffices to show that <p satisfies condition
(H). Let r,7’" be two worlds of M, such that r ~y r’. We will show that r N"*" ¢/ <g r. If
r Nt " € [H], this is clearly true. Assume, therefore, that r N v/ ¢ [H|. Then, since H is a
Horn theory, not both r and 7’ can be members of [H]| (for otherwise rN* 7’ would, also, belong
to [H]). Since one of r, v is not in [H], from r ~p r’, we derive that neither of r, 7' belong
to [H]. From r =g ', (PIS) entails that either 7 C r'* or '* C r*. This again implies that
rNt v ~g r~pgr';that is, r NT v’ <y r, as desired. [ ]

Theorem 4, along with Theorem 5 shown below, prove that the family of Horn AGM revision
functions identified by postulate (PI) constitutes a proper sub-class of the whole class of Horn
AGM revision functions.

Theorem 5. There exists a Horn AGM revision function that does not satisfy postulate (PI).

Proof. Let P = {a,b,c}, and let H be a Horn belief set such that H = Cng ((—a V b) A —c).
Clearly, [H] = {{a,b, —-c}, {—a, b, ¢}, {—a, b, —|c}}. Let * be a Horn AGM revision function
that assigns at H (via (Fx)) the next total preorder <g over M, which respects condition (H).

4
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abe abc
o = abc
abe <" abc <H -
e - abe
abe abe

Observe that <y does not respect condition (PIS), hence, * does not satisfy postulate (PI). W

5 Uniform Revision is Horn-Compliant

This section investigates uniform revision in the realm of Horn logic. A uniform-revision (UR)
operator is uniquely specified by means of a single total preorder < over all possible worlds
of Ml, which essentially expresses their prior relative plausibility, as considered by a particular
rational agent. This is accomplished since a total preorder < suffices to uniquely specify the
agent’s revision policy, with respect to every belief set of the language (by means of condition
(URS1), presented subsequently) [3, 2].

It proves to be the case that a UR operator is any AGM revision function * satisfying the
following postulate (UR); the semantic condition that corresponds to (UR) is condition (URS1),
which is, in turn, equivalent to condition (URS2) (where K,T € K) [3, 2].

(UR) For any ~p € KNT, K*¢ =T * .
(URS1) Forany r,r’ ¢ [K], r <g r'iff r <7,
(URS2) Forany r,r' ¢ [K|U[T], r =g " iff r <pr'.
Against this background, Theorem 6 proves that basic Horn revision encodes, as a matter
of fact, a particular uniform-revision policy.
Theorem 6. The basic Horn revision function < is a UR operator.

Proof. Let H, H' be any two Horn belief sets, and let <y, <z  be the faithful preorders that
© assigns (via (Fx)) at H, H', respectively. It suffices to show that <p, <p satisfy condition
(URS2). Since <y, =g satisfy condition (BH), it is true that, for any worlds z, 2’ ¢ [H] and
any worlds u, v’ ¢ [H'], z <y 2/ iff |z7] < |2/T|, and u <y v’ iff |[u™| < |u'T|. This again entails
that, for any worlds r,r" ¢ [H]U[H'], r =g ' iff r <pg 1’. Therefore, the faithful preorders
=<, 3 satisfy condition (URS2), as desired. [ ]

The aforementioned theorem, essentially, shows that the class of UR operators intersects
the class of Horn AGM revision functions. Therefore, uniform revision is Horn-compliant —
this is an important result that comes to extend the favourable properties of uniform revision.

Remark 1. One can easily find UR operators that are not Horn AGM revision functions, as
well as Horn AGM revision functions that are not UR operators.

Next, Theorem 7 proves that there exist uniform-revision policies that implement inclusion-
based Horn revision.

Theorem 7. There exists a UR operator that satisfies postulate (PI).

Proof. Let < be a total preorder over M, defined as follows (<- denotes the strict part of <):

abe _ abc
L abe p

abe =<- = =<- abe
e abce —
abe abe
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AGM Revision Functions

Horn AGM

UR Operators Revision Functions

Figure 1: The types of AGM revision functions discussed herein.

The preorder < specifies (via (URS1)) a unique family {<x} xck of total preorders over M,
which, in turn, induces (via (Fx)) a unique UR operator . Since < respects condition (PIS), it
follows that {<x }xex respects (PIS) as well. Hence, * satisfies postulate (PI), as desired. W

Remark 2. One can easily find inclusion-based Horn AGM revision functions that are not UR
operators. Moreover, there exists a Horn AGM revision function, which is, also, a UR operator
—namely, the basic Horn revision function— that can be verified to violate postulate (PI).

It can be shown that any class of AGM revision functions that are induced from faithful
preorders which specify the relative plausibility of possible worlds regardless of the (information
contained in the) respective belief set —such as the basic Horn revision function ¢ and the
inclusion-based Horn AGM revision functions, considered in this section— intersects the class
of UR operators; the details are left for future research.

The results of the present work are summarized in Figure 1, which depicts the types of AGM
revision functions discussed herein.

6 Conclusion

In this work, we identified some interesting types of Horn AGM revision functions. In particular,
we defined (axiomatically and semantically) a proper sub-class of Horn AGM revision functions,
based on proper set inclusion of the atoms of possible worlds. We, also, showed that the well-
behaved uniform revision is Horn-compliant, since concrete Horn AGM revision functions are,
in fact, particular UR operators. Given the critical role that Horn logic plays in belief revision,
further research on other solid types of Horn AGM revision functions is quite compelling.
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Abstract

Parametrized-difference (PD) revision is a special type of rational belief revision, based
on a fixed ranking over the atoms of the underlying language, with a plethora of appealing
characteristics. The process of PD revision is encoded in the so-called PD operators, which
essentially constitute a particular family of rational revision functions. In this article,
we identify some new properties of PD revision. Specifically, we demonstrate how this
type of belief change is tightly connected with selective revision, another type of revision
according to which the new information is partially accepted in the revised state of belief.
Furthermore, we show that PD operators respect a relevance-sensitive postulate, which
introduces dependencies between revisions carried out on different (overlapping) belief
sets.

1 Introduction

Belief revision (or, simply, revision) is the process by which a rational agent modifies her/his
beliefs, in the light of new information [8, 11]. A prominent and versatile approach which
formalizes belief revision is that proposed by Alchourrén, Gérdenfors and Makinson [1], known
as the AGM paradigm. The AGM paradigm characterizes any rational revision operator, named
AGM revision function, which, essentially, is a (binary) function that maps a belief set (theory)
and an epistemic input (a sentence that represents new information) to a (new) revised belief
set.

A family of well-behaved concrete AGM revision functions, called parametrized-difference
(PD) operators, was recently introduced by Peppas and Williams [12, 13]. Each PD operator is
uniquely defined by means of a single total preorder over the atoms of the underlying language,
hence, it is compactly-specified. PD operators, also, have an embedded solution to the iterated-
revision problem, and are expressive enough to cover a wide range of revision-scenarios, features
that make them an ideal candidate for real-world implementations.

In this article, we identify some new interesting properties of PD revision. Specifically, we
first demonstrate how PD revision is strongly connected with selective revision, a type of belief
change according to which the new information is partially accepted in the revised belief set
[7]. Already in [12, 4], it was shown that PD operators respect Parikh’s relevance-sensitive
axiom [10], an intuitive principle that supplements the AGM postulates for revision in dealing
with relevant change. Herein, we show that PD operators, also, respect another relevance-
sensitive postulate, which introduces dependencies between revisions carried out on different
(overlapping) belief sets.

The article is structured as follows. The next section fixes the required formal preliminaries.
Sections 3 and 4 introduce the AGM paradigm and PD revision, respectively. Thereafter,
Section 5 discusses PD revision with respect to selective revision, and Section 6 points out
some relevance-sensitive properties of PD revision. A brief conclusion closes the paper.



Properties of Parametrized-Difference Revision Aravanis

2 Formal Preliminaries

Herein, we work with a propositional language £, built over a finite, non-empty set P of atoms
(propositional variables), using the standard Boolean connectives A (conjunction), V (disjunc-
tion), — (implication), <> (equivalence), = (negation), and governed by classical propositional
logic. The classical consequence relation is denoted by |=.

A sentence ¢ of L is contingent iff ¥ ¢ and ¥ —p. For a set of sentences ' of £, Cn(T)
denotes the set of all logical consequences of I'; i.e., Cn(T') = {¢ € L : T |= ¢}. An agent’s
belief corpus shall be modelled by a theory, also referred to as a belief set. A theory K is any
deductively closed set of sentences of £; i.e., K = Cn(K). The set of all consistent theories is
denoted by K. For a theory K and a sentence ¢ of £, we define K + ¢ = Cn(K U {cp})

A literal is an atom p € P or its negation. For a set of literals @, |Q| denotes the cardinality
of Q. A possible world (or, simply, world) r is a consistent set of literals, such that, for any
atom p € P, either p € r or =p € r. The set of all possible worlds is denoted by M. For a
sentence (set of sentences) ¢ of L, [¢] is the set of worlds at which ¢ is true.

Let @ be a subset of P. We denote by £ the sublanguage of £ defined over Q, using the
standard Boolean connectives. For a sentence x of £, P, denotes the (unique) minimal subset
of P, through which a sentence that is logically equivalent to z can be formulated. If x is
inconsistent or a tautology, we take P, to be the empty set. Then, we define £, and £, to be
the propositional (sub)languages defined over P, and P — P, respectively, using the standard
Boolean connectives. Let ¢ be a contingent sentence of £. For a world r € M, r, and rg denote
the restrictions of r to L, and [Ta, respectively; i.e., 7, =rNL, and rg =1 HET(,. For a set of
worlds V', V,, and Vi; denote the sets of (restricted) worlds resulting from the restriction of all
V-worlds to L, and L, respectively; ie., Vo, ={ry, :r e V}and Vz={rgz:r e V}.

A preorder over a set V is any reflexive, transitive binary relation in V. A preorder < is
called total iff, for all v, € V., r <7’ or ' < r. Also, min(V, <) denotes the set of all <-minimal
elements of V; i.e., min(V, ) = {7“ eV foralr' eV, ifr' <r, then r < r’}.

3 The AGM Paradigm

Within the AGM paradigm, the process of belief revision is modelled as a (binary) function x*
mapping a theory K and a sentence ¢ to a revised (new) theory K * . Rational revision func-
tions, the so-called AGM revision functions, are those constrained by a set of eight postulates,
called AGM postulates for revision, listed below [8, 11].

(Kx1) K *is a theory of L.

(Kx2) @eK=xp.

(K*3) Kx*xpCK+o.

(K*4) If wp¢ K, then K+ ¢ C K .

(K*5) K % is inconsistent iff ¢ is inconsistent.
(Kx6) If Cn({¢}) = Cn({¢}), then K xp = K * ).
(K*7) Kx(pAy) C(K*¢)+ 1.

(K*8) If ¢ K=x¢p,then (Kxp)+19 CK=x(pAy).

Katsuno and Mendelzon proved that the revision functions that satisfy postulates (K 1)



Properties of Parametrized-Difference Revision Aravanis

(K « 8) are precisely those that are induced by means of a special type of total preorders over
all possible worlds, called faithful preorders [9].

Definition 1 (Faithful Preorder, [9]). A total preorder < over M is faithful to a theory K iff
the <k -minimal worlds are those satisfying K; i.e., min(M, <g) = [K].

Intuitively, » <k 7’ holds when r is at least as plausible (relative to K) as r’.

Definition 2 (Faithful Assignment, [9]). A faithful assignment is a function that maps each
theory K of L to a total preorder <y over M, that is faithful to K.

The following representation theorem precisely characterizes the class of AGM revision func-
tions, in terms of faithful preorders.

Theorem 1 ([9]). A revision function * satisfies (K * 1)~(K % 8) iff there exists a faithful
assignment that maps each theory K to a total preorder <y over M, such that, for any ¢ € L:

(Fx)  [K * @] = min([¢], <k).

For ease of presentation, we shall consider, herein, only the principal case of consistent belief
sets and contingent epistemic input.

4 Parametrized-Difference Revision

Peppas and Williams [12, 13], recently, introduced a proper sub-class of concrete AGM revision
functions, well-suited for real-world implementations, called parametrized-difference (PD) oper-
ators. PD operators are a generalization of the Hamming-based Dalal’s revision operator [6], as
each such operator is specified by a <-parametrization of Dalal’s construction, where <I denotes
a fixed total preorder over all atoms of P, which encodes their (prior) relative epistemic value;
the more epistemic entrenched (and, thus, more resistant to change) an atom is, the higher it
appears in <. In this section, we briefly review PD operators; for details on their definition,
the reader is referred to [12, 13, 4, 5].

Definition 3 (Difference between Worlds). The difference between two (possibly restricted)
worlds w, r, denoted by Diff (w,r), is the set of atoms over which w and r disagree. In
symbols,

Diff (w,r) = ((w —r)U(r— w)) npP.
For a set of atoms S and an atom ¢, we define S, = {p eS:pd q}. Definition 4 extends,

then, the total preorder < to sets of atoms.

Definition 4 (Total Preorder over Sets of Atoms, [12]). For any two sets of atoms S, &', SIS’
iff one of the next three conditions holds (< denotes the strict part of <):

() [s] <[5l
(ii) [S|=[8'|, and for all g € P, |Sy| = |S,].
(iii) [S|=[8'|, and for some q € P, |S,| > |S,|, and for all p < q, |Sp| = |S, |-
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Definition 5 (PD Operator, [12]). Let < be a total preorder over P. A PD operator is the
revision function induced, via condition (Fx), from the family of PD preorders {E% Yrek, where
each PD preorder E}% is uniquely defined, for any r,r’" € M, by means of condition (PD) below.

(PD) rCxr iff thereisaw € [K], such that, for allw' € [K],
Diff (w,r) < Diff (w',r").

Definition 5 implies that there is a one-to-one correspondence between the total preorders
over atoms and the PD operators. Note, lastly, that, when < = P x P (i.e., all atoms have
equal epistemic value), the PD preorder EIS]( is defined, for any r,r’ € M, as follows: r Efﬁ( r’
iff there is a w € [K], such that, for all w’ € [K], | Diff (w,r)| < |Diff (w’,r")|. In this case, the
family {C% }xer produces Dalal’s operator [6].

5 PD and Selective Revision

In this section, we demonstrate how a total preorder < over the atoms of the language —which,
essentially, constitutes the generative unit of PD revision— can be utilized for implementing
selective revision, a special type of belief revision according to which only a part of an epistemic
input is accepted in the revised state of belief [7]. Recall that, in the standard AGM paradigm,
the new information is always accepted (due to postulate (K * 2)). This, however, is a rather
unrealistic assumption, since real-world rational agents do not always receive information from
reliable sources. The following scenario, borrowed from [7], is illustrative.

Example 1 ([7]). You return back from work and your son tells you, as soon as you see him: “A
dinosaur has broken grandma’s vase in the living-room”. You, probably, accept the information
that the vase has been broken, and reject the part of the information that refers to the dinosaur.

A plausible way for such information filtering would be by taking into account the relative
plausibility of the “building blocks” of sentences of the language. As these “building blocks”,
essentially, are the atoms of the language, and the relative plausibility of the atoms is encoded
in a total preorder <, it turns out that PD revision provides a means for information filtering.
To see this, suppose that, during revision, the following filtering-rule is applied:

“If the epistemic input is a conjunction of atoms, then only the strictly most
<-plausible atoms should be accepted in the revised belief set”.

On that premise, if a A b is an epistemic input (where a, b are atoms), and, moreover, we
have that a <1 b, then only the atom b should be accepted in the revised state of belief.

6 Relevance-Sensitive Properties of PD Revision

Parikh pointed out that the AGM postulates for revision are liberal in their treatment of
relevance [10]. To remedy this weakness, he proposed an additional axiom that supplements
postulates (K x1)—(K *8), named axiom (P), according to which the revision of a theory K that
can be divided in two syntaz-disjoint compartments by an epistemic input ¢ that is syntax-
related only to the first compartment of K should not affect the second compartment of K. In
a subsequent work [14], two interpretations of Parikh’s axiom were identified, namely, its weak
and strong version.! Already in [12], it was shown that PD operators respect the weak version

IThe semantic properties of Parikh’s axiom were investigated, in detail, in [2, 3].
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of axiom (P), whereas, in [4], it was shown that PD operators, also, respect the strong version
of (P).

In this section, we point out further interesting relevance-sensitive properties of PD revision.
For establishing our results, we shall use the already known fact that PD operators respect the
following postulate (R), which states that the L£,-part of the revised theory K * ¢ contains at
least every sentence of the L -part of the initial theory K.

(R) KNL,C(Kx*xp)NL,.

Postulate (R) —which is equivalent to [K * |z C [K]z in the realm of possible worlds—
implies some interesting properties of PD revision, encoded in Lemma 1. To present this lemma,
let us first introduce the required notation. For an arbitrary theory K and a sentence ¢, such
that £, C £, we denote by [¢]® the set of p-worlds whose L,-part agrees with the £,-part of

some K-world; i.e., [p]X = {r €lplirpe [K]¢}~ By definition, it holds that [¢]X C [¢].

Lemma 1. Let < be a total preorder over atoms, and let x be a PD operator induced from the
family of PD preorders {E; Yrek. Moreover, let K be a theory, and let ¢ be a sentence, such
that L, C L. Then, the following identity is true:

[ ] = min([e]*,Cx,. )

= {u € [p]* : 3w € [K] s.t. Diff (w',u) € min({Diﬁ (w,r) :w € [K] and r € [p]"}, <1)}

= {u € o)X : 3w €[K] s.t. Diff (w',u) € min({Diﬁ (we,7y) :w € [K] and r € [go]K},ﬂ)}

Proof. The first equality follows directly from condition (Fx), from which we have that
[K * ¢] = min([¢],C%), and postulate (R), which entails that [K % ¢] C [ C [¢]. The
second equality follows from condition (PD). The last equality follows from the fact that
{wz:we[K]} ={rz:rec[p)}, which is implied by the definition of the set of worlds
] ¥ L

Lemma 1, essentially, says that the specification of the E%—minimal p-worlds, through the
differences between worlds of Definition 3, does not require the £,-part of the involved worlds.

Against this background, we will show that PD operators, also, respect the following
relevance-sensitive postulate (C).

(C) UKNL,=HNL,, then (K*xp)NL, = (Hx*p)NL,.

Postulate (C) makes an association between the revision policies of two different (overlap-
ping) theories. In particular, it states that, if two theories K and H share the same L -part,
then the revised theories K * ¢ and H * ¢ should, also, share the same L -part. Therefore, any
beliefs of K, H that are outside the sublanguage £, do not affect the way that the L,-parts
of K, H are modified — stated otherwise, the context of the L -parts of K, H does not affect
the modification of the £ -parts of K, H themselves.

It is noteworthy that, since KNL, = Cn (K ﬂﬁw) NL,, the following identity is, immediately,
derived from postulate (C):

(K+¢) N Ly = (Cn(K N L)+ ) NL,.
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Theorem 2 proves that PD operators respect postulate (C).
Theorem 2. PD operators satisfy postulate (C).

