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Natural Language

Natural languages have  different characteristic features and 
computational linguists look for mathematical structures that 

model and reason about them.  
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computational complexity, parsing, translation, . … 
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Rules of Grammar tell us how to put the words of a language 
together to form sentences.

Rules of Grammar

I have a car.

x have a I car.

x I car a have.



Examples

(N,⌃, R, S)

N ⌃ R S

1

Context Free Grammar

11.2 • CONTEXT-FREE GRAMMARS 5

Noun ! flights | breeze | trip | morning
Verb ! is | prefer | like | need | want | fly

Adjective ! cheapest | non-stop | first | latest
| other | direct

Pronoun ! me | I | you | it
Proper-Noun ! Alaska | Baltimore | Los Angeles

| Chicago | United | American
Determiner ! the | a | an | this | these | that
Preposition ! from | to | on | near

Conjunction ! and | or | but

Figure 11.2 The lexicon for L0.

Grammar Rules Examples
S ! NP VP I + want a morning flight

NP ! Pronoun I
| Proper-Noun Los Angeles
| Det Nominal a + flight

Nominal ! Nominal Noun morning + flight
| Noun flights

VP ! Verb do
| Verb NP want + a flight
| Verb NP PP leave + Boston + in the morning
| Verb PP leaving + on Thursday

PP ! Preposition NP from + Los Angeles

Figure 11.3 The grammar for L0, with example phrases for each rule.

(11.1) [S [NP [Pro I]] [VP [V prefer] [NP [Det a] [Nom [N morning] [Nom [N flight]]]]]]

A CFG like that of L0 defines a formal language. We saw in Chapter 2 that a for-
mal language is a set of strings. Sentences (strings of words) that can be derived by a
grammar are in the formal language defined by that grammar, and are called gram-
matical sentences. Sentences that cannot be derived by a given formal grammar areGrammatical
not in the language defined by that grammar and are referred to as ungrammatical.Ungrammatical

This hard line between “in” and “out” characterizes all formal languages but is only
a very simplified model of how natural languages really work. This is because de-
termining whether a given sentence is part of a given natural language (say, English)
often depends on the context. In linguistics, the use of formal languages to model
natural languages is called generative grammar since the language is defined byGenerative

grammar
the set of possible sentences “generated” by the grammar.

11.2.1 Formal Definition of Context-Free Grammar

We conclude this section with a quick, formal description of a context-free gram-
mar and the language it generates. A context-free grammar G is defined by four
parameters: N, S, R, S (technically this is a “4-tuple”).
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Dependancy Graphs  

G = (V, A, L)

I have a car. 

14.1 • DEPENDENCY RELATIONS 3

Clausal Argument Relations Description
NSUBJ Nominal subject
DOBJ Direct object
IOBJ Indirect object
CCOMP Clausal complement
XCOMP Open clausal complement
Nominal Modifier Relations Description
NMOD Nominal modifier
AMOD Adjectival modifier
NUMMOD Numeric modifier
APPOS Appositional modifier
DET Determiner
CASE Prepositions, postpositions and other case markers
Other Notable Relations Description
CONJ Conjunct
CC Coordinating conjunction
Figure 14.2 Selected dependency relations from the Universal Dependency set. (de Marn-
effe et al., 2014)

in terms of the role that the dependent plays with respect to its head. Familiar notions
such as subject, direct object and indirect object are among the kind of relations we
have in mind. In English these notions strongly correlate with, but by no means de-
termine, both position in a sentence and constituent type and are therefore somewhat
redundant with the kind of information found in phrase-structure trees. However, in
more flexible languages the information encoded directly in these grammatical rela-
tions is critical since phrase-based constituent syntax provides little help.