Proof. Let < be a total preorder over atoms, and let * be a PD operator induced from
the family of PD preorders {E%}TEK- Moreover, let K, H be two theories, and ¢
be a sentence of L, such that K N L, = H N L, If ¢ is consistent with both K
and H, or L, = L, then (C) trivially holds. Assume, therefore, that ¢ contradicts
K, H, and L, C L. Given that [K], = [H], (as KN L, = HNL,), [¢5 =
[plZ, {wz:we [K]} ={rg:r €[]} and {wp :w € [H]} = {rg:r € [¢]7}, we derive that
min({szf (Wy,7p) 1w € [K], 1€ [@]K}7§1) = min({Diﬁ (W, Tp) 1w € [H], 1€ [@]H},ﬂ).
Then, it is not hard to verify that Lemma 1 entails [K * @], = [H * ¢],; thus, (K )N L, =
(H % ¢)N Ly, as desired. |

7 Conclusion

Parametrized-difference (PD) revision constitutes a well-behaved type of belief revision, which is
perfectly-suited for real-world implementations. In this work, we identified some new interesting
properties of this type of revision. Specifically, we demonstrated how PD revision is tightly
connected with selective revision. Furthermore, we pointed out that PD operators respect a
relevance-sensitive postulate, which introduces dependencies between revisions carried out on
different (overlapping) belief sets.
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Truth Meets Vagueness

Introduction

Semantic and soritical paradoxes (the paradoxes generated by vague expressions) display remarkable
family resemblances. In particular, several logics have been independently applied to both kinds of
paradoxes—including many-valued, supervaluational, and non-transitive. These facts have been taken
by some authors to suggest that truth and vagueness require a unified logical framework (see e.g.
Field 2004). However, there currently is no identification, much less a theory, of what the common
features of semantic and soritical paradoxes exactly are. This is what we set out to do in this work. We
analyze semantic and soritical paradoxes, we propose a diagnosis of what is the common core of the
two phenomena, which we identify in a general form of indiscernibility, and we then provide a theory of
paradoxicality, which formalizes both semantic and soritical paradoxes as arguments involving specific
instances of our generalized indiscernibility principle, and correctly predicts which logics can non-
trivially solve them. For the sake of concreteness, we focus on four three-valued logics.

1 Truth, vagueness, and paradoxes in three-valued logics

Definition 1.1. Ly, is a first-order language (including predicates Tr for truth and P for vague properties)
that satisfies the following requirements:

(i) It is possible to define in L a function ™ 7 s.t. for every L -formula ¢, "™ is a closed term.

(ii) Forevery open L -formula ¢(x), there is an Ly -termt, s.t. t, = "(t,/x)", where ¢(t,/x) is the
result of uniformly replacing every free occurrence of x witht, in ¢.

(iii) There is at least one Ly -structure M with support M s.t. (a) M is countable, (b) M is acceptable,’
(c) for every a € M there is an L;-constant c,.

The truth predicate is often argued to satisfy a property of naiveté or transparency, to the effect that,
for any sentence ¢, ¢ and Tr("¢™) are always intersubstitutable (in all non-opaque contexts). More
precisely, it is required that from i/ one can always infer any formula ¢/ that results from i by replacing,
possibly non-uniformly, a subformula ¢ of ¢ with Tr("¢™) or vice versa.

Transparency famously gives rise to semantic paradoxes. Here is a model-theoretic presentation
of the Liar Paradox. Let A be equivalent to =Tr("A™) (i.e. a Liar sentence). Suppose there is a classical
evaluation v s.t. for every sentence ¢ € L, v(¢) = o(Tr("¢™)). Since v is a classical evaluation, either
v(d) =1oro(d) =0.Ifo(d) =1, then o(=Tr("A")) = 1 (by definition of 1), but also v(—A) = 1, which
is absurd. We conclude that (1) = 0, and therefore v(=Tr("A17)) = 0 (by definition of A). But the latter,
by naiveté, yields v(—=A) = 0, which is also absurd.

IThe notion of acceptable model is a standard model-theoretic notion (we do not include the definition for space reasons).
For details, see Moschovakis (1974, Chapter 5).



Vague predicates (such as ‘rich’, ‘tall’, ‘red’, ...) are often argued to satisfy a property of tolerance.
Let P be a vague predicate. Tolerance for P dictates that, if s is P and ¢ is extremely similar to s as far
as P is concerned (s ~p t, for short), then t is P as well. Tolerance can be formalized as follows:

(ToLERANCE,) Vx,Vy(P(x) Ax ~py — P(y))

Tolerance also famously gives rise to paradoxes — the soritical paradoxes. Suppose there is a classical
evaluation v s.t. 9(P(cy)) = 1, v(¢; ~p cir1) = 1 for every i, and v(VxVy(P(x) Ax ~p y — P(y))) = 1.
Since v is a classical evaluation, v (VxVy(P(x) A x ~p y — P(y))) = 1 entails that v (P(co) A ¢y ~p ¢; —
P(c1)) = 1, and since v(P(¢cy)) = 1 and v(cy ~p ¢1) = 1, also v(P(c1))) = 1. By induction, this establishes
that for every n, v(P(c,)) = 1.

In order to avoid both semantic and soritical paradoxes, several authors have advocated the use of
some non-classical logic. Here we focus in particular on three-valued logics.?

Definition 1.2. A partial model M is a pair (M, f), where M is a non-empty set and f is a multi-function
from closed L;,-terms to M and from atomic Ly -sentences to the set {0, 1/2,1}.

Definition 1.3. For every partial model M = (M, f), the strong Kleene evaluation induced by M is the
function ey from sentences to {0, 1/2, 1} such that:

em(R(to, ... tn)) = f(R(g, ..., tn))

em(=p) =1-em(e)
em(@ AY) = min(er (@), epm(¥))
epm(Vxp(x)) = inf{ep(@(t)) € {0,1/2, 1} |t is a closed term}

Definition 1.4. For every set of sentences I', an evaluation e makes T S-true if for every ¢ € T, e(¢) =1,
and T-true if for every ¢ € T, e(¢) > 1/2.

Definition 1.5. SS, TT, ST, and TS

I’ SS-entails ¢ (in symbols T' f=ss @) if for every partial model M = (D, f), every evaluation e
induced by M that makes all the sentences in I S-true, also makes ¢ S-true.

I TT-entails ¢ (in symbols T =11 @) if for every partial model M = (D, f), every evaluation e
induced by M that makes all the sentences in I" T-true, also makes ¢ T-true.

I’ TS-entails ¢ (in symbols T |=1s @) if for every partial model M = (D, f), every evaluation ey
induced by M that makes all the sentences in I' T-true, also makes ¢ S-true.

I’ ST-entails ¢ (in symbols T |=st @) if for every partial model M = (D, f), every evaluation ey
induced by M that makes all the sentences in I' S-true, also makes ¢ T-true.

We now use SS, TT, TS, and ST to formulate theories of truth and vagueness. In order to include
a treatment of truth-theoretical sentences, we move from a starting partial model M = (M, f) to a
Kripke model: a triple (M, f, S), where S is the extension of the truth predicate, so that (M, f, S) satisfies
the transparency requirement. The model-theoretic construction is due to Kripke (1975) (we won’t
reproduce it here). Let’s associate a strong Kleene transparent evaluation to a Kripke model.

2See e.g. (Kripke 1975, Priest 1979, Field 2008, Beall 2009, Smith 2008, Cobreros et al. 2012).



Definition 1.6. For every Kripke model M = (M, f,S) for L, the Kripke (strong Kleene) evaluation
induced by M is the function e from sentences to {0,1/2,1} s.t.:

1, ifpesS
em(@) =140, if~p €S
1/2, otherwise

Lemma 1.7. For every Kripke model M, the evaluation e is a strong Kleene evaluation, and it validates
a form of naiveté, i.e. for every ¢ € L, and every truth-theoretic substitution ¢":

em(9) = em(e)
Definition 1.8. SSTT, TTTT, STTT, and TSTT

- I SSTT-entails ¢ (in symbolsT sstt1 @) if for every Kripke model M, if the Kripke evaluation e p
induced by M makes all the sentences in I" S-true, it also makes ¢ S-true.

- I' TTTT-entails ¢ (in symbolsT =117 @) if for every Kripke model M, if the Kripke evaluation e p
induced by M makes all the sentences in T T-true, it also makes ¢ T-true.

- T TSTT-entails ¢ (in symbols T |=rstt @) if for every Kripke model M, if the Kripke evaluation e s,
induced by M makes all the sentences in I T-true, it also makes ¢ S-true.

- I STTT-entails ¢ (in symbolsT' [=strt1 @) if for every Kripke model M, if the Kripke evaluation e p

induced by M makes all the sentences inI' S-true, it also makes ¢ T-true.

Proposition 1.9. Letting ¢ be as above (a result of a truth-theoretical substitution within ¢):
- Forevery ¢ € Sentr,, ¢ Esstt ¢', ¢ Frr17 0", and ¢ Estrr 0"
- ForeveryT' U{g} C Senty, ., ifT Erstr @, thenT [=rstr @

We now consider the applications of strong Kleene semantics and of the four resulting logics (SS,
TT, TS, and ST) to vague predicates. A three-valued model M = (M, f) is called soritical if:

(@) em(P(co)) = 1.

(b) There is an individual ¢; s.t. ep((P(c;)) = /2.

(c) There is an individual ¢, s.t. ep((P(c,)) = 0.

(d) For every q, epr(cqg ~p Cgr1) = 1.

() em(P(cq)) = ent(P(cy) just in case q < r.
Definition 1.10. SSV, TTV, STV, and TSV

- I SSV-entails ¢ (in symbols T [=ssv @) if for every soritical model M and every induced evaluation
em, if epr makes all the sentences in I’ S-true, it also makes ¢ S-true.

- T TTV-entails ¢ (in symbols T =1y @) if for every soritical model M and every induced evaluation
em. if epq makes all the sentences in T T-true, it also makes ¢ T-true.



- T TSV-entails ¢ (in symbolsT \=rsy @) if for every soritical model M and every induced evaluation
em. if epq makes all the sentences in T T-true, it also makes ¢ S-true.

- T STV-entails ¢ (in symbolsT |=stv @) if for every soritical model M and every induced evaluation
em, if epq makes all the sentences in T’ S-true, it also makes ¢ T-true.

Proposition 1.11.

- TTV and STV are tolerant logics. For every vague predicate P:

Frrv VxVy(P(x) Ax ~py = P(y))  Fstv VxVy(P(x) Ax ~p y = P(y))
- SSV and TSV are intolerant logics. For every vague predicate P:

Fssv YxVy(P(x) Ax ~py = P(y)) sy YxVy(P(x) Ax ~p y — P(y))

2 Unifying the paradoxes

In order to ‘unify’ the paradoxes in the sense described above, we expand the theory developed in
Rossi (2019). The basic idea of Rossi (2019), in a nutshell, is the following. Each sentence ¢ is analyzed
individually. The components of ¢ are identified, and used to define an equation system. The possible
solutions to the equation system yields the possible values of ¢, given (i) a base model (for the base
vocabulary), (ii) an evaluation for logically complex sentences, and (iii) an evaluation for the truth-
theoretic (and, here) also the vague vocabulary. A sentence ¢ is paradoxical if it cannot receive a
unique classical value, and classical otherwise.
Let N3 = {0, 1/2, 1}. Let’s fix the language we will use to assign equations to formulas of L, .

Definition 2.1. Let L3 be the language whose alphabet comprises the following sets of symbols:

- a countable set Vars of variables {U(pl, R P .}, where each @y is the k-th element in a non-
redundant enumeration of sentences of L y;

- a set of constants Cons containing an individual constant for every element in Ns;
- a binary relation = for equality.
Let the set of terms and the set of atomic formulas of L3 be defined by the following clauses:

- the set of terms of L5 is built by recursively closing off Vars U Consunder the operations (1 — x),
min(x, y), and inf{xy, xs, .. ., Xp, . . .} employed in Definition 1.3;

- atomic formulas of L3 are s = t where s and t are L3-terms; we denote their set as Es.

Let boldface lower-case letters e vary over elements of E3, while capital letters E vary over elements
of P(Es). For E C Ej3, let Var(E) indicate the collection of £3-variables of formulas in E.

Definition 2.2. A 3-valued semantics for L is a structure Ss given by S3 = (N3, Es, e, A), where N3
and Es are as above, and

- e : Form g, > P(E3) obeys the clauses from Definition 1.3;

3We refer the interested reader to Rossi (2019, §4) for the construction of the function e.



- A is a (possibly infinite) set of functions a which are assignments of values in N3 to variables in
any set Var({e}) fore € Es; that is, a : {Var({e}) |e € Es} — Nj.

For every assignment « and for every e in E;, let = e indicate that e is a true arithmetical equation
under the assignment « of values in Nj to its variables. So, F* e holds if a(e) is a true arithmetical
identity. Let also put, for every assignment « and for every E C E;, a(E) = {a(e) |e € E}, and put
% E if and only if E* e for every e € E. We can now use the existence of solutions to £3-equations to
provide a generalized notion of satisfiability, which we will use to model paradoxical arguments

Definition 2.3. Let S3 = (N3, 3, e, A) be a semantic structure.
- A set E C E; is solvable in Ss if and only if there exists an assignment o € A such that =% E.
- An L -sentence ¢ is satisfiable in S3 if and only if e(¢) is solvable.
- A setT of L;-sentences is satisfiable in S5 if and only if all sentences ¢ of T are.
Definition 2.4.
- An L,-sentence ¢ is S(T)-true in S3 in short, ifa(v,) = 1 (a(v,) > 1/2).
- AsetT' of Ly -sentences is S(T)-true in Sz in short, if for every ¢ € T', a(v,) = 1 (a(vy) = 1/2).

Definition 2.5. Let T be a set of formulas of L, and let ¢ be also a formula of it. Let +- be the symbol
we use for logical consequence in some given theory. Then, we say that:

I' + ¢ is SS-satisfiable in S5 if for every assignment a that makes I' S-true, « makes ¢ S-true;

I' + ¢ is ST-satisfiable in S if for every assignment a that makes ' S-true, & makes ¢ T-true;

I' + ¢ is TS-satisfiable in Ss if for every assignment a that makes I' T-true, @« makes ¢ S-true;
- T'+ ¢ is TT-satisfiable in Ss if for every assignment a that makes T T-true, « makes ¢ T-true;
Proposition 2.6. LetT) := {1, A & =Tr(1),A & Tr(A)}. T} + L is NM-unsatisfiable for N,M € {S, T}.

Proposition 2.7. Let I}, be the following set of sentences of Ly+:

P(a),
I, = (P(ao) Aag ~p al) - P(al), cees (P(an—Z) A ap—p ~p an—l) - P(an—l),
ap ~p di,...,0p-2 ~P Ap-1

I, + P(ay) is TT- and ST-unsatisfiable, and is only vacuously SS- and TS-satisfiable, i.e. is only SS- and
TS-satisfiable by strong Kleene evaluations which assign value 1 to every P(a;).

We have obtained a unification of the paradoxes of truth and vagueness in the sense that both
semantic and soritical paradoxes become satisfiable or unsatisfiable arguments in the same logics. But
can we further reduce the ‘engines’ of the paradoxes — that is, transparency and tolerance — to a common
source? Consider the following principle:

(~-Inp) VxVy(x ~y — (p(x) © ¢(y)))



where ~ is a binary relation on terms, and ¢(s) is a schematic formula featuring at least one occurrence
of s. It seems to us that (~-IND) should be understood as a necessary, albeit not sufficient, condition for
a pair (~, ¢) to be a similarity relation, and a formula about that similarity relation, respectively.

Our claim, simply put, is that both naiveté and tolerance can be understood as forms of indiscerni-
bility. More precisely:

(i) one can find a relation ~7, and a formula ¢7,(x) of £, such that tolerance follows from (~7,-
InD?To), which is the instance of (~-IND) obtained by substituing ~, for ~, and ¢, for ¢;

(i) that one can find a relation ~7, and a formula ¢7, of £, such that transparency follows from
(~1-IND?Tr), which is the instance of (~-IND) obtained by substituing ~ 7, for ~, and ¢ for ¢.

Claim (i) is immediate, while claim (ii) is much less evident. First, it is not clear that a similarity
relation somehow connected to the use of the truth predicate can be found. Second, it is even less
clear that this relation might turn out to allow to deduce tolerance from indiscernibility. Despite the
appearances though, such a relation can be found.

Let ~7, be a relation such that s ~7 t holds if and only if either s = "¢ and t = "Tr("¢ ™), or
t="¢y ands ="Tr("¢™)". Let also, for every acceptable model M, t(x) be the M-definable function
such that r("¢") = ¢ for every formula ¢ of L. Finally, let, for every term s of L+,

o1(x/9) = (5= 1) Ax(5))

where 1 denotes the £ ,-term that strongly represents the coding function t.* In all cases in which s
is the code of a sentence, i.e., such that s = "¢ for some ¢ € L;

o1(x/9) = (97 =TH (YY) AY)

Notice that ¢7,(x/s) is then equivalent to . Take the instance (~7,-IND?Tr). It is clear that, for every
pair of terms s and t of Ly, the following formula is deducible by logic from (~7,-IND?Tr):

s~1rt = (o1(x/s) & o1(y/t))
Assuming that, for some y € Ly, s ="y and t = Tr("¢"), then:
rlp‘l NTrrTr(rlp—l)-l —
(((r.r(r'#-')-' ="Y)AY) o (e(CTr(TY D)D) T ="Tr (MY ) A Tr(rl//-')))

o1e(s/x) ore(£/x)

@1r(x/s) is then equivalent to i, and ¢, (x/t) is then equivalent to Tr(" ™). Thus, for every s and
t s.t. s ~7, t, the corresponding instance of transparency is provable, as wanted.
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Abstract

In this paper, I show that ZFC + LC's is restrictive compared to the V-logic multiverse, char-
acterised as ZFC + LCs+multiverse axioms. This means showing that the V-logic multiverse
proves the existence of an extra object that it is unavailable in ZFC + LC's and that, in turn,
this object realises a new isomorphism type. I argue that such an object is a class-iterable sharp,
that can only be found if there are proper, uncountable, width extensions of V. Such extensions
are present in the V-logic multiverse, but not in classical set theory.

1 Introduction

Classical set theory (ZF(C), as instantiated by the cumulative hierarchy V', has been a very successful
foundation of mathematics for over a century. Nonetheless, there are some problems with it. The
first, and foremost, problem is Godel’s Incompleteness: in the context of set theory, it entails that
some set theoretic statements are independent from ZFC. This means that we cannot prove neither
that they are true, nor that they are false. The main example of such statements is the Continuum
Hypothesis (CH), as proved by Cohen in the 1960s using forcing. For some time it was thought
that adding new axioms to ZF'C would solve this problem (Gddel’s program), with large cardinals
axioms (LC's) being the main candidate for addition. However, it was proved that they do not settle
CH and, moreover, that they are incompatible with the Axiom of Constructibility.! In the end, the
impossibility of solving independent questions by the simple addition of new axioms, coupled with the
multiplication of incompatible models generated through forcing, led to several possible expansions
of ZFC, each one giving rise to interesting mathematics. But which one should be chosen as the new
foundations of mathematics? The set theoretic multiverse (as introduced by J. D. Hamkins (2012))
side-steps the question: there is no need to choose, we can integrate all these different set theories
in just one multiverse conception. Such a solution is not appealing to the advocates of universism,
that instead defend the idea that there is only one set theoretic universe, V', that contains all the
possible sets and cannot be further expanded. Moreover, they point out that everything that can be
done in the multiverse can actually already be done in the Single Universe. For example, they argue
that the main tool used to generated new universes, i.e. forcing, can be interpreted as taking place
entirely within the Single Universe.? The only possible argument against this kind of universism and
in favour of multiversism entails proving that in the set theoretic multiverse we can some object that
we cannot have in the Single Universe at all.

In this paper, I argue exactly that. In particular, I contend that classical set theory, ZFC(+LC's),
is restrictive compared to the V-logic multiverse (a novel set theoretic multiverse conception de-
veloped by the present author and Claudio Ternullo). This multiverse conception is based upon
Friedman’s Hyperuniverse® and Steel’s set-generic multiverse*: like the Hyperuniverse, it uses the
infinitary V-logic as background logic (this logic admits formulas of length less than the first successor
of the least inaccessible cardinal, but only a finite block of quantifiers in front of them) and admits
all kinds of outer models of V' (produced by set-generic, class-generic, hyperclass forcing, etc.). Like

1The Axiom of Constructibility says that V = L, i.e. that all sets are constructible from simpler ones.

2Here and throughout the paper I will refer to models of set theory and universes interchangeably, as done in the
literature.

3See S. Friedman (2016).

4See Steel (2014).



Steel’s set-generic multiverse, it is recursively axiomatisable and is rooted on a ground universe that
satisfies ZFC. For this proof, I compare ZFC + LC's and the V-logic multiverse, characterised as
ZFC + LCs+ the multiverse axioms, following Maddy’s methodological principle MAXIMIZE (as
introduced in Maddy (1997)). According to this principle, when choosing between two theories T
and S we should prefer the one that can prove more isomorphism types. I claim that the V-logic
multiverse, as opposed to ZFC + LC's, does exactly that. This is because in the V-logic multiverse
theory we can prove the existence of proper, uncountable, extensions of V', that we cannot have in
ZFC + LC's (see Neil Barton (2019)). In turn, this extra object means we can realise more isomor-
phism types, since in the V-logic multiverse we can prove the existence of iterable class sharps and,
more importantly, maps between them (see Antos, N. Barton, and S.-D. Friedman (nd)). Moreover,
when moving from ZFC 4 LC's to the V-logic Multiverse we are not losing anything: ZFC, all
the large cardinals, inner models and V' are still there. On the other hand, when moving from the
V-logic multiverse to ZFC + LC's we lose the actual outer models of V', iterable class sharps and
iterable class sharp generated models. Thus, this latter theory is restrictive compared to the V-logic
multiverse theory.

This paper is structured as follows. First, I describe the infinitary V-logic and the V-logic
multiverse (section 2). After that, I show that classical set theory is restrictive compared to the
V-logic multiverse (section 3). Finally, some concluding remarks sketching the road ahead end the
paper (section 4).

2 The V-logic Multiverse

I now proceed to mathematically describe the V-logic multiverse. The system to be adopted allows
to address universes arising from extending V in width and height.> More specifically, it is able to:

1. code representations of the “canonical” relationship between V' and its outer models;

2. incorporate all kinds of outer-model constructs (e.g. extensions produced by various kinds of
forcing);

3. formulate what one should easily acknowledge as multiverse axioms.

This multiverse conception is, philosophically, a refinement of Hamkins’ broad multiverse. The key
difference is that, instead of admitting all the possible universes, without any hierarchy (as done
in Hamkins’ multiverse), the V-logic Multiverse only admits the universes that can be defined and
described in a certain, uniform way. While this is philosophical starting point aims at restricting
Hamkins’ philosophical conception (goal shared with other multiverses), the mathematical imple-
mentation ends up being more open.® In order to satisfy these requirements, I adopt the infinitary
V-logic, i.e. a logic whose language L+, is that of first-order logic, admitting formulas of length
less than kT (the first successor of the least inaccessible cardinal) and with a finite number (less
than w) of quantifiers in front, and supplemented with the membership relation symbol € and the
following constant symbols:

e a, one for each a € V;
e V, denoting the ground universe (that is, our initial V).
Proofs in V-logic are infinitary, because of the addition of the following inference rules::

Set-rule {p(b)|b € a} - (Vz € a)p(x)

5An height extension of V is produced by adding new ordinals, while a width extension by adding new subsets.

SHamkins’s multiverse, as implemented by the axioms introduced in Gitman and Joel David Hamkins (2011), is
composed by only the countable computably saturated models of ZFC, while the V-logic multiverse axioms admits
any kind of model.



V-rule {p(a)la € V} F (Va)p(x)

A sentence of V-logic may also use additional symbols.” For example, a case of special interest is
when W is introduced as a new predicate symbol (variable) ranging over “generic outer models of V7,
and one considers sentences of the form “W | ZFC + " for some sentence v, possibly containing
constants a for a € V. The following fact is fundamental for my purposes:

Fact 1 (Barwise). If V is countable then a theory T of Ly has a W -structure for a model iff T is
consistent in V -logic.

This means that, in V-logic, one can produce a sentence about any outer model W of V which,
if consistent in V-logic, then really expresses a property of an outer model W of V.2 As Barwise
has shown, it turns out that structures satisfying the axioms of 9M-logic, that is, M-structures (V-
structures, in the case of V-logic), are models of Kripke-Platek set theory (K P), a weak fragment of
ZFC.? In turn, models of K P are called “admissible sets” (as these models are related to admissible
ordinals'? in recursion theory). The least such model, which contains 9 as an object, is called 9t *.*!
If we turn to consider V-logic, a V-structure is the least admissible set beyond V', that is the least
model of K P containing V' as an object, which is called V*. In V+, we finally have codes for proofs
in V-logic, which allows one to express syntactic facts that are essential for axiomatising the V-logic
multiverse.

I start by considering a set-theoretic sentence o, which expresses, in V-logic, that “W = ¢”.
Now, consider the theory T'= ZFC + “W =" and let Con(T) be the statement “T" is consistent”
(in V-logic).'? Then, by Fact 1 above, if Con(T) holds, then W really is an outer model W of V
enjoying the property . This outer model, identified by Con(T), is, thus, a member of the V-logic
multiverse. The procedure may be generalised to all kinds of ¢ and all kinds of outer models W '3
which leads to the formulation of the first, and key, “multiverse axiom” of the new theory M ZFC —
more precisely, an axiom schema:

Axiom 1 (Multiverse Axiom Schema). For any first-order p with parameters from V., if the sentence
of V-logic expressing “W is an outer model of V' satisfying @” is consistent in V -logic, then there is
a universe W which is an outer model of V' that satisfies ¢.'4

In addition to this axiom schema, and in analogy with ZFC, M ZFC also features axioms describing
how the sets and universes of the multiverse behave.'® To this end, M ZFC contains all of ZFC,
together with the following axiom:

Axiom 2 (Core Axiom). Fuvery universe of the multiverse models ZFC.
Thus, M ZFC, as of now, consists of:

1. ZFC,

2. the Multiverse Axziom Schema;

3. additional V-logic “axioms” (the “V-rule” and the “set rule”);

"The general features of infinitary logics, and their relationships with admissible sets (structures) are discussed in,
among other works, Keisler (1974), Barwise (1975), and Dickmann (1975).

8This was proved in Barwise (1975).

9K P is the theory which results from removing the Power-Set and Infinity Axioms from ZF, and admitting
restricted forms of the Separation Axiom (Ag-Separation) and of the Replacement Axiom (Ap-Replacement).

10 An ordinal « is admissible iff the corresponding constructible universe L is a transitive model of K P.

M Barwise’s original notation is Hyp(9M), but to avoid confusion, the alternative notation 97 is preferable.

12Technically, Con(T) is the V-logic statement: “T ¥y ¢ A —¢”, where %y’ is the V-logic provability relation.

B3For instance, Con(T) above may further specify that W contains a filter GC C PC, where P€ is a class-poset,
which would mean that W is a class-forcing extension of V.

4This also means that each ¢ consistent in V-logic has a model in the multiverse. Note that the consistency of
such a ¢ is IIj-expressible in a first-order way, not over V but over V.

150f course, there are distinct variables for sets and universes in our multiverse theory.



4. the Core Aziom.

Although the multiverse axioms clearly describe semantic constructs, what we have at this stage
is just a collection of theories. In particular, if we take an incremental approach to MZFC, we
may informally view it as a tree made up of branches corresponding to alternative set-theoretic
statements, and of nodes where alternative V-logic theories extending ZFC appear. Thus, the V-
logic multiverse may be seen as the collection of all the combinatorially conceivable consistent V -logic
theories of outer models.

Note that the V-logic multiverse maximises over outer-model constructs, as no constraint upon
the nature of the outer models has been placed in the formulation of the Multiverse Axiom Schema.
I argue that this represents a significant improvement over the set-generic multiverse conception,
which only allows for certain kinds of outer models.'%

3 ZFC+LCsisrestrictive compared to the V-logic multiverse

In this section I present the result that I have hinted to in the Introduction: classical set theory
(ZFCQ) is restrictive compared to the V-logic Multiverse. To do so I use the methodological principle
MAXIMIZE as discussed by Maddy (1997). This principle states that when comparing two theories,
the one that proves more isomorphism types is preferable. The theory that proves more isomorphism
types mazimizes over the other (or, equivalently, the theory that proves less isomorphism types is
restrictive compared to the other). Maddy (1997) applies this principle to argue against the addition
of V.= L to ZFC, and I plan to apply the same line of reasoning to the V-logic Multiverse.
The argument consists of the following steps:

1. first of all, prove that one theory proves the existence of an extra object that cannot exists in
the (claimed) restrictive one;

2. prove that this extra object realises a new isomorphism type;

3. if the two above steps are done, then we can conclude that one theory mazimizes (in Maddy’s
sense) over the other (or, equivalently, that one theory is restrictive over the other).

I contend that this is true in the case of the V-logic multiverse and classical set theory.

First of all I need to precise the terms of this comparison. On the one hand, for the Single Universe
framework I am taking classical set theory in its usual axiomatization ZFC plus the addition of
large cardinals axioms, as instantiated by the cumulative hierarchy V. According to universists, this,
together with the restriction of set-generic forcing to countable transitive models, is enough for set
theoretic practice.!” On the other hand, the V-logic Multiverse is characterised as ZFC + LCs+ the
Multiverse Axioms. Note that, as usually argued by the universist, the addition of the Multiverse
Axioms do not add any “real” power to ZFC + LC's, since everything we need is already in the latter
theory, at least according to universists.

We can now proceed to the first step of my argument, i.e. showing that the V-logic multiverse
can prove the existence of an extra object that it is unavailable in ZFC 4 LCs. This object is a
proper, uncountable, outer model of V. Such an object cannot exists in the universist’s framework
of ZFC + LC's: indeed, the application of forcing in that usual setting is done only to countable
transitive models.'® This is because to do it we need the existence of generic filters, and for the
universist there are no V-generic filters.

However, in the V-logic multiverse framework we can prove the following theorem:

Theorem 1. Let ¢ be a V-logic sentence (for instance, a sentence which says “Con(T)” for some
V-logic theory T). The following are equivalent:

161n particular, models obtained through set-forcing.
17This point is argued by N. Barton (2019).
183ee Nik (2014), Antos, N. Barton, and S.-D. Friedman (nd) and N. Barton (2019).



1. ¢ is consistent in V -logic.

2. p is consistent in v-logic (this is essentially the V-logic build upon a transitive countable model
v, instead of the full uncountable V).

3.V has an outer model, W, such that W = .
4. There exists a W*, elementarily equivalent to W, such that W* = .19

This theorem implies that, in the V-logic multiverse, even if we start with a countable model of
ZFC inside V, we can then end up with a proper, uncountable outer model of an uncountable V2°

Consequently we have, in the V-logic Multiverse, an object that cannot be found in the universist’s
framework. We now need to prove that this new object realises a new isomorphism type. And this
is exactly my claim.

To see this, consider the technique of #-generation.?! As stated by Antos, Barton and Friedman,
this method is very useful in encapsulating several large cardinals consequences of reflection proper-
ties.?? It is based upon the existence of class-iterable sharps: these are transitive structures that are
amenable (i.e. xNU € N for any x € N), with a normal measure and iterable in the sense that all
successive ultrapower iterations along class well-orders are well-founded.?? If such an object exists,
then we can have class iterated sharp generated models, i.e. models that arise through collecting
together each level indexed by the largest cardinal of the model that result from the iteration of
a class-iterable sharp.?* Finally, we can claim that V is such class iterably sharp generated, and
enjoy all advantages of this fact (the main advantage is that any satisfaction obtainable in height
extensions of V' adding ordinals is already reflected to an initial segment of V itself). However, in
V we cannot find such a class-iterable sharp, since, if it were the case, then we would be able to
prove the existence of a cardinal that is both regular and singular?®, but this is impossible.?® So in
the classical set theoretic framework V is not a class iterably sharp generated model, and all of the
above is unattainable.

This situation is fundamentally different in the V-logic multiverse. Indeed, since in the V-logic
multiverse we can have proper, uncountable, extensions of V', we can also have, in these extensions,
a class-iterable sharp. And thus, in the V-logic multiverse, we can claim that V is, in fact, class
iterably sharp generated. This result opens a new realm of isomorphisms types between all the
various iterated ultrapowers, and models of different heights that are provided by #-generation.
Thus, we can claim that ZFC + LC's is restrictive compared to the V-logic multiverse, since in the
latter we can find a new object that realises a new isomorphism type.

4 Concluding remarks

I have shown that the V-logic multiverse, characterised as ZFC'+ LC s+ Multiverse Axioms, and with
V-logic as the background logic, proves more isomorphism types than classical set theory (ZFC +
LC's), and thus we can say that classical set theory is restrictive compared to the V-logic multiverse.

19This theorem has been proved by the present author and Claudio Ternullo in the paper Outer Models, V -logic
and the Multiverse, currently in preparation, and based on related results from Antos, N. Barton, and S.-D. Friedman
(nd) and N. Barton (2019).

20The V-logic multiverse is not the only multiverse conception that claims the existence of proper outer models of
V', the other being the Hyperuniverse. However, the latter assume that V' is countable, thus simplifying the setting
by a lot.

21See Antos, N. Barton, and S.-D. Friedman (nd) for a discussion of it.

22 A reflection property is a property of a model that can be proved to be true already in an initial segment of that
model.

23Here T am following the definition from Antos, N. Barton, and S.-D. Friedman (nd). The original definition in
S. Friedman (2016) is slightly different.

24 Again, the precise definition can be found in Antos, N. Barton, and S.-D. Friedman (nd).

25A regular cardinal is a cardinal which cofinality is equal to the cardinal itself, otherwise it is singular.

26See Antos, N. Barton, and S.-D. Friedman (nd) for the details.



The argument I presented is compelling, but it is only one step of a much wider research program.
Other than the already mentioned UNIFY principle, it must be noted that my argument uses an
intuitive definition of restrictiveness and isomorphism type that can both be refined. This can be
done by following first and foremost the definitions present in Maddy (1997), and then the subsequent
work done by Benedikt Lowe, Luca Incurvati and especially Albert Visser.?”

In conclusion, showing that the V-logic multiverse is better than classical set theory concerning
the principle MAXIMIZE is the first, necessary step to a better understanding of the set theoretic
multiverse and the requirements for a good foundational framework for mathematics.
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Abstract

Let p be a prime number, F, a finite field with p elements, z a variable, Fy[z] the
ring of polynomials in z with coefficients in F,, and F,(z) the field of rational functions
of z over F,. We consider the existential theory of addition and the Frobenius map of
a ring R C Fp(z), where R is generated over Fp[z] by inverting finitely many irreducible
polynomials of Fp[z]. We prove that it is model-complete and hence decidable. We also
prove that, if the existential theory, in the same language, of F,(2) is decidable, then its
first-order theory is also decidable.

1 Introduction

Our work is part of the on-going research revolving around the fact that the ring-theory
and even the existential ring-theory of any field of rational functions Fy(z) over a finite
field F), with p elements is undecidable (see [Phe91] and [Vid94]). So, proving decidability
of structures weaker than the ring-structure of such a field and its subrings is desirable (cf.
[PZ00]).

Consider R as a structure (model) of the language £ := {+,=,z — zF,x — zz,0,1},
where = and + denote regular equality and addition,  — zx denotes the multiplication-
by-z map and z — P is the Frobenius map. In [PZ04], the authors proved that the
L-theory of Fp[z] is model-complete (meaning that every formula is equivalent in Fp[z] to
an existential £-formula), and, hence, decidable. A similar (model completeness) result
has been proved for the L-structure of the ring of power series F,[[z]] of z (see [Onal8]).
It is a natural question to ask whether the £-theory of F,(z) is model-complete. For the
moment, this problem seems inapproachable with current means and may demand the use
of novel tools. Those that we use here suffice to prove model completeness for subrings of
Fp(2), generated over F,[z] by the inverses of finitely many irreducible polynomials.

The structure of addition and the Frobenius map is interesting, not only for its own sake,
but also because it is connected to various important mathematical and logical domains
and problems. For example, the derivative of a function (polynomial, rational or power
series) is positive-existentially definable in £ (see [PZ04]). So, the structure of Fy,(2) as a
model of addition and differentiation is encodable in its L-structure. It is also interesting
to study this structure with p as a parameter, cf., the open Grithendieck-Katz conjecture
[Ber91].

In another direction, it is a long-standing (and famous) problem whether there is res-
olution of singularities of algebraic varieties in positive characteristic. In the zero charac-
teristic case, it has been proved to always exist, in the algebraic and the analytic sense,
by Hironaka [Hir64]. But in positive characteristic it is an open problem. Although it
has been thought, for a long time, that such resolution always exists (no counter-example
is known), all efforts to prove it have failed so far and, recently, experts have expressed
doubts. From the investigations so far, it seems that the main obstacle in characteristic
p > 0 is the existence of the Frobenius map .

*Corresponding Author, Email: kamarianakis@uoc.gr
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2  Our results

2.1 The main theorems

The existential L-theory of the ring R C Fj,(z), where R is generated over Fy[z] by inverting
finitely many irreducible polynomials of I, [z], is the set of existential sentences of L, i.e.,
the first-order sentences of the language £ which are of the form Jx,...3z,, € R : ¢,
where ¢ is a boolean combination of equations that may be written in the language L.

We construct an algorithm which, given an existential formula ¢ of £, finds an equiva-
lent universal formula, thus we prove model-completeness.

Theorem 2.1. Let R be the subring of Fp(2) generated over Fp[z] by inverting finitely
many irreducibles polynomials of Fp[z]. The L-theory of R is model-complete.

For the case R = F,(z), we observe that our structure is a module over the non-
commutative ring F,(z)[P], where P is defined by Pz := z”, but with constant symbols
that are not contained in the language of modules that is used in the existing bibliography.
We make a variant of the well-known theorem of Baur and Monk [Bau76, Mon75], using
work of Van den Dries and Holly [VdDH92], and obtain the following theorem.

Theorem 2.2. Assume that the existential L-theory of Fy(2) is decidable. Then the L-
theory of Fp(z) is decidable.

But the decidability (or not) of the existential £-theory remains an open problem.

2.2 The main technical theorem

We present an outline of a new method that we introduced in order to prove Theorem 2.1.

Definition 2.3. An additive polynomial is a polynomial of the form
i=1

where T = (x1,...,%n) and, for each i,

w Q! (-7

s(7 s(2)—2

filw) =t 4+ > eigal
j=1

with bi, c; j € Fp(z).

For s € N, let V, be F,(z), considered as a vector space over the field Fy(z°). An
additive polynomial f as above is called normalized if all degrees s(i) are equal to some s

and the set of leading coefficients {b; | ¢ = 1,...,n} is linearly independent over V.
Theorem 2.4. Let f be a normalized additive polynomial of the variables T = (z1,...,Tn),
which has positive degree in all the variables. Letu € Fy,(2). Then the set {Z € R" | f(z) =
u} is finite.

The method of proof involves diverse tools, such as the Hasse derivative D; [Has36],
where ¢ denotes the order of derivation. This “hyperderivative” is used to create a matrix
operator W which generalizes the concept of the Wronskian operator in characteristic zero.

Note that Theorem 2.4 is indicative of the usefulness of our methodology; the inverse
image of a rational function through a multi-variate polynomial is, in general, infinite. We
also show that Theorem 2.4 is not true if one replaces R by Fp(z) - and this shows the
limits of our method: We can construct a normalized additive polynomial f and choose a
u € Fp(z) such that the set {z € F,(2)" | f(Z) = u} is infinite.
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Abstract
We propose a new theory of vagueness based on the notions of marginal and large
differences in the context of nonstandard mathematics. We apply this theory to an ex-
planation of the seductiveness of the Sorites paradox by coupling it with Fara’s interest-
relative theory of vagueness.

1 Introduction

Vague predicates give rise to soritical reasoning. The following ingredients are thought to give
rise to Sorites paradoxes. A (weak) order R and a finite series D of objects ordered by R such
that: i) the first member of D (definitely) has property P; ii) The last member of D (definitely)
fails to have P; and iii) the following principle is plausible.

INDUCTIVE PREMISE: Vz,y € D((P(x) A S(x,y)) = P(y)).

From the INDUCTIVE PREMISE and the fact that the first member of D has property P it
follows that the second member of D also has P. Via a novel application of the INDUCTIVE
PREMISE it is concluded that the third member of D has property P, and so on, until one
reaches the absurd conclusion that the last member of D both has and lacks property P.

A typical example of the paradox consists of a finite sequence of people ordered from short-
est to tallest, with clear cases of, respectively, shortness and tallness, and such that adjacent
members in the series differ by no more than 0.5c¢m in height. The weak order R consists in
the shorter than relation and the property P is the property of not being tall. Since the first
member of the series isn’t tall, the second member of the series also isn’t tall, by the INDUC-
TIVE PREMISE. And so on, until one reaches the absurd conclusion that the last member of the
sequence is both tall and non-tall.

Our particular view on the Sorites paradox is that the INDUCTIVE PREMISE is false and so
that there is a sharp boundary between those objects in the series that fall under P and those
that do not. Among the questions for those that accept the existence of sharp boundaries for
vague predicates is the following psychological question [4]: Why are we inclined to accept
the INDUCTIVE PREMISE, if it is false? Why are we inclined to think that the cut-off point
between the Ps and the not-Ps is not at any particular point in the series?

The present paper has three aims: i) is to formulate and defend what we call the ML
THEORY of the notions of marginal difference and large difference; ii) to show that the ML
THEORY determines a space of vague magnitudes with the structure of nonstandard models of
arithmetic and analysis;! iii) to apply the ML THEORY to an account of why soritical reasoning
is seductive and yet fallacious, i.e., to give an answer to the psychological question. While in our
view the theory of vague magnitudes here developed seems to be a part of the correct answers
to other important questions concerning the phenomenon of vagueness, addressing those other
questions is beyond the paper’s scope.

ISee [1] for a related idea.
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2 The ML THEORY

We start by assuming the existence of a (strict) weak order R and two binary predicates M and
L. Their intended interpretation is the following: M(x,y) states that x is marginally smaller
than y with respect to order R, while L(z,y) states that z is largely smaller than y with respect
to R. As such, the ML THEORY is a theory for “marginal” and “large” differences. We now
present the theory’s axioms:?

The first axiom postulates that the theory is not trivial in the sense that there are indeed
objects with “large” differences. The existence of an object with “marginal” differences is a
direct consequence of this together with Axiom 2.10 below.

Axiom 2.1. Jz,y L(z,y)

The second and third axioms are that whenever z is marginally /largely smaller than y, then
these objects are ordered by R.

Axiom 2.2. Vz,y (M(x,y) = R(x,y))
Axiom 2.3. Vz,y (L(z,y) = R(x,y))

We assume that marginal differences are transitive. This is in line with one of the so-called
Leibniz rules [3, Chapter 1], corresponding to the intuition that the sum of two infinitesimals
is still infinitesimal.

Axiom 2.4. Vz,y,z (M (z,y) N M(y,z) = M(x, z))
The next axiom states that marginal differences are not large.
Axiom 2.5. Vz,y (M(x,y) = —L(x,y))

The essence of vagueness is that marginal differences make no difference with respect to
large differences. The next axiom captures that idea.

Axiom 2.6. Vz,y,z (M(z,y) = (L(z,y) = L(z,z)) A (L(z, 2) = L(y, 2))))

The next two axioms capture the intuition that increasing large differences only results in
large differences.

Axiom 2.7. Vz,y,z (R(x,y) A L(y, 2)) = L(z, 2))
Axiom 2.8. Vz,y,z ((L(z,y) A R(y,2)) = L(z,2))

So far it would seem plausible that there are only two orders of magnitude. The next axiom
gives a tameness condition for possible elements between “marginal” and “large™ if = is smaller
than y, then either x is marginally smaller than y, or x is largely smaller than y, or there exists
some z, between = and y such that x is neither marginally nor largely smaller than z.

Axiom 2.9. Vz,y (R(x,y) = (M(z,y)V L(z,y) VIz(R(x, 2) ANR(z,y) AN =M (z,z) N—L(z, 2))))

2While the Sorites paradox (typically) involves only finitely many objects, the ML theory implies that there
are infinitely many objects. Such a commitment is a common idealization of several theories of measurement. For
this and related reasons some authors [7, 12| have proposed that theories of measurement should be formulated
as theories about relations between magnitudes rather than about relations between objects. For simplicity, we
here proceed in the standard manner by treating the ML, THEORY as a first-order theory.
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Any large difference can be decomposed into a marginal difference and a large difference.
This is of course another crucial property of vague predicates: removing a grain of sand from a
heap still leaves a heap.

Axiom 2.10. Vz,y (L(z,y) = (3z(M(z,2) A L(z,y)) A Jw(M(w,y) A Lz, w))))

Finally, we have an axiom of “density” for marginal differences: if x is marginally smaller
than y then, for every z between x and y, it must be the case that x is marginally smaller than
z and z is marginally smaller than y.

Axiom 2.11. Va,y(M(x,y) = Vz((R(z,2) A R(z,y)) = (M(z,2) A M(z,v))))

3 Nonstandard analysis

‘Nonstandard analysis’ was the name given by Abraham Robinson’s [10, 11] to any theory
giving a formal and consistent treatment of infinitesimals. There are many formulations of
nonstandard analysis (cf. e.g. [2, 3, 5]). However, for the purposes of this paper, a very “eco-
nomical” version due to Edward Nelson [8, Chapter 4], which we shall denote by ENA (for
Elementary Nonstandard Analysis), is sufficient.® Indeed, the main requirement that we need
from nonstandard analysis is the possibility of defining different orders of magnitude, which can
be achieved in any theory that permits the existence of infinitesimals.

Mathematics is usually formalized through the axioms of Zermelo-Fraenkel Set Theory (with
or without the Axiom of Choice) and in a language which only contains one undefined non-
logical symbol, ‘€’ for set membership (cf. e.g. [6, 9]). The theory ENA (cf. Figure 1) is a
conservative extension of Zermelo-Fraenkel Set Theory which is governed by a simple set of
extra axioms after adding to the language a new predicate, ‘st’. One should read st(z) as ‘x is
standard’. Formulas which involve the predicate ‘st’ are called external and formulas which do
not, i.e. formulas in the language of classical mathematics, are called internal.

(1) st(0)

(2) VYn € N(st(n) = st(n + 1))

(3) Jw € N (-st(w))

(4) (®(0) AVtn(D(n) = B(n+1))) = Vind(n),

where ® is an arbitrary formula (internal or external)
and V5'n ®(n) is an abbreviation of Yn(st(n) = ®(n)).

Figure 1: The axioms of ENA

Let us briefly comment on the axioms of ENA. The first two axioms state that the usual
natural numbers are standard and the third axiom postulates the existence of nonstandard
natural numbers. Finally, we have an axiom scheme which is a form of induction that allows us
to conclude that some property is true for all standard natural numbers given that it is true for
zero and that whenever it is true for some standard n, then it is also true for its successor n+ 1.
Since ENA is a conservative extension of classical mathematics, the usual form of induction is

3This theory is dubbed ENA™ in [3].
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still valid, albeit only for internal properties. To see why such restriction is required, consider
the formula ®(n) := st(n). If one could apply internal induction to ® the conclusion would be
that every natural number is standard, in contradiction with the third axiom.

One defines different orders of magnitude as follows. A real number z is said to be infinites-
imal if its absolute value is smaller than the inverse of any positive standard natural number;
limited, if it is, in absolute value, bounded by some standard natural number and unlimited, or
infinitely large if it is not limited.

4 Models and Representation

In the following we show that the ML THEORY is consistent by providing two different instan-
tiations J1,Jo of the predicates M and L such that all the axioms of the ML. THEORY are
satisfied in the context of ENA. The choice of nonstandard models is guided by the observation
that the simplest standard structures are not models of our theory.

The instantiation J; is arithmetical in nature because it only involves natural numbers:

1. R(z,y) :==x < y, where < is the usual order in the natural numbers

2. M(z,y):=3n(st(n) N\y=x+n)

3. L(z,y) :=x <y A-st(y — x)

Instantiation Js is analytic in nature as it requires (nonstandard) real numbers:
1. R(z,y) := x <y, where < is the usual order in the real numbers

2. M(z,y) := “x <y and their difference is infinitesimal”

3. L(z,y) := “x < y and their difference is infinitely large”

Theorem 4.1. ENA together with any of the instantiations J1 and Jo satisfies the ML azioms.

The verifications of the previous theorem are all immediate. We observe that in Axiom 9
the existentially quantified z is not realized under the instantiation J; but is realized under the
instantiation Js.

Corollary 4.2. The ML azxiomatics is consistent, if ZF is consistent.

Finally, we note the following representation theorem revealing the conditions under which
countable models of the ML THEORY are represented by countable nonstandard models of
arithmetic.

Definition 4.3. For any nonstandard arithmetical model M = (D, styv, <, +n1, ‘M), let
M* = (Dm, <m, Mm~, Lni+), where: i) My (z,y) off M E In(st(n) Ay = = 4+ n); and ii)
Ly (z,y) iff € <m y and M E —3n(st(n) Ay = x +n).

Consider the following condition on models of ML:

Definition 4.4 (Local linearity). A model M of ML is locally linear if and only if, for every
x € Dwm, the restriction of < to {y € Dy @ M(z,y) or (-(z <m y) and ~(y <m z))} s a
linear order.
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Let the ML™ THEORY be that theory whose axioms are those of the ML THEORY except
that axiom 2.9 is strengthened to

Vo, y (R(z,y) = (M(z,y) V L(z,y)))

The following result, whose proof we omit for lack of space, reveals the nonstandard character
of the ML THEORY.

Theorem 4.5. For every countable and locally linear model M of the ML THEORY there is
an homomorphism from M to IN*, for any countable nonstandard model N of arithmetic.

5 The ML THEORY and the psychological question

Consider the following constraint on tallness.
TALLNESS CONSTRAINT: Vy(S(y) = Vao(T(x) & L(y, x)))

Once conjoined with the TALLNESS CONSTRAINT the ML THEORY implies the following tolerance
principle.

TOLERANCE: YaVy((T(x) A M(y,z)) = T(y))

TOLERANCE is akin to the Sorites paradox’s INDUCTIVE PREMISE. In our view the de facto
truth of TOLERANCE partially accounts for the seductiveness of the INDUCTIVE PREMISE. To
see why, note that there are two ideas encapsulated in the notion of succession: i) y is adjacent
to x is the Sorites series; and #4) y is marginally taller than z. Part of the explanation for
the seductiveness of the INDUCTIVE PREMISE is thus a confusion between marginal difference
and adjacency. While some pairs of adjacent elements in a Sorites series are only marginally
different, others are appreciably different.

Yet, this is an insufficient explanation for the principle’s seductiveness. It remains to be
explained why we are prone to confuse marginal difference with adjacency. Still, and while an
explanation must perforce go beyond the scope of the ML, THEORY, the theory does encapsulate
a conception of vagueness that may be conjoined with specific theories of extant phenomena
involving vagueness to provide prima facie satisfactory replies to the psychological question.

Here we’ll focus on Delia Graff Fara’s [4] interest-relative theory of vagueness. According to
this theory whether two objects of different heights are only marginally different with respect
to their height depends on whether they are saliently similar in this respect, and whether
two objects are saliently similar is a context-dependent matter. Furthermore, two objects are
similar in a situation whenever, relative to the agent’s interests in the situation, the costs of
discriminating the objects outweigh the benefits of doing so, and salient in a situation when
they are being actively compared as live options for the agent’s purposes in that situation.

Now, consider a particular Sorites series for tallness, assuming the existence of a cut-off
point between the tall and the non-tall. Suppose that before you start going through the
objects arranged in the Sorites series o5 is the last of the non-tall and og is the first of the
tall ones. Now, imagine that you start going through the objects in the series, starting with
the shortest one. Assuming that you have no particular interest in discriminating the objects
with respect to height, o5 and og will be similar in this respect. Moreover, once you actively
compare o5 with og they become salient. So, even if 05 was the last of the non-tall ones and og
was the first of the tall ones before you actively compared them, once you do so they differ solely
marginally with respect to their height, and therefore are either both tall or both non-tall.
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The answer to the psychological question afforded by Fara’s interest-relative theory of vague-
ness is thus that we are prone to confuse marginal difference with adjacency in a Sorites series
because adjacent objects in a Sorites series are marginally different provided that one is actively
considering them and the costs of distinguishing them with respect to their height outweigh the
benefits of doing so. Interestingly, Fara’s theory perfectly aligns with the judgment prompted
by the ML THEORY that the Sorites paradox arises from a confusion between adjacency in a
Sorites series and marginal difference. Furthermore, a theory of vague magnitudes must ar-
guably have a structure of the sort characterized by the ML THEORY if it is to be compatible
with Fara’s answer to the psychological question. Suppose once more that you are going through
the previous Sorites series for tallness, and that you assign degrees of tallness to the objects in
the series according to some scale. Initially, o5 has a degree ¢ of tallness, which places it among
the non-tall, and og has a degree ¢’ of tallness, which places it among the tall.

Assume, without loss of generality, that once the similarity in height between o5 and og
becomes salient, you place og together with o5 among the non-tall. Then, in order for og to
also be assigned a non-tallness magnitude, there must be a non-tallness magnitude ¢’ greater
than ¢ that gets assigned to objects taller than o5. By continuing through the Sorites series, it
is easy to realize that there must also be a non-tallness magnitude ¢ greater than ¢’ (and ¢).
And so on. Thus, the non-tallness magnitudes must be open ended. Similar reasoning shows
that the tallness magnitudes cannot have a smallest magnitude.

This structure of the vague magnitudes is precisely of the sort determined by the ML
THEORY. Yet, other theories of vague magnitudes would not have this prediction. For instance,
no theory that treated marginal difference as amounting to nothing more, nothing less, than
difference of exactly ncm, for a fixed real number n, would possess this sort of structure. So,
in this sense, the interest-relative theory of vagueness’s answer to the psychological question
presupposes the ML THEORY, or at least theories quite close to it.

It is worth emphasizing that this particular structure of vague magnitudes arises from the
fact that the ML THEORY is non-reductionist about marginal difference and large difference.
That is, marginal and large difference are not appropriately captured by equating them with
specific (non-infinitesimal) differences with respect to the precise quantity in question. Ar-
guably, what is required to pin down such a non-reductionist conception of marginal and large
difference is an axiomatization of the sort we have offered, with the consequence that vague
magnitudes possess a nonstandard structure.

6 Conclusion

In this paper we have offered a new theory of vagueness — the ML, THEORY —, as well as a
representation of the structure of vague magnitudes determined by the ML THEORY in terms
of models of nonstandard mathematics.

Furthermore, we have shown that the ML THEORY and Fara’s interest-relative theory of
vagueness jointly offer a reasonable answer to the psychological question about vagueness. Not
only is it the case that TOLERANCE is a prediction of the ML THEORY, it is also the case that
in order for contextual shifts in what counts as a cut-off point to be admissible the space of
vague magnitudes must be open-ended in the way predicted by the ML. THEORY.
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Abstract

We provide a survey of classical decidability results for local fields and then present some
new results for various infinite extensions of local fields which are of arithmetic interest.

1 Introduction

The decidability of the p-adic numbers Q,, established by Ax-Kochen [AKG5] and Ershov
[Ers65], still remains one of the highlights of model theory. It motivated several decidability
results both in mixed and positive characteristic:

e In mixed characteristic, Kochen [Koc74] showed that Q,", the maximal unramified ex-
tension of Qp, is decidable. More generally, by work of [Zie72], [Ers65], [Bas78], [Bél99]
and more recently [AJ19], [Lee20] and [LL21], we have a good understanding of the model
theory of unramified and finitely ramified mixed characteristic henselian fields.

e In positive characteristic, our understanding is much more limited. Nevertheless, by
work of Denef-Schoutens [DS03], we know that F,,((¢)) is existentially decidable in L; =
{+,:,—,0,1,t}, modulo resolution of singularities. In fact, Theorem 4.3 [DS03] applies to
show that any finitely ramified extension of F,((¢)) is existentially decidable relative to
its residue field.

Note that all of the above results are restricted to finitely ramified extensions of Q, and F,((¢)).
The situation is less clear for infinitely ramified fields and there are many such algebraic ex-
tensions of Q,, whose decidability problem is still open. This is the content of the following
sections. Our results are divided into two categories, the wildly ramified extensions and the
tamely ramified extensions.

2 Wildly ramified extensions
Recall the definition:

Definition 2.0.1. A finite extension (L, w)/(K,v) of valued fields is said to be wildly ramified
if the ramification degree e(L/K) is p-divisible, where p is the residue characteristic of (K,v).
An algebraic extension is said to be wildly ramified if any finite subextension is wildly ramified.

In practice, one refers to wildly ramified extensions when the ramification degree is highly
p-divisible. Important wildly ramified extensions of @, include:

Example. (a) (@gb, the maximal abelian extension of Q.
(b) Qp(Cpee), the totally ramified extension obtained by adjoining all p™-th roots of unity.
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These extensions have been discussed in Macintyre’s survey on pg.140 [Mac86] and a conjectural
axiomatization of (@Zb was given by Koenigsmann on pg.55 in [Koel8]. Another interesting
extension is Qp(pl/ P™), a totally ramified extension of Q, obtained by adjoining a compatible
system of p-power roots of p.

The p-adic completions of the above fields are typical examples of perfectoid fields (see [Sch12]).
For any such field K, one can define its tilt, which intuitively is its local function field analogue
and serves as a characteristic p approximation of K. For our fields of interest, one has that
Q,(p'/?™) and Q,((p~) are approximated by F,((£))'/?™, the perfect hull of F,((t)), while
Q2b is approximated by Fp((¢))!/?”, the perfect hull of F,((¢)). The fields F,((t))'/?" and
F,((t))Y/?” are typical examples of wildly ramified extensions of F,((t)).

In [Kar20], the following is established:

Theorem A (Corollary A [Kar20]). (a) Assume F,((t))}/?” is decidable (resp. 3-decidable)
in L. Then Q,(p'/?™") and Q,((p) are decidable (resp. 3-decidable) in Ly

(b) Assume Fp((t))'/?™ is decidable (resp. 3-decidable) in Ly. Then Q2P is decidable (resp.
3-decidable) in Lyq;.

In the above result, the language L; is the language of valued fields together with a constant
symbol for ¢t. This is essentially a special case of the main result of [Kar20], which is a relative
decidability result for perfectoid fields. The proof uses Fontaine’s period rings, which are
relevant in the construction of the Fargues-Fontaine curve.

One may also prove the following unconditional decidability result:

Theorem B. There is an algorithm that decides whether a system of polynomial equations
and inequations, defined over Z, has a solution modulo p over each of the valuation rings of

Q;D (p1/p°°)7 (@p(CpOC ) and Q;b.

The proof of Theorem B goes via reduction to characteristic p, but unlike Theorem A only
existential decidability in L, is needed on the characteristic p side. The latter is known by
work of Anscombe-Fehm [AF16].

Relative decidability results in the reverse direction are also established in [Kar20]. For example:

Proposition. If Q,(p'/?™") is V' 3-decidable in Lyqy, then F,[[t]V/P™ is 3T -decidable in Ly.

The above Proposition is not exactly a converse of the existential version of Theorem A but
still suggests that if we eventually want to understand the theories of Q,(p'/?”"), Q,((pe) and
ng (even modest parts of their theories), we have to face the diophantine problem over the
perfect hull of F,,((¢)) and F,((t)).

3 Tamely ramified extensions

We now discuss some new results for tamely ramified extensions that are established in [Kar21],
where details and proofs may be found. Theorem C below is a general existential Ax-Kochen-
Ershov principle for tamely ramified fields, with no restriction on the characteristic, but which
is conditional on a certain form of resolution of singularities.

For our model-theoretic purposes, we need to extend the usual notion of a tamely ramified field
extension to the context of transcendental valued field extensions:
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Definition 3.0.1. A valued field extension (L,w)/(K,v) is said to be tamely ramified if l/k
is separable’, the quotient group AJ/T has no p-torsion, where p = char(k), and every finite
subextension is defectless.

Example. (a) Every valued field extension is tamely ramified when the residue characteristic
18 zero.

(b) The valued field extension (Q,(p'/™),v,)/(Q,v,) is tamely ramified if and only if p{ n.

(c) Let Fp((t1)) be the Hahn series field with residue field F,, and value group T. The valued
field extension Fp((t1))/F,(t) is tamely ramified if and only if 1 is not p-divisible in T.

Our results in this section depend on a certain form of resolution of singularities. In very simple
terms, resolution of singularities allows us to transform a given variety, which may have lots of
singularities, to one which is non-singular. Moreover, the latter variety is in some sense close
to the former, so that anything useful that can be said about the latter variety can often be
translated into something useful about the former. The advantage of resolving the singularities
of a variety lies in the fact that it is usually much easier to deal with non-singular varieties for
all sorts of problems.

We now state the precise form that is assumed in [Kar21]:

Conjecture R (Log-Resolution). Let X be a reduced, flat scheme of finite type over an excellent
discrete valuation ring R. Then there exists a blow-up morphism f : X — X in a nowhere dense
center Z C X such that

1. X is a regular scheme.
2. X,=X X speck Spec(R/mpg) is a strict normal crossings divisor.

The notion of an excellent ring, introduced by Grothendieck(see §7.9 [Gro65]), is quite technical
to define here. However, for the case of discrete valuation rings, this simply means that K /K
is a separable (not necessarily algebraic), where K = Frac(R) and K denotes the completion
of K. A divisor is said to be strict normal crossings if its reduced underlying scheme locally
looks like a union of smooth varieties crossing transversely. In [Kar21], the following general
existential Ax-Kochen-Ershov is obtained:

Theorem C (Theorem A [Kar2l]). Assume Conjecture R. Suppose (K,v) and (L,w) are
henselian and tamely ramified over o discrete valued field (F,vy) with Op excellent. If
RV(K) EEI,RV(F) RV(L), then K =3F L in L,-.

Theorem C specializes to well-known Ax-Kochen-Ershov results in residue characteristic 0 and
in the mixed characteristic unramified setting. Moreover, these Ax-Kochen-Ershov principles
are known not only for the existential theories but also for the full-first order theories. The case
of finite tame ramification in mixed characteristic and with perfect residue fields was proven
recently in Corollary 5.9 [Lee20].

At the same time, Theorem C implies conditional existential decidability results for F,((¢))
and its finite extensions, which were already known by the work of Denef-Schoutens [DS03].
Our proof does not use Greenberg’s approximation theorem, which is an essential ingredient in
[DS03].

On the other hand, Theorem C applies also to the setting of infinite ramification, providing us
with an abundance of examples of infinitely ramified extensions of Q, and F,((¢)) whose theory
is existentially decidable. This is the content of the next section.

LA field extension I/k (not necessarily algebraic) is said to be separable if [ is linearly disjoint from k1/p™
(see §2.6 [FJ04]).
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3.1 Decidability

In Remark 7.6 [AF16], the authors write:

7 At present, we do mot know of an example of a mized characteristic henselian valued field
(K, v) for which k and (T',vp) are 3-decidable but (K,v) is F-undecidable.”

The existence of such an example is proved in Observation 1.2.2 [Kar20]. However, if we restrict
ourselves to the tamely ramified setting, we indeed get such an Ax-Kochen style statement:

Corollary (Mixed characteristic). Assume Conjecture R. Suppose (K,v) and (L,w) are
henselian and tamely ramified over (Q,v,), admitting cross-sections that extend a given cross-
section of (Q,vp). If k =31 in L, and (T',vp) =3 (A, wp) in Loeg, then K =35 L in L,.

In particular, if (K, v) is henselian and tamely ramified over (Q,v,), admitting a cross-section
extending one of (Q,v,), then K is existentially decidable in L, relative to k in L, and (T, vp)
in Loqg (see Corollary 4.1.4 [Kar21]). Similarly, we obtain a positive characteristic analogue:

Corollary (Positive characteristic). Assume Conjecture R. Suppose (K,v) and (L,w) are
henselian and tamely ramified over (F,(t),v), admitting cross-sections that extend a given
cross-section of (Fp(t),v). If k =31 in L, and (T, vt) =3 (A, wt) in Loey, then K =3 L in Ly.

Among the fields that are existentially decidable, the maximal tamely ramified extensions of
Q, and F,,((¢)) are of arithmetic significance.

Corollary. Assume Conjecture R. Then the fields Q) and F,((t))"" are existentially decidable
n L,.

3.2 Tweaking Abhyankar’s example

Finally, we discuss a tame variant of the following famous example, essentially due to Abhyankar
[Abh56]. Tt is also presented by Kuhlmann in a model-theoretic context in Example 3.13
[Kuh11]:

Example. Let (K,v) = (Fp((t))"?",v;) and (L,w) = (F,((t"/77)),v;) be the Hahn series
field with value group p%Z and residue field F,. We observe that RV(K) =gy, (1)) BV(L)

but (K,v) #3r, (1) (L,w) since the Artin-Schreier equation x¥ — x — % = 0 has a solution in
L but not in K.

Our version of Abhyankar’s example is obtained by replacing p-power roots of ¢ with [-power
roots and exhibits a totally different behaviour:

Example. Fiz any prime | # p. Consider the valued fields (K,v) = (F,((t))(t"""),v;)
and (L,w) = (F((t"/"7)),v,), with the latter being the Hahn series field with value group
=7 and residue field F,. We observe that RV(K) = RV(L) and by Theorem C we get that
(K,v) =g, (27,3 (L,w), for all n € N. It follows that Fy((£))(t"/1) <3 Fp((¢/17)) in L,.
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Abstract
Inductive logic is concerned with assigning probabilities to sentences given probabilistic
constraints. The maximum entropy approach to inductive logic assigns probabilities to all
sentences of a first order predicate logic. This assignment is built on an application of the
Maximum Entropy Principle. This paper puts forward two different modified applications
of this principle and shows that the original and the modified applications agree in many
cases. A third promising modification is studied and rejected.

1 Introduction

Inductive logic is a formal approach to model uncertain inferences. It seeks to analyse the degree
to which premisses entail putative conclusions. Given uncertain premisses 1, ..., @, with
attached uncertainties X1, ..., Xj an inductive logic provides means to attach an uncertainty
Y to a conclusion v, where the X; and Y are non-empty subsets of the unit interval. Using ke
to denote an inductive entailment relation this can be represented as

AT SR
where ke denotes an inductive entailment relation [4].

The main early proponent of inductive logic was Rudolf Carnap [2]. Nowadays, the spirit of
his approach today continues in the Pure Inductive Logic approach [7, 8, 14]. In this paper, I
however consider uncertain inference within the Maximum Entropy Principle, which goes back
to Edwin Jaynes [5]. Roughly speaking, the Maximum Entropy Principle compels rational
agents to use a probability function consistent with the evidence for drawing uncertain infer-
ences. In case there is more than one such probability function, a rational agent ought to use
one of those probability functions that has maximal entropy.

If the underlying domain is finite, then applying the Maximum Entropy Principle for induc-
tive entailment is straight-forward and well-understood due to the work of Alena Vencovska &
Jeff Paris [11, 12, 13]. Matters change dramatically for infinite domains. Naively replacing the
sum by an integral in the definition of Shannon Entropy produces probability functions with
infinite entropy. But then there is no way to pick a probability function with maximal entropy
out of a set in which all functions have infinite entropy.

There are two different suggestions for inductive logic on an infinite first order predicate
logic explicating the Maximum Entropy Principle. The entropy limit approach [1] precedes
the maximum entropy approach [17, 18]. It has been conjectured, that both approaches agree
in cases in which the former approach is-well defined [18, p. 191]. This conjecture has been
shown to hold in a number of cases of evidence bases with relatively low quantifier-complexity
[6, 9, 16].

This paper introduces modifications of the maximum entropy approach and studies their
relationships. I next properly introduce this approach, the modifications and investigate their
relationships.

*Many thanks to Soroush Rafiee Rad and Jon Williamson for continued collaboration on these topics.
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2 The Maximum Entropy Approach and Modifications

The formal framework and notation is adapted from [9].

Given is a fixed first-order predicate language £ with countably many constant symbols
t1,ts,... and finitely many relation symbols, Uy,...,U,. The atomic sentences are sentences
of the form Ut;, .. .t;,, where k is the arity of the relation U;, will be denoted by ai,as, ...,
ordered in such a way that atomic sentences involving only constants among t4,...,t, occur
before those atomic sentences that also involve ¢,11. The set of sentences of £ is denoted by
SL.

The finite sublanguages £,, of £ are those languages, which only contain the first n constant
symbols ¢y, ..., t, and the same relation symbols as £. The sentences of the form +a; A.. . A+a,,
are called the n-states. Let €2, be the set of n-states for each n. Denote the sentences of £, by
SL,.

Definition 1. A probability function P on L is a function P : SL — Ry such that:
P1: If 7 is a tautology, i.e., = 7, then P(1T) = 1.

P2: If 0 and ¢ are mutually exclusive, i.e., = —(0 A ), then P(OV p) = P(0) + P(p).
P3: P (3z0(z)) = sup,, P (V2 0(t:)).

A probability function on L,, is defined similarly (the supremum in P3 is dropped and m is
equal to n). PP denotes the set of all probability functions on L. The set of probability functions
consistent with all premisses is denoted by B, E:={P € P : P(y;) € X; for all 1 <i < k}.

A probability function P € P is determined by the values it gives to the quantifier-free
sentences, a result known as Gaifman’s Theorem [3]. Consequently, a probability function is
determined by the values it gives to the n-states, for each n. It is thus sensible to measure
entropy of P via n-states with varying n.

Definition 2 (n-entropy). The n-entropy of a probability function P is defined as:

H,(P):=—- )Y P(w)logP(w) .
WwEN,
The usual conventions are 0log0 := 0 and log denoting the natural logarithm. The second

convention is inconsequential for current purposes. H,(-) is a strictly concave function.

The key idea is to combine the n-entropies defined on finite sublanguages into an overall
notion of comparative entropy comparing probability functions P and @ defined on the entire
first order language. So far, the literature has only studied such inductive logics with respect
to the first binary relation in the following definition.

Definition 3 (Comparative Notions of Entropy). That a probability function P € P has greater
(or equal) entropy than a probability function Q € P could be defined in the following three ways.

1. If and only if there is some natural number N such that for all n > N it holds that
H,(P) > H,(Q), denoted by P - Q.

2. If and only if there is some natural number N such that for all n > N it holds that
H,(P) > H,(Q) and there are infinitely many n such that H,(P) > H,(Q), denoted by

PlQ.
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3. If and only if there is some natural number N such that for all n > N it holds that
H,(P) > H,(Q), denoted by P)Q.

The lower two definitions are alternative ways in which one could explicate the intuitive
idea of comparative entropy.

Definition 4 (Maximum Entropy). The set of probability functions on L with mazimal entropy
relative to a notion of comparative entropy > defined on P? can then be defined as

maxents E: ={P € E: thereisno Q € E\ {P} with @ > P} . (1)

Definition 5 (Maximum Entropy Inductive Logics). An inductive logic with respect to > s
induced by attaching uncertainty Y~ (¢) C [0,1] to the sentences ¥ of L via

Yo () :={r €[0,1] | there exists P € maxents E with P(¢)) =r} .

In case there are two or more different probability functions in maxent- E, there are some
sentences of ¢ of £ to which multiple different probabilities attach.

In the next section, I study (the relationships of) these binary relations and the arising
inductive logics. Particular attention is paid to the case of a unique probability function for
inference, | maxents E| = 1.

3 Maximal (Modified) Entropy

I first consider notions of refinement relating these three binary relations.

Definition 6 (Strong Refinement). > is called a strong refinement of >, if and only if the
following hold

e > is a refinement of >, for all P,Q € P it holds that P > Q entails P > Q,
o for all R, P,Q € P it holds that, if R> P and P > @, then R> Q and R # Q.

Definition 7 (Centric Refinement). I call a refinement > of > centric, if and only if for all
different R, P € P with R > P it holds that (R+ P)/2 > P.

Clearly, not all binary relations possess strong refinements; not all binary relations possess
centric refinements.

Proposition 1. ] is a strong and centric refinement of ». ) is a strong and centric refinement
of | and of +.

Proof. 1 now display the three notions of comparative entropy line by line. The second conjunct
in the first definition is superfluous as is the second conjunct in the third definition:

P~ Q :<=(H,(P) < H,(Q) not infinitely often & H,(P) > H,(Q) infinitely often)
P]Q <= (H,(P) < H,(Q) not infinitely often & H,,(P) > H,(Q) infinitely often)
P)Q :<=(H,(P) < H,(Q) not infinitely often & H,,(P) > H,(Q) infinitely often) .
By thusly spelling out both comparative notions of entropy one observes that P > () entails

P]Q, and that P]Q entails P)Q. This establishes the refinement relationships.
Strong Refinements Next note that, if R > @ or if R]Q, then R # Q.
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] is a strong refinement of >: Let R > P and P|Q. Then R # Q. Furthermore, H,(R) <
H,(Q) is true for at most finitely many n, since from some N onwards P has always greater or
equal n-entropy than @. So, R > Q.

) is a strong refinement of |: Let R]P and P)Q). Then R # (. From some N onwards P
has always greater or equal n-entropy than ). There are also infinitely many n € N such that
H,(R) > H,(P). So, R|Q.

) is a strong refinement of >: Let R > P and P)Q. Then R # Q. From some N onwards
P has always greater or equal n-entropy than Q. From some N’ onwards R has always greater
n-entropy than P. Hence, H,(R) < H,(Q) can only be the case for finitely many n € N. So,
R > Q.

Centric Refinement First, note that different probability functions disagree on some
quantifier free sentence ¢ € Ly (Gaifman’s Theorem [3]). Since ¢ € L4 for all n > 1, these
probability functions also disagree on all more expressive sub-languages L, n-

] is a centric refinement of >: Fix arbitrary probability functions R, P defined on £ with
R]P. R # P. From the concavity of the function H, it follows that Hn(g) > H,(P),
whenever H,(R) > H,(P). By definition of |, there are only finitely many n for which H, (R) >
H, (P) fails to hold. Hence, £££ » P by definition of .

) is a centric refinement of >: Fix arbitrary probability functions R, P defined on £ with
R)P. Note that R may be equal to P. From the concavity of the function H,, it follows that
H,(242) > H,(P), whenever H,(R) > H,(P). By definition of ), there are only finitely many
n for which H,(R) > H,(P) fails to hold. Hence, Z£L » P by definition of .

) is a centric refinement of |: Fix arbitrary probability functions R, P defined on £ with
R)P. Note that R may be equal to P. Since fEL » P (see above case) and since ] is a
refinement of -, it holds that ££2]P. O

Remark 1 (Properties of Comparative Entropies). If H,(P) = H,(Q) for all even n and
H,(P) > H,(Q) for all odd n, then P|Q and P % Q. Hence, | is a proper refinement of ».
For P = @Q it holds that P)Q and Q)P. Hence, ) is a proper refinement of | and thus a
proper refinement of ».
| is transitive, irreflexive, acyclic and asymmetric. ) is transitive, reflexive and has non-
trivial cycles, e.qg, for all probability functions P,Q with zero-entropy, H,(P) =0 for alln € N,
it holds that P)Q.

I now turn to entropy maximisation and the induced inductive logics.

Proposition 2. Let > be a strong refinement of >. If {Q} = maxents E, then {Q} =
maxents, E = maxent E.

Proof. Note at first that since > is a refinement of > it holds that
maxents, E C maxents, E . (2)

Maximal elements according to > may not be maximal according to > and all maximal elements
according to > are also maximal according to >>.

Assume for the purpose of deriving a contradiction that @ ¢ maxent~ E. Then, there has
to exist a P € E\ {Q} such that P > @ but P > @ fails to hold ({Q} = maxents, E).

However, since {Q} = maxents, E and @ ¢ maxents E hold, there has to exist some R €
E \ {P} such that R > P, P cannot have maximal >>-entropy. We hence have R > P
and P > . Since > is a strong refinement of >, we obtain R > @ and R # ). Since
R € E it follows from the definition of maxents, that @) ¢ maxents E. Contradiction. So,
Q@ € maxents E.

4
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(2)
Since {Q} = maxents. E O maxents E 3 @, it follows that maxent~ E = {Q}. O

Proposition 3. If E is convex, > is a centric refinement of > and {Q} = maxents E, then
{@} = maxents, E = maxent, E.

Proof. Assume for contradiction that there exists a P € E\{Q} such that P is not >>-dominated
by the probability functions in E but >-dominated by some R € E\ {P}, R > P. Now
define S = (P + R) and note that S € E (convexity) and that S, P, R are pairwise different,
{S, P, R}| = 3.

Since > is a centric refinement of >, conclude that S > P, which contradicts that P €

maxents, E and P # @. So, only @ can be in maxents E.
(2)
Since @) € maxents E and maxents E C maxents, E it follows that {Q} = maxents E. O

Theorem 1 (Triple Uniqueness). If E is conver and at least one of maxenty E, maxent; E or
maxent. E is a singleton, then

maxent £y = maxent; E = maxent, E .

Proof. Simply apply the above three propositions. O

Having studied refinements of >, I now briefly consider how > could refine a binary relation.
Closest to the spirit of Definition 3 would be to consider P}Q, if and only if H,(P) > H,(Q)
for all n € N. Clearly, the other three notions of comparative entropy are refinements of }.

Neither of these three binary relations is a strong refinement and neither is a centric re-
finement. To see this, consider three pairwise different probability functions P,Q, R with i)
H,(P) > H,(Q) for all n , ii) H,(P)/H,(Q) ~ 1, iii) H1(Q) = H1(R) — § for large 6 > 0
and iv) H,(Q) > H,(R) for all n > 1. Then P}Q and @ > R,Q]R,Q)R. Now note that
H,(P) < Hy{(R) and thus P} R fails to hold. None of >-,],) is a strong refinement of }. Finally,
observe that %}R fails to hold. None of >-,],) is a centric refinement of }.

The binary relation } induces a different inductive logic than >, ], ):

Example 1. Let U be the only and unary relation symbol of L. Suppose there is no evidence,
E =P. Then every P € P with P(Ut;) = P(=Uty) = 0.5 has mazimal 1-entropy. Hence, all
such P are members of maxenty E. For O € {>~,],)} it holds that maxentn E = P—, where P-
denotes the equivocator function, which for all n assigns all n-states the same probability of
1/|Q,]. So, maxentn E # maxenty E.

This leads to the following more general observation:

Proposition 4. If there exists an n € N such H,(P) = max{H,(Q) : Q € E}, then P €
maxenty E.

This strong focus on single sublanguages £,, makes maxent; unsuitable as an inductive logic
for infinite predicate languages.

4 Conclusions

Maximum entropy inductive logic on infinite domains lacks a paradigm approach. The entropy
limit approach, the maximum entropy approach as well as the here studied modified maximum
entropy approaches induce a unique inductive logic in a number of natural cases. This points
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towards a, perhaps surprisingly, unified picture of maximum entropy inductive logics — in spite
of the number possible ways to define such inductive logics.

The Maximum Entropy Approach fails to provide probabilities for uncertain inference for
certain evidence bases of quantifier complexity X5 [15, § 2.2]. In these cases, for all P € E there
exists a @ € E such that @ > P and maxent E is hence empty [10]. One way to sensibly define
an inductive logic could be to consider a binary relation which is refined by >. Unfortunately,
the most obvious way fails to deliver a sensible inductive logic (Proposition 4). Finding a way
to define such a sensible inductive logic must be left to further study.

References

[1] Owen Barnett and Jeff B. Paris. Maximum Entropy Inference with Quantified Knowledge. Logic
Journal of IGPL, 16(1):85-98, 2008.

[2] Rudolf Carnap. The Two Concepts of Probability: The Problem of Probability. Philosophy and
Phenomenological Research, 5(4):513-532, 1945.

[3] Haim Gaifman. Concerning measures in first order calculi. Israel Journal of Mathematics, 2(1):1—
18, 1964.

[4] Rolf Haenni, Jan-Willem Romeijn, Gregory Wheeler, and Jon Williamson. Probabilistic Argumen-
tation, volume 350 of Synthese Library. Springer, 2011.

[6] Edwin T Jaynes. Probability Theory: The Logic of Science. Cambridge University Press, Cam-
bridge, 2003.

[6] Jiirgen Landes. The Entropy-limit (Conjecture) for Y-Premisses. Studia Logica, 109:423-442,
2021.

[7] Jirgen Landes, Jeff B. Paris, and Alena Vencovskd. Some Aspects of Polyadic Inductive Logic.
Studia Logica, 90(1):3-16, 2008.

[8] Jirgen Landes, Jeff B. Paris, and Alena Vencovskd. A survey of some recent results on Spectrum
Exchangeability in Polyadic Inductive Logic. Synthese, 181:19-47, 2011.

[9] Jiirgen Landes, Soroush Rafiee Rad, and Jon Williamson. Towards the Entropy-Limit Conjecture.
Annals of Pure and Applied Logic, 172, 2021.

[10] Landes, Jiirgen and Rafiee Rad, Soroush and Williamson, Jon. Determining maximal entropy
functions for objective Bayesian inductive logic. Forthcoming.

[11] Jeff B. Paris. Common Sense and Maximum Entropy. Synthese, 117:75-93, 1998.

[12] Jeff B. Paris. The Uncertain Reasoner’s Companion: A Mathematical Perspective, volume 39 of
Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge, 2
edition, 2006.

[13] Jeff B. Paris and Alena Vencovskd. In Defense of the Maximum Entropy Inference Process.
International Journal of Approzimate Reasoning, 17(1):77-103, 1997.

[14] Jeff B. Paris and Alena Vencovskd. Pure Inductive Logic. Cambridge University Press, 2015.

[15] Soroush Rafiee Rad. Equivocation axiom on first order languages. Studia Logica, 105(1):121-152,
2017.

[16] Soroush Rafiee Rad. Maximum Entropy Models for ¥, Sentences. Journal of Applied Logics -
IfCoLoG Journal of Logics and their Applications, 5(1):287-300, 2018.

[17] Jon Williamson. Objective Bayesianism with predicate languages. Synthese, 163(3):341-356, 2008.
[18] Jon Williamson. Lectures on Inductive Logic. Oxford University Press, Oxford, 2017.



The placeholder view of assumptions and the
Curry—Howard correspondence

Ivo Pezlar!

Czech Academy of Sciences, Institute of Philosophy, Prague, Czech Republic
pezlar@flu.cas.cz

Abstract

Proofs from assumptions are amongst the most fundamental reasoning techniques. Yet
the precise nature of assumptions is still an open topic. One of the most prominent concep-
tions is the placeholder view of assumptions generally associated with natural deduction
for intuitionistic propositional logic. It views assumptions essentially as holes in proofs
(either to be filled with closed proofs of the corresponding propositions via substitution
or withdrawn as a side effect of some rule), thus in effect making them an auxiliary no-
tion subservient to proper propositions. The Curry-Howard correspondence is typically
viewed as a formal counterpart of this conception. In this talk, based on my paper of
the same name (Synthese, 2020), I will argue against this position and show that even
though the Curry-Howard correspondence typically accommodates the placeholder view
of assumptions, it is rather a matter of choice, not a necessity, and that another more
assumption-friendly view can be adopted.

Introduction. Proofs from assumptions are amongst the most fundamental reasoning tech-
niques. Yet the precise nature of assumptions is still an open topic. One of the most prominent
conceptions is the placeholder view of assumptions generally associated with natural deduction
for intuitionistic propositional logic. It views assumptions essentially as holes in proofs (either
to be filled with closed proofs of the corresponding propositions via substitution or withdrawn
as a side effect of some rule), thus in effect making them an auxiliary notion subservient to
proper propositions (see, e.g., [14], p. 5). The Curry-Howard correspondence is typically viewed
as a formal counterpart of this conception (recently, see, e.g., [12]). I this talk, based on my
paper [8], I will argue against this position and show that even though the Curry-Howard cor-
respondence typically accommodates the placeholder view of assumptions, it is rather a matter
of choice, not a necessity, and that another more assumption-friendly view can be adopted.

Assumption withdrawing. The rule for implication introduction from natural deduction
for intuitionistic propositional logic is arguably the best-known example of the assumption
withdrawing rule:

4]

_B
ADB
It prescribes the following inference step: if we can derive B from assumption A, then we can
derive A D B and withdraw the initial assumption A (it is worth noting that other assumptions

than A may be used in deriving B and those remain open after discharging A). Note that this
rule effectively embodies the deduction theorem from standard axiomatic systems. In other
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words, the implication introduction rule is internalizing structural information from the proof
level (“B is derivable from A”) to the propositional level (“A implies B”).!

The problematic aspect of this and other assumption withdrawing rules stems from the fact
that it behaves differently from the non-assumption withdrawing rules. More specifically, with
implication introduction rule we are deriving the proposition A D B not from other propositions
as with other standard rules (e.g., conjunction introduction), but from a hypothetical proof.
To put it differently, the inference step validated by the implication introduction takes us from
a derivation starting with a hypothesis to a proposition, not just from propositions to another
proposition as do rules without assumptions.?

For example, consider the following simple proof of the theorem A O ((A D B) D B) of
propositional logic:

[ADB]' (AP
B
(ADB)DB
AD((ADB)D>B)

DE
DIy

DIz

We start by making two assumptions A O B and A. Applying the implication elimination
rule (modus ponens) we derive B. What follows are two consecutive applications of implica-
tion introduction rule, first withdrawing the assumption A O B, the second withdrawing the
assumption B. Note that it is the fact that B is derivable from A O B together with A that
warrants the application of the implication introduction rule and the derivation of the corre-
sponding proposition (A D B) D B, at that moment still depending on the assumption A.
Analogously with the second application of the implication introduction rule that withdraws
this remaining assumption.

A proof that relies on no assumptions is called a closed proof. If a proof depends on some
assumptions that are yet to be withdrawn (i.e., open/active assumptions) it is called an open
proof. For example, our derivation of A D ((A D B) D B) constitutes a closed proof, since
both assumption were withdrawn in the course of the derivation. Assuming we would not have
carried out the last inference step, we would get an open proof:

[AD B! A
B DE
(A>5B)>B

since the assumption A, upon which the derivation of ((A D B) D B) depends, is still active.

Closed proofs are usually preferred to open ones for the simple reason that closed proofs
are generally viewed as the fundamental notion in standard proof-theoretic systems. From
this perspective, assumptions are just temporary holes in the proof that are preventing us
from reaching a closed proof. These open holes can be are either completely discarded via
assumption withdrawing rules or filled in with other already closed proofs via substitution.
This is the reason why [12] and others® call this the placeholder view of assumptions: active
assumptions are just auxiliary artefacts of the employed proof system that behave differently
than proper propositions, i.e., propositions that do not appear as assumptions.

1[12] describes this as a two-layer system. Note that, strictly speaking, the assumptions are not really
withdrawn, they are rather incorporated into the propositional level in the form of an antecedent.

2This non-standard behaviour is also the reason why [9] describes assumption withdrawing rules as improper
rules and introduces the distinction between inference rules and deductions rules. For more, see [9], [7].

3See, e.g., [1]
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The Curry-Howard correspondence. The placeholder view of assumptions is also sup-
ported to a large extent by the Curry-Howard correspondence in its basic form which links
typed lambda calculus and implicational fragment of intuitionistic propositional logic.* Un-
der this correspondence, natural deduction assumptions correspond to free variables of lambda
calculus, which fits well with the interpretation of assumptions as open holes in the proof.

For example, assuming only the implicational fragment of intuitionistic propositional natu-
ral deduction, we get the following correspondences between the propositional and functional
dimensions of the Curry-Howard correspondence:

NATURAL DEDUCTION  LAMBDA CALCULUS
assumption free variable

implication introduction function abstraction

implication elimination  function application

Under this correspondence, the implication introduction rule will then look as follows:

[z :. Al

b(m) : B
Ax.b(x): AD B

Note that the act of withdrawing the assumption A corresponds to A-binding of the free variable
x. The whole proof of the theorem A D ((A D B) D B) would then proceed in the following
way:

[z:AD B [y : A]?
zy: B
Aay:(ADB)DB
Ay Ay AD ((ADB) D B)

DOE

DIy

with the concluding proof object (closed term) Ay.\x.xy with no free variables representing the
final closed proof with no active assumptions. In contrast, the open proof discussed earlier:

[z:AD B! y: A
zy: B
Aay:(ADB)DB

DE
DIy

concludes with the proof object Az.zy that still contains the free variable y corresponding to
the yet to be withdrawn assumption A.

The placeholder view of assumptions and consequence statements. The Curry-
Howard correspondence is generally viewed as incorporating the placeholder view of assump-
tions. Probably most recently, this point was explicitly made in [12]. Furthermore, in the
same paper Schroeder-Heister advocates for a more general concept of inference that takes
us not from propositions to other propositions, but from (inferential) consequence statements
A = B to other consequence statements in order to, amongst other things, equalize the status
of assumptions and assertions. The general form of inference rules he discusses is the following;:

4See, e.g., [13].
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Ai=B, ... A,EB,
CED

where the antecedents can be empty. As he explains:

This corresponds to the idea that in natural deduction, derivations can depend on assump-
tions. Here this dependency is expressed by non-empty antecedents, as is the procedure
of the sequent calculus. Our model of inference is the sequent-calculus model... ([11], p.
938)

To show that this rule is correct, we have demonstrate that given the grounds for the premises
(denoted as g : A = B) we can construct grounds for the conclusion. In other words, the
grounds of the conclusion have to contain some operation f transforming the grounds for the
premises to the grounds for the conclusion. Schematically:

gl:Al):Bl gnAn):Bn
flg1,--.gn):CED

Schroeder-Heister comments on this rule as follows:

... [H]Jandling of grounds in the sense described is different from that of terms in the
typed lambda calculus. When generating grounds from grounds according to [the rule
immediately above], we consider grounds for whole sequents, whereas in the typed lambda
calculus terms representing such grounds are handled within sequents. So the notation
g : A |E B we used above, which is understood as g : (A4 | B), differs from the lambda
calculus notation x : A t: B, where t represents a proof of B from A and the declaration
x : A on the left side represents the assumption A. ([11], p. 939)

However, it should be mentioned that he left it “open how to formalize grounds and their
handling.” (ibid., p. 938) I will argue that even though lambda calculus with the Curry-Howard
interpretation can be seen as embodying the placeholder view of assumptions in the intuitionistic
propositional logic, within the family of Curry-Howard correspondence based systems we can
consider a generalized approach that is free of this view. This generalized approach will treat
consequence statements A = B as higher-order functions A = B that can be naturally captured
in Martin-Lo6f’s constructive type theory ([4]), specifically in its higher-order presentation (see

[5], [6])-

Function-based approach to assumptions. Let us return to the implication introduction
rule. Adopting the sequent-style notation for natural deduction,” we can rewrite this rule as
follows:
x:AFb(x): B
FAzb(x): ADB

where the symbol F is used to separate assumptions from (derived) propositions.

Notice that the derivation of B from A is coded with an abstraction term from lambda
calculus, which means it captures some sort of a function. Reasoning backwards, this should
mean that between the assumption (context) and the conclusion (asserted proposition) has to
be a relationship that can be understood functionally, otherwise, we would have nothing to
code via lambda terms. To put it differently, there has to be some more fundamental notion of
a function at play that we are coding through the concrete abstraction term.

We can try to capture this observation via the following rule:

5See, e.g., Gentzen’s system NLK, discussed in [15].
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x:AkFb(z): B
f:A=1B

where f is to be understood as exemplifying the more fundamental notion of a function that
takes us from A to B.

Note that this rule can be roughly understood as the opposite of the implication introduc-
tion rule that goes in the other direction: while the implication introduction rule makes the
hypothetical derivation “from A is derivable B” in its premise more concrete in the form of
implication proposition A D B and the corresponding lambda term Az.b(zx), this rule makes
the derivation more general in the sense that it is now considered as a function f (not specifi-
cally a lambda term) from A to B. Also notice that assumptions are no longer placeholders or
contexts, but types of arguments for the function f capturing the corresponding derivation. In
other words, assumptions now stand equal to proper propositions, they are not just an auxiliary
notion captured via free variables.

Furthermore, capturing derivations in this way allows us to consider grounds for the whole
consequence statements as Schroeder-Heister required, not just grounds for the conclusions
under some assumptions. More specifically, treating consequence statement A |= B as a function
type A = B (in accord with the Curry-Howard correspondence) and a ground g as an object f
of this type, we can reformulate the general rule as follows:

gliA1:>Bl gnAn:>Bn
flg1,...gn): C =D

Formalization. So far, I have treated f : A = B informally to mean “f is a function from
A to B”. Utilizing Martin-Lof’s constructive type theory ([4]), specifically its higher-order
presentation ([5], [6]), we can capture it more rigorously as a higher-order judgment of the form
()b : (A)B. To explain why, let us return to the hypothetical judgment = : A F b(x) : B that
appears as the sole premise of the implication introduction rule. It tells us that we know b(a) to
be a proof of the proposition B assuming we know a to be a proof of the proposition A. In other
words, the hypothetical judgment x : A F b(x) : B can be seen as stating that b(z) is a function
with domain A and range B.5 This fact, however, cannot be stated directly in the lower-order
presentation of constructive type theory. Thus we move towards the higher-order presentation,
which is as a generalization of the lower-order presentation using a more primitive notion of
a type. The higher-order variant of constructive type theory allows us to form a higher-order
notion of a function which can be used to capture the function hidden behind the hypothetical
judgment x : AF b(x) : B as an object (z)b of type (A)B. Consequently, (z)b: (4)B can then
be used to interpret our statement f : A = B, as was required. In other words, (x)b: (4)B can
be understood as a higher-order judgment declaring that we have (potentially open) derivation
of B from A captured by the function (x)b.

It is important to emphasize that the higher-order function type (A)B cannot be conflated
with the lower-order function type A D B. The most basic reason is that they are inhabited by
different objects: the former by functions, the latter by elements specified by D-introduction
rule, i.e., objects of the form Ax.b(x) that are used to code functions. More generally, the
notion of a function behind the type A D B is parasitic on a more fundamental notion of a
function behind the type (A)B.” From the logical point of view, the main reason we should
avoid merging (A)B and A D B is that A in (A)B is an assumption of derivation, while A in
A D B is an antecedent of implication, hence they are objects of different inferential roles. This

6See [4].
"See [2], [3].
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is perhaps best illustrated by the fact that assuming some function f of type (A)B essentially

corresponds to assuming a rule % in Schroeder-Heister’s natural deduction with higher-level
rules ([10]).

Conclusion. In this talk, I have argued that the Curry-Howard correspondence is not nec-
essarily connected with the placeholder view of assumptions generally associated with natural
deduction systems for intuitionistic propositional logic. Although in the basic form of this
correspondence, assumptions, which correspond to free variables, can indeed be thought of as
just holes to be filled, we can consider also a functional approach where derivations from as-
sumptions are regarded as functions (see [8]). On this account, assumptions are no longer just
placeholders but domains of the corresponding functions. From the logical point of view, this
move corresponds to the shift from reasoning with propositions to reasoning with consequence
statements.
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Abstract
While the set of Martin-Lof random left-c.e. reals is equal to the maximum
degree of Solovay reducibility, Miyabe, Nies and Stephan [5] have shown that the
left-c.e. Schnorr random reals are not closed upwards under Solovay reducibility.
Recall that for two left-c.e. reals a and 3, the former is Solovay reducible to the
latter in case there is a partial computable function f and constant ¢ such that for
all rational numbers ¢ < o we have

a—flg) <c(B—q).

By requiring the translation function f to be total, we introduce a total version of
Solovay reducibility that implies Schnorr reducibility. Accordingly, by Downey and
Griffiths [1], the set of Schnorr random left-c.e. reals is closed upwards relative to
total Solovay reducibility.

Furthermore, we observe that the the notion of speedability introduced by
Merkle and Titov [4] can be equivalently characterized via partial computable
translation functions in a way that resembles Solovay reducibility. By requiring
the translation function to be total, we obtain the concept of total speedability.
Like for speedability, this notion does not dependent on the choice of the speeding
constant.

1 A total version of Solovay reducibility

We first review the usual definition of Solovay reducibility in terms of a partial recursive
function [3].

Definition 1.1 (SOLOVAY REDUCIBILITY, <g.). Let a and (3 be reals and let ¢ > 0 be a
rational number. Then a is SOLOVAY REDUCIBLE to 8 WITH RESPECT TO A CONSTANT c,
written o <g . B, if there is a partial computable function ¢: Q — Q such that for all
q < B it holds that ¢(q) 1< a and a—p(q) < ¢(8—q). The real o is SOLOVAY REDUCIBLE
to B, written a <g B, if a is Solovay reducible to 5 with respect to some c.

In case a <g 3, we will also say that « is S-REDUCIBLE to (3, and similarly notation
will be used for other reducibilities introduced in what follows.

Definition 1.2 (TOTAL SOLOVAY REDUCIBILITY, ggﬁg). A real o is TOTAL SOLOVAY
REDUCIBLE to a real # WITH RESPECT TO A CONSTANT ¢, written a <§%. 3, if there
is a computable function f: Q — Q such that for all ¢ < B it holds that f(q) < o and
a— f(q) < c(B—q). The real a is TOTAL SOLOVAY REDUCIBLE to 3, written o <& 3,
if a is total Solovay reducible to B with respect to some c.



The total Solovay reducibility obviously implies the normal one, thus, the Martin-Lo6f
random left c.e. reals are closed upwards relative to the total Solovay reducibility.

2 The structural properties of the <’ lattice of left-
c.e. reals

In this section, we argue that total Solovay reducibility is in £ but is not a standard
reducibility in the sense of Downey and Hirschfeldt [3] because neither is addition a join
operator nor is there a least degree.

Proposition 2.1. Total Solovay reducibility is in X3.

Proof. Let o o, ... be an effective enumeration of left-c.e. reals, where we can as-
sume that for given n on can compute a recursive index for a nondecreasing approxima-
tion af,al, ... to @™ from below. Then we have

a® <g'a”: = e, c)V(q,5)3(r,1): (we(a)[t]
A (q < bs = (CL,- - @e(Q) >0A Qr — @E(Q) < c(bs - Q))))
O

Proposition 2.2. Let o be a left-c.e. real and let r > 0 be a rational number. Then it
holds that ra =% «v.

Proof. Tt holds that ra: <%' « via the identify function and constant r, and similarly for
a reduction in the reverse direction with constant 1/r.
O

Next we review the notion of a hyperimmune set.

Definition 2.3. Let A be an infinite set. By pa, we denote the principal function
of A, i.e., the members of A are pa(0) < pa(1) < ---. Let ka(n) be the least member

of A\{0,...,n—1}.

Recall that a set A is HYPERIMMUNE if p 4 is not majorized by a computable function,
i.e., for no computable function g we have p(n) < g(n) for all n.

Lemma 2.4. For any set A, the following assertions are equivalent.
(i) pa is not magjorized by any computable function
(ii) ka is not majorized by any computable function

Proof. In case the computable function g(n) majorizes k4(n), where we can assume
that h in nondecreasing, then a computable function that majorizes p4(n) is given by

n= o g(g(--(9(0)...))

n-fold application of g

Conversely, in case the computable function g(n) majorizes pa(n), then the function
n — g(n+ 1) majorizes ka(n). O



Proposition 2.5. There exists no least degree in the total Solovay degrees.

Every least set with respect to total Solovay reducibility is also a least set with respect
to Solovay reducibility. Since the sets of the latter type are exactly the computable sets,
the proposition is immediate from the following lemma.

Lemma 2.6. Let a = 0.A(0)... and § = 0.B(0)... be reals where the set A is computable
and infinite. Then « is total Solovay reducible to B if and only if the set B is not
hyperimmune.

Proof. First assume that B is not hyperimmune. For a dyadic rational ¢ that can be
written as ¢ = 0.0 where the last letter of ¢ is equal to 1, define |¢| = |o|. Then for any
such ¢ and o where ¢ < 3, we have

27kelld) < 3 0.0 =8—¢.

By Lemma 2.4, we can fix a computable function g that majorizes kg. We obtain a
computable function f witnessing o <%¥* 3 by choosing f(¢) < a such that we have

a—f(q) < 9—9(lal)_

Next assume that « is total Solovay reducible to 8 via some function f and constant c.
Then for every n and for ¢, = 0.B(0)...B(n — 1), we have ¢ < (3, thus, for some
appropriate constant d one holds that

g(n) ;= min {a— f(0.0p,) : a— f(0.0,) >0} <a— f(g) <e(B—¢q) < 9—kp(n)+d

lon|=n

Consequently, the function n — d + [logg(n)] is a computable upper bound for kg,
hence B is not hyperimmune. O

Indeed, the total Solovay-lattice satisfies the following stronger property, which we
state here without proof.

Proposition 2.7. There exists a countably infinite antichain of mutually <%'-incomparable
left-c.e. reals such that each of them is incomparable with every computable real.

Before proving that addition is not a join operator, we recall the notion of a Schnorr
reducibility, namely, the uniform version of it.

SCHNORR REDUCIBLE, or uSch-REDUCIBLE, to a real 3 WITH RESPECT TO A CONSTANT
c, written o <yscn,c B, if there is a computable functional ¢ that, given a description of
a computable measure machine (or, shortly, cmm) B, returns a description of another
computable measure machine ¢(B), so that

Definition 2.8 (UNIFORM SCHNORR REDUCIBILITY, <,gch.c). A real o is UNIFORM

Komylan) < Kp(BIn)+ec

The real o is UNIFORM SCHNORR REDUCIBLE to (3, written o <yscn B, if « is uniform
Schnorr reducible to B with respect to some c.

Obviously, the uniform Schnorr reducibility implies the Schnorr reducibility, with
respect to which the Schnorr random reals are closed upwards.



Proposition 2.9. For all left-c.e. o, 8, a <&¥* B implies o <yscn B

Corollary 2.10. The Schnorr random left-c.e. reals are closed upwards relative to the
total Solovay reducibility.

Proof. Let f be a total computable function, such that « Sg?tc B via f. Given a cmm
machine B computing 3, we construct a cmm machine A computing « in the following
uniform way:

Input:(z € Q,w € {0, 1}”09(0)+1W)
e compute o := B(x) (the computation halts iff z € dom(B))

e compute 7, so that 0.7 := (f(0.0) [ n)
If 0.0 < B, then on holds

a— f(0.0) < c(f—0.0)
In particular, if 0.0 = 3 | n, then 8—0.0 < 27", s0 a— f(0.0) < 2" = 2[teg(e)]—n,
Thus,
aln—01<a-—f0.0)+ f0.0) = (f(0.0) | n) < 27" 427" = 2lleglerD)]—n
e return y € {0,1}", so that 0.y =0.7+27"-0,w
The constructed machine A has the following properties:
o prefix-freeness (since B is prefix-free)
e computable measure of the domain (the following relation:
B(z) | = A((z,w) | Yw € {0, 1}[teg(cFD]
implies, that pu(dom(A)) = u(dom(B))
o Ky(a | n) < Kg(B I n)+log(c+ 1)+ O(1) (since there always exists a word
w € {0,1}09(c+D1 such that
aln—07r=2""-0.w
For that w, on holds A(z,w) =y, such that
0y=074+2""-0,w=aln
that implies K4(« | n) < |z| + |w|, where z may be the shortest code of 8 | n.
O

Proposition 2.11. There is a pair of left-c.e.reals o, 8 where oo £ o + 3.

Proof. Miyabe, Nies and Stephan [5, Paragraph 3] demonstrated that there exists a pair
of left-c.e. reals o and j such that o £gcn, @+ 8. Thus we also have o £¥* o+ 8 because

total Solovay reducibility implies Schnorr reducibility. O

Remark. The uniform Schnorr-reducibility is, due to the similar argumentation, also
implied by the weaken version of the total Solovay reducibility, whose requirement for f
differs from the original one in the additional term:

a—flg) <c(B—q) +271.

The motivation of this weakening is that now its lattice on the field of left-c.e. reals has
a minimal degree containing all the computable reals.



3 Speedability of left-c.e. numbers.

Definition 3.1. A function f: N — N is a SPEED-UP FUNCTION if it is nondecreasing
and n < f(n) holds for all n. A left-c.e. number « is p-SPEEDABLE WITH RESPECT TO
ITS GIVEN LEFT APPROXIMATION ag,ay, ...~ « for some real number p € (0,1) if there
s a computable speed-up function f such that we have

a—a
lim inf — " < P, (1)
n—oo QO — Gp
and SPEEDABLE if it is p-speedable with respect to some its left-c.e. approzrimation for
some p € (0,1). Otherwise we call o nonspeedable.

Whether a real is speedable depends neither on the left-c.e. approximation nor on
the constant p one considers.

Theorem 3.2 (Merkle and Titov [4]). Every speedable left-c.e. real number is p-speedable
for any p > 0 with respect to any of its left approzimations.

The following theorem is immediate from the main result of Barmpalias and Lewis-
Pye [2].

Theorem 3.3 (Barmpalias and Lewis-Pye [2]). Martin-Ldf random left-c.e. real numbers
are never speedable.

By the following proposition, the notion of speedability can be equivalently charac-
terized as a Solovay reduction of a real number to itself via a special partial computable
functions on the rational numbers. By applying the same characterization to computable
functions, in what follows we obtain a variant of speedability, similar to the introduction
of total Solovay reducibility.

Proposition 3.4. Let a be a left-c.e. real and let p be a real number such that 0 < p < 1.
Then « is speedable if and only if there is a partial computable function g: Q — Q that
is defined and nondecreasing on the interval (—oo,a), maps this interval to itself and
satisfies

lim inf £~ 9\ 9(9) < p. (2)

q a—q

Proof. Fix some left approximation ag,aq,... of a. First assume that « is speedable.
By Theorem 3.2 there is then a computable speed-up function f that witnesses that «
is p-speedable with respect to its left approximation ag,a;,.... Let n be the partial
computable function on the set of rational numbers that maps every ¢ < « to the least
index 7 such that ¢ < a;, and is undefined for all other q. Here we assume that rational
numbers are represented in a form such that equality is a computable predicate. Then
the partial function g defined by

9(q) = af(n(e))

by choice of n and f, is partial computable, is defined and nondecreasing on the in-
terval (—oo,«) and maps this interval to itself. Furthermore, the sequence ag,as,...
witnesses that (2) holds, because we have g(a;) = ay).



Next assume that there is a function g as stated in the proposition. Then there is a
not necessarily computable left approximation qg, ¢, ... of « such that we have
o — )
lim inf ﬂ <p

Let f be the computable speed up function that maps ¢ to the least index n > i such
that g(a;+1) < an. Then for all ¢ and ¢ such that ¢ is an element of the half-open
interval [a;, a;4+1), we have

Q—ari) < o —g(ait1) < a—g(q)
a—a; ~  a—q T a—q

In particular, this chain of inequalities holds true with g replaced by any of the g;, which
by choice of the ¢; implies that « is p-speedable via its left approximation ag, a1, ... and
the speed-up function f. O

From Proposition 3.4 it is immediate that the the equivalent characterization of speed-
ability stated there does not depend on the choice of p in the interval (0,1). In particular,
the characterization holds for some p in this interval if and only if it holds for all p in
this interval.

In a same way as the totalizing of translation function for the Solovay reducibility,
we can totalize the concept of speedability by requiring the function ¢ from the latter
definition to be total.

Definition 3.5. Let p be a real number such that 0 < p < 1. A left-c.e. real a is called
TOTAL p-SPEEDABLE if there erists a nondecreasing computable function g: Q — Q that
maps every q in the interval (—oo, a) to a value g(q) > q in this interval and satisfies

e a—9(g)
1 f ———= <p. 3
e )

Such a function g is called TOTAL SPEED-UP FUNCTION.

By the following proposition, the total version of speedability does again not depend
on the choice of the constant. The proof is omitted due to space considerations.

Proposition 3.6. Whether a left-c.e. real is total p-speedable does not depend on the
choice of p € (0,1).

Barmpalias and Lewis-Pye [2] have shown that speedability implies Martin-Lof non-
randomness. We currently research the characteristics of the total speed-up function via
which the total speedability will imply Schnorr nonrandomness.

References

[1] Rodney Downey and Evan Griffiths, Schnorr randomness, Journal of Symbolic Logic
69(2):533-554 (2004).

[2] George Barmpalias and Andrew Lewis-Pye, Differences of halting probabilities, Jour-
nal of Computer and System Sciences 89:349-360 (2017).



Rodney Downey and Denis Hirschfeldt, Algorithmic Randomness and Complezity,
Springer, Berlin (2010).

Wolfgang Merkle and Ivan Titov, Speedable left-c.e. numbers, CSR 2020: Computer
Science — Theory and Applications pp 303-313 (2020).

Kenshi Miyabe, André Nies and Frank Stephan, Randomness and Solovay degrees,
Journal of Logic and Analysis 10(3):1-13 (2018).

Joseph Miller, On work of Barmpalias and Lewis-Pye: A derivation on the d.c.e.
reals, Lecture Notes in Computer Science 10010:644—659 (2016).

André Nies, Computability and Randomness, Oxford University Press (2012).



*

Determining maximal entropy functions for objective Bayesian inductive logic

*

Jon Williamson*

Draft of June 9, 2021

Abstract

According to the objective Bayesian approach to inductive
logic, on a first-order predicate language, premisses induc-
tively entail a conclusion just when every probability func-
tion with maximal entropy, from all those that satisfy the pre-
misses, satisfies the conclusion. But it is by no means obvi-
ous as to how to determine these maximal entropy functions.
This paper makes progress on the problem by introducing
the concept of an entropy limit point and showing that, if the
set of probability functions satisfying the premisses contains
an entropy limit point then this limit point is unique and is
the maximal entropy probability function. The paper goes
on to show that, in various circumstances, the maximal en-
tropy function is the uniform distribution conditionalised on
the premisses.

§1
Objective Bayesian probabilistic logic

An important class of probabilistic logics consider entailment
relationships of the following form (Haenni et al., 2011):

X X
(plla"'7(pkk PUJY

Here, ¢1,...,¢p,¥ are sentences of a logical language £ and
X1,...,Xp,Y are sets of probabilities. This should be interpreted
as saying: ¢1,...,¢; having probabilities in Xj,...,X}; respec-
tively inductively entails that ¢ has probability in Y.

One particular approach to inductive logic, the objective
Bayesian approach, interprets probabilities as rational degrees
of belief and uses Jaynes’ Maximum Entropy Principle to deter-
mine a rational belief function (Jaynes, 1957). Thus if £ is a
finite propositional language, X1,...,X}, are closed convex sets
of probabilities, and the premisses are consistent, an entailment
relationship holds just when the probability function with max-
imum entropy, from all those that satisfy the premisses, gives a
probability in Y to ¢ (Williamson, 2010, Chapter 7).

This approach has been extended to the case in which £ is a
first-order predicate language in the following way. Suppose £
has countably many constant symbols ¢1,%2,... and finitely many
relation symbols Uy,...,U;. Let a1,ag,... run through the atomic
sentences of the form Uj;t;, ---¢;, in such a way that those atomic
sentences involving only ¢1,...,¢, occur before those involving
tn+1, for each n. We will sometimes consider the finite sub-
languages %, containing only constant symbols £1,...,¢,. Let
Q, be the set of n-states, i.e., state descriptions +a1 A---Aza,,
involving the atomic sentences a1i,...,a,, of Z,, which only fea-
ture the constants ¢1,...,t,. Let S&,S%, be the sets of sen-
tences of £, %, respectively. A probability function P on £ is a
function P : S ¥ — Ry such that:

*Department of Philosophy and Centre for Reasoning, University of Kent,
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PL: If 7 is a tautology, i.e., = 7, then P(7) = 1.

P2: If 0 and ¢ are mutually exclusive, i.e., = (0 A@), then P(Ov
) =P(0)+P(p).

P3: P(3x0(x)) = sup,, P (VI 6(t,)).

A probability function is determined by the values it gives to
the n-states (see, e.g., Williamson, 2017, §2.6.3). Of particular
importance will be the equivocator function, P—, which gives the
same probability to each n-state, for each n. We denote the
set of probability functions by P. The n-entropy of a proba-
bility function P is defined as H,(P) 4 - Y weq, P(w)logP(w).
We say that function P has greater entropy than @ if the n-
entropy of P dominates that of € for sufficiently large n, i.e., if
there is an N € N such that for all n=N, H,(P) > H,(Q). Let
E be the set of probability functions that satisfy the premisses
XL oX ie, EZ{P €P: P(g1) € X1,...,P(gp) € X3} Let
maxentE be the set of maximal entropy functions in E, i.e., the
set of probability functions in E that are not dominated in entropy
by any other probability function. (If there are no premisses,
maxentE = maxentP = {P-}.) Then we deem an inductive en-
tailment relationship to hold if P(y) €Y for any P € maxentE
(Williamson, 2017, §5.3). The entailment relation under this ob-
jective Bayesian interpretation is written K.

While the objective Bayesian approach provides coherent se-
mantics for inductive logic, it is not obvious how to determine
the maximal entropy functions in order to ascertain whether a
given entailment relationship holds. This is because the defini-
tion of maxentE seems to require a sort through all members of
E in order to find those with undominated entropy—a process
that would be unfeasible in practice. This paper aims to address
this question.

§2 introduces the concept of an entropy limit point in order
to characterise maxent[E in terms of certain limits of n-entropy
maximisers. This gives a constructive procedure for determining
maxentE when it contains an entropy limit point.

In §3 and §4 we consider an important special case—that in
which the premisses are categorical sentences ¢1,...,¢@; (without
attached probabilities) and where the maximal entropy function
can be obtained simply by conditionalising on the equivocator
function.

§2
Entropy limit points

This section adapts the techniques of Landes et al. (2021b, 8§5)
in order to characterise maxentFE in terms of certain limits of n-
entropy maximisers. Landes et al. (2021b) were concerned with a
very different question: that of showing that the above objective
Bayesian semantics for inductive logic yields the same inferences



as those produced by another method for extending the Max-
imum Entropy Principle from a finite language to a first-order
predicate language. Nevertheless, the results of Landes et al.
(2021b, §5) can be straightforwardly adapted to the present prob-
lem. Proofs of the two results in this section are very close to
those of Landes et al. (2021b, Proposition 36) and Landes et al.
(2021b, Theorem 39), but have been included in Appendix 1 for
completeness.

In what follows we suppose that X1,...,X; are convex and

that the premisses are satisfiable, ie., E fdpep: P(py) €
X1,...,P(pr) € X3} # @. We will consider the set of n-entropy
maximisers for each n:

H, ={P € E: H,(P) is maximised }.
We now introduce the key concept of the paper:

Definition 1 (Entropy Limit Point). P € P is an entropy limit point
of P1,Pg,... € P if for each n there is some @, € P,, such that
|H,(Q,)—H,(P)] — 0 as n — oco. P € P will be called an
entropy limit point of E if it is an entropy limit point of Hy,Ho,....

Entropy limit points of E are of special interest because they
are also limit points in terms of the L; distance,

IP-Ql, < Y IP(@)-QW.

wey,

Proposition 2. If P is an entropy limit point of E then there are
®n €H, such that |Q, —Pll,, — 0 as n — oo.

This property enables us to characterise the set of maximal
entropy functions more constructively, in terms of a limit of n-
entropy maximisers:

Theorem 3. IfE contains an entropy limit point P then
maxentE = {P}.

Note that there can be at most one entropy limit point P. This
is because E is convex (by the convexity of X7i,...,X};) and the
n-entropy maximiser of a convex set is uniquely determined on
%y. Thus the H,, can have at most one L1 limit point.

Theorem 3 provides a simple procedure for showing that a
hypothesised function P is in fact a maximal entropy function:
show that it is an entropy limit point of n-entropy maximisers.
(Note that this is only a sufficient condition: if P is not an entropy
limit point of E, then we cannot infer that P ¢ maxentE.)

Example 4. Suppose we have a single premiss VaUx'" where £
has a single unary predicate U. In this case, the number r, of
atomic sentences of £, is n. Any n-entropy maximiser gives
probability ¢ to the n-state Uty A--- AUt,, which we abbreviate
by 6,, and divides probability 1 —c amongst all other n-states:

: =0
P*w,) = { _ ¢ @n=0n
( n) 21n761 Wy |: _|9n

By the argument of Landes et al. (2021b, Example 42), the fol-
lowing probability function is an entropy limit point:

c+xp, w, =0,
P(wy) = { l-c—xp — -0
on_1 wn |_ “Wn

where x,, = % Hence by Theorem 3, maxentE = {P}.

§3

Conditionalisation and entropy limit points

We now consider an important special case of Theorem 3,
which links the maximal entropy approach to Bayesian condi-
tionalisation. Suppose the premisses are categorical sentences
®1,...¢p of £, ie., there are no attached sets of probabilities
X1,...,Xp, or equivalently, X1 =--- = X; ={1}. Let ¢ be the
sentence @1 A--- A@g. In the remainder of the paper, then, we

consider E=E, £ {P €P: P(¢p) = 1}.
Corollary 5. If P_(-|¢) is an entropy limit point of E, then
maxentE, = {P-(-|p)}.

Proof: P_(:|¢p) is contained in E, because P-(¢;|¢p) =1 for each
i=1,...,k. Hence Theorem 3 applies. O

Note that the condition that P_(-|¢) is an entropy limit point
of E, presupposes that the probability function P-(-|¢) is well-
defined, i.e., that P_(¢p) > 0. We say that sentence 0 has positive
measure if P_(0) > 0.

Corollary 6. IfH,, contains P—(:@) for sufficiently large n then
maxentE, = {P-(-|¢p)}.

Proof: If P_(-|¢) € H,, for sufficiently large n then P-(-|¢) is an
entropy limit point of E. Hence Corollary 5 applies. O

Corollary 6 is useful because where it applies it provides a
particularly simple procedure for determining maxentE,. Also,
it shows that the move to the infinite does not disrupt agreement
between the Maximum Entropy Principle and conditionalisation:
as long as conditionalising on ¢ maximises n-entropy for each
sufficiently large n, it maximises entropy on the language as a
whole. Because of its interest, we provide an alternative, more
direct proof of Corollary 6 in Appendix 2.

Example 7. Suppose we have a single categorical premiss 3xUx,
where £ has a single unary predicate symbol U. P_(3xUx) =1,
so P_(:|3xUx) = P_(:). P- € Hy,Hag,..., so Corollary 6 applies
and maxent[E, = {P-}.

Example 8. Suppose we have categorical premisses Uty —
Vits,VxdyWxy, where £ has unary predicate symbols U and
V and a binary relation symbol W. Now P_((Utg — Vt3) =0.75)
and P_(Vx3yWxy)=1. So P_(Utg — Vig) AVxIyWxy) =0.75,
and P_(:|(Utg — Vi3) AVxIyWxy) = P_(-|Utg — Vi3). This
latter function is in Hs,Hy,..., so Corollary 6 applies and
maxentE, = {P-(-|Uts — Vi3)}.

§4

An alternative route to conditionalisation

This section demonstrates agreement between the maximal
entropy approach and conditionalisation without appeal to en-
tropy limit points. m As above we consider categorical sentences
@1,...,¢r and abbreviate ¢1 A--- Ay, by @. Let sentence ¢, be
the disjunction of those n-states w such that ¢ A w has positive
measure:

9 E\{weQ, :P_(wAp)>0).

The main result will appeal to the following technical lemma,
of Landes et al. (2021a), which is stated here without proof:
Lemma 9. If ¢ has positive measure then P—(p) = P_(¢,) and
P_(-l¢) = P_(-lpy) for all n=N,, the maximum index of the con-
stant symbols that occur in .



Theorem 10. If @ has positive measure and ¢ ¢, non-trivially for function fails to dominate the @ in n-entropy:

nz=N, then
maxentE, = {P=(|p)} = {P=(-|¢,)}

for any n=N,.

Proof: The condition that ¢ has positive measure ensures that
P_(-|¢) exists. That ¢ rg(pn ensures that P(¢,)=1 for any P €
maxentE, and n=N,; that this holds non-trivially ensures that
maxentk, # @.

If P_(¢) =1 then P- € E, and P_(:|g) = P-(-). P- is the unique
member of maxentE,, so maxentE, = {P-(-|¢)}, as required.

If P_(¢p) < 1 then P_(:|=¢) is well defined, and we can proceed
as follows.

Since P—_(¢) > 0, P_(-|p) is well defined. P_(¢plp) =1 so
P_(-lp) € k.

Suppose for contradiction that maxentE, # {P-(:|)}. Then in
maxent[E, there must be some P # P_(-|¢p) that is not eventually

dominated in entropy by P_(:|¢). That is, there is some infinite
JJ =N such that Hn(PT)an(Pz(-Iqo)) forallned.

Define a probability function @ by:

IO PT(0l@)P-(¢) + P_(0|~@)P-(~¢),

for all w € Q,. @ is a probability function because it is a
convex combination of two probability functions, PT(a)I(p) and
P_(w|—).

PT €E,, so PT(p) =1 and PT(wlp) = PT(w) for each w e Q,
and n € N. Taking this together with Lemma 9, we have:

QW) = PY(w)P=(¢n) + P—(w|~¢pn)P=(-py,),

for all w € Qp, and n=N,,.

Now for n=N,,

Y. QW)

vViEOAP,

= Z PT(V)P:((pn)""OP:(_'(pn)

ViEOAP,
= PYwA@)P-(¢,)
= PN w)P-(pp)

QwApy,)

since by assumption P'(p,) = 1. Moreover for n>N,,

Qua-p)) = Y QW
ViEOATP,
= Y (P 0P-tpn) + PP (gn)

ViEOATP,

= PN wA9)P-(¢p)+P-(0 A @n|~0n)P-(~¢y,)

= 0P_(¢n)+P—(0]"¢n)P-(~¢p)
= P_(wA"¢,)

since by assumption PT(=¢,)=0.

We next see that, for any n € J where n=N,, the equivocator

H,Q) = —wm'g)l:%Q(w)logQ(m—wmn%ﬂ%Qw)logQ(w)
= —wénQ(wwn)logQ(w/\tpn)
- % Q(w A 7¢p)1logQ(w A 7¢y)
> PP (pn)log (P @P-(py))
- ZQan(w/\—l(pn)logP:(w/\"%)
= ~P-(plogP-pn)~P-lpn) 3. PY(w)logP'(w)
_ ZQ Pz(a)/\_'(Pn)IOgP:((U/\_'(;n)
> —P:(;n)logP:(wn)—P:(wn) ;} P_(w|p)logP—(wlg,)
_ ZQ P:(a)/\_'(Pn)IOgP:((U/\_'(;n)
= —P:(;n)logP:(wn)—P:(wn) ;} P_(wlgy)log P—(wl¢py,)
- ZQ Pz(w/\—lwn)logP:(w/\";n)
= _wZQnP_(w/\qon)logP_(w/\wn)
w0,
- Y P_(0A~¢,)]logP—(wA¢p)
- me,

for n € J such that n=N,. The inequality holds since by as-
sumption H,(PT)=H,(P-(|¢)) for n€dJ.

From the definition of € we see that if @ were the equivocator
function then P-(w|p) = PT(a)I(p) =PY(w) for all n and w € Q,.
But by assumption, PT #P_(-|¢p), so Q differs from P— on Q,, for
sufficiently large n. Hence, that H,(Q) = H,(P-) for any suffi-
ciently large n € J contradicts the fact that, for each n, P_|q, is
the unique probability function on £, that maximises n-entropy.
Thus maxentE, = {P-(-|¢)}.

Moreover, P-(:|p) = P-(-|¢,) for n=N, by Lemma 9. O

Finally, we note that Theorem 10 implies agreement between
the Maximum Entropy Principle and conditionalisation when ¢
is (logically equivalent to) some quantifier-free sentence:

Corollary 11. If ¢ is satisfiable and logically equivalent to a
quantifier-free sentence then

maxentE, = {P-(-|p)}.

Proof: Because ¢ is satisfiable and equivalent to some quantifier
free ¢, P_(¢p) = P-(¢') > 0 and so P(:|¢) exists. For any P €,
and n=N,/,

weQy ,P_(wAp)>0

Pw)= ) P=P)=Pp)=1.

weQ,, 0wk’

Hence P(¢y) =1 for any P € maxentEy, ie., ¢ R¢p. This holds
non-trivially, i.e., maxentE, # @, by Williamson (2017, Theorem
5.15), which shows that a member of HNW/ can be extended to
yield a member of maxentE, = maxentE,. Thus Theorem 10
implies that maxent[E, = {P-(:|¢)}, as required. O

This result, which could also have been arrived at via Corol-
lary 6, can be thought of as an analogue of Seidenfeld (1986,
Result 1), which demonstrates agreement between the Maximum
Entropy Principle and conditionalisation in the finite case.



§5

Conclusion

This paper introduced the concept of an entropy limit point.
This concept provides a means of showing that a maximal en-
tropy function P does indeed have maximal entropy. It also
forges a link between maximal entropy functions and Bayesian
conditionalisation.

Theorem 10 shows that this link also holds under the condition
that @ R¢,. It is an open question as to how restrictive this
condition is—are there any situations in which it fails?
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Appendix 1. Proofs of Proposition 2 and Theorem 3

First let us recount some basic information-theoretic facts.
The n-divergence of two probability functions P and @ is de-
fined as the Kullback-Leibler divergence of P from @ on %;:

P(w)
Q)

du(P,@ 2 Y P(w)log

weQ),

A Pythagorean theorem holds for the n-divergence d, (Cover
and Thomas, 1991, Theorem 11.6.1):

dn(P,Q) 2 dn(P,Ry) +dn(Ry,Q),

for any convex F < P, if P € F and @ ¢ F, where R, €
arginfger dn(S, Q).

Consequently, for any P € E and @, € H,, (Landes et al., 2021b,
corollary 32):

Pinsker’s inequality connects the L; distance to n-divergence
(see, e.g., Cover and Thomas, 1991, Lemma 11.6.1):

1
dn(P,Q) = 5 IP-QI2.

Proposition 2. If P is an entropy limit point of E then there are
Qn €H, such that |@, —P|,, — 0 as n — oo.

Proof: Putting our last two information-theoretic facts together
we have that

v

1
- IP- n 25
2|| Qnly

\%

for @, €H, and P € E.

Now, if P is an entropy limit point of E then there are @, € Hj,
such that |H,(Q,)— H,(P)| — 0 as n — oo. Hence ||P —inli
also converge to zero, as required. O

Theorem 3. If E contains an entropy limit point P then
maxentE = {P}.

Proof: First we shall show that P € maxentE; later we shall see
that there is no other member of maxentE.

First, then, assume for contradiction that P ¢ maxentE. Then
there is some @ € E such that  has greater entropy than P. That
is, for sufficiently large n, H,(Q,) = H,(Q) > H,(P), where the

Q@ € H,, converge in entropy (and, by Proposition 2, in L) to P.
N.b., @ # P. Hence, for sufficiently large n,

Hn(Qn)_Hn(P) > Hn(Qn)_Hn(Q)
z dn(@,Qr)
1 2
S 1€ = Qx5 -

Since the @, converge in entropy to P, they converge in Lj to
Q. By the uniqueness of L1 limit points, @ = P: a contradiction.
Hence P € maxentE, as required.

Next we shall see that P is the unique member of maxentE.
Suppose for contradiction that there is some P € maxentE such
that PT # P. Then P cannot eventually dominate P' in n-
entropy—i.e., there is some infinite set / <N such that for n € J,

H,(P")=H,(P).

Let R £ APT+(1—A)P for some A € (0,1). Now by the log-sum
inequality (Cover and Thomas, 1991, Theorem 2.7.1), for all n € JJ
large enough that PT(w,) # P(w,) for some w, € Qp,,

AH,(PTY+ (1 - V)H,(P)
AH,(P)+ (1 - A\)H,(P)
H,(P).

H,(R) >

%

Hence,

H,(@n)-Hn,(P) > H,(@n)-Hy(R)

= d,(R,Qn),

for large enough n € J.
Now by Pinsker’s inequality and the definition of R,

dn(R,Qn)

v

1
§||R—Qn||3

- %HP—QwMP*-P)”i

Y |P@n) ~ @n(wn) + MPT(wn) — P(wn))

-5l |
2 wn€Q, .

df

Let fa(@) £ P(@) — Qu(p) + APT(9) — P(¢)) and p, &
an(wn)>0 Wy. Then,

Z Ifnlwp)l = Z frlwn) - Z fnlwn)
wn€Qp Wn:frn(wp)>0 Wn:frn(wy)<0
= Z frlwn)— Z frnlwy)

Wn:fn(wn)>0 Wn:fn(wn)#0

= fn(Pn)_ fn(_'pn)
= 2fn(pn)

after substituting P(np,)=1-P(p,) etc.
Let us consider the behaviour of

F2(0n) = P(0n) = Qn(pn) + AP (pn) = P(p))

as n — oo. Now, P(p,;)—Qnr(pn) — 0 as n — oo, because
@, converges in L1 to P. However, AP (p,)—P(p,)) #— 0 as
n — oo, as we shall now see. P'# P by assumption, so they
must differ on some quantifier-free sentence ¥, a sentence of
%, say. Suppose without loss of generality that PT(y) > P(y)
(otherwise take 1 instead) and let § = PT(y) - P(w) > 0. Now
for n=m,

fr(pn) = Z

Wn:fn(wn)>0

wnFY



Since @, converges in L; to P we can consider n > m large
enough that (Cover and Thomas, 1991, Equation 11.137):

1Qn—Pll, =2 max Qn(p)—P(p))<Ad .
P n o qe
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Appendix 2. Alternative proof of Corollary 6

This appendix provides a more direct proof of Corollary 6, which
identifies an important scenario in which the equivocator func-
tion conditioned on a categorical constraint is the maximal en-
tropy function.

Corollary 6. If H,, contains P_(:|¢) for sufficiently large n then
maxentE, = {P-(-|p)}.

Proof: There are two cases: either P—(¢)=1 or P_(¢) < 1.

If P_(¢p) =1 then P- € Ey, and P-(:|p) = P-(-). P- is the
unique member of maxentE, because the equivocator func-
tion has greater entropy than any other probability function, so
maxentE, = {P-(:|¢)}, as required.

If P_(¢) <1 then we can proceed as follows.

Since P-(¢) > 0, P=(-|p) is well defined. P-(plp) =1 so
P_(-|p)eE. Thus E, # @.

Suppose for contradiction that maxentE, # {P-(:|)}. Then in
E, there must be some J A P_(-|¢p) that is not eventually domi-
nated in entropy by P_(-|¢). That is, there is some infinite J SN
such that Hn(PT)an(P:(-I(p)) for all n € J. (To see this con-
sider that there are three cases: (i) if maxentE, = @ then every
member of E, is eventually dominated by some other in entropy,
so P_(|g) is dominated by some P' and PT is not dominated
by P_(-l¢); (ii) if P=(-l¢) ¢ maxentE, = {P',...} then P is not
dominated by P-(-|¢); (iii) if maxentE, = {P_(-l9),PT,...} then
P" is not dominated by P_(-|¢).)

Define a probability function &Pt +(1-A)P=(:|¢) for some
A €(0,1). By the log-sum inequality (Cover and Thomas, 1991,
Theorem 2.7.1), for all n € J large enough that PT(w) # P—(w|¢p)
for some w € Q,,

H,(@)

\%

AH,(PY) + (1 - VH,(P=(-|p))
AH ,(P=(-|9)) + (1 = )H,(P=(-|¢9))
H,(P_(|p)).

v

However, that H,(Q) > H,(P=(:|¢)) for sufficiently large n € JJ
contradicts the assumption that H, contains P_(-|¢) for suffi-
ciently large n. Hence maxentE, = {P-(-|@)}, as required. o