Not surprisingly, linguists have developed taxonomies of relations that go well
beyond the familiar notions of subject and object. While there is considerable vari-
ation from theory to theory, there is enough commonality that efforts to develop a
computationally useful standard are now possible. The Universal DependenciesUniversal

Dependencies
project (Nivre et al., 2016) provides an inventory of dependency relations that are
linguistically motivated, computationally useful, and cross-linguistically applicable.
Table Fig. 14.2 shows a subset of the relations from this effort. Fig. 14.3 provides
some example sentences illustrating selected relations.

The motivation for all of the relations in the Universal Dependency scheme is
beyond the scope of this chapter, but the core set of frequently used relations can be
broken into two sets: clausal relations that describe syntactic roles with respect to a
predicate (often a verb), and modifier relations that categorize the ways that words
that can modify their heads.

Consider the following example sentence:

(14.2)
United canceled the morning flights to Houston

nsubj

dobj

det

nmod

nmod

case

root

The clausal relations NSUBJ and DOBJ identify the subject and direct object of
the predicate cancel, while the NMOD, DET, and CASE relations denote modifiers of
the nouns flights and Houston.

Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright c� 2017. All

rights reserved. Draft of January 6, 2017.

CHAPTER

14 Dependency Parsing

The focus of the three previous chapters has been on context-free grammars and
their use in automatically generating constituent-based representations. Here we
present another family of grammar formalisms called dependency grammars thatDependency

grammar
are quite important in contemporary speech and language processing systems. In
these formalisms, phrasal constituents and phrase-structure rules do not play a direct
role. Instead, the syntactic structure of a sentence is described solely in terms of the
words (or lemmas) in a sentence and an associated set of directed binary grammatical
relations that hold among the words.

The following diagram illustrates a dependency-style analysis using the standard
graphical method favored in the dependency-parsing community.

(14.1)
I prefer the morning flight through Denver

nsubj

dobj

det

nmod

nmod

case

root

Relations among the words are illustrated above the sentence with directed, la-
beled arcs from heads to dependents. We call this a typed dependency structureTyped

dependency
because the labels are drawn from a fixed inventory of grammatical relations. It also
includes a root node that explicitly marks the root of the tree, the head of the entire
structure.

Figure 14.1 shows the same dependency analysis as a tree alongside its corre-
sponding phrase-structure analysis of the kind given in Chapter 11. Note the ab-
sence of nodes corresponding to phrasal constituents or lexical categories in the
dependency parse; the internal structure of the dependency parse consists solely
of directed relations between lexical items in the sentence. These relationships di-
rectly encode important information that is often buried in the more complex phrase-
structure parses. For example, the arguments to the verb prefer are directly linked to
it in the dependency structure, while their connection to the main verb is more dis-
tant in the phrase-structure tree. Similarly, morning and Denver, modifiers of flight,
are linked to it directly in the dependency structure.

A major advantage of dependency grammars is their ability to deal with lan-
guages that are morphologically rich and have a relatively free word order. ForFree word

order
example, word order in Czech can be much more flexible than in English; a gram-
matical object might occur before or after a location adverbial. A phrase-structure
grammar would need a separate rule for each possible place in the parse tree where
such an adverbial phrase could occur. A dependency-based approach would just
have one link type representing this particular adverbial relation. Thus, a depen-
dency grammar approach abstracts away from word-order information, representing
only the information that is necessary for the parse.

An additional practical motivation for a dependency-based approach is that the
head-dependent relations provide an approximation to the semantic relationship be-

I have a red car



Patterns of Meaning

Words have different meanings attached to them, these get 
composed to form a meaning for sentences that contain them.

I have a car.

499

x yHaving x Haver Speaker x HadThing y x Car y

Having

Haver Had-Thing

Speaker Car

Car Having
POSS-BY Haver: Speaker

Speaker HadThing: Car

Figure 14.1 A list of symbols, two directed graphs, and a record structure:
a sampler of meaning representations for I have a car.

relations denoting the possession of one by the other.
It is important to note that these representations can be viewed from at

least two distinct perspectives in all four of these approaches: as represen-
tations of the meaning of the particular linguistic input I have a car, and as
representations of the state of affairs in some world. It is this dual perspec-
tive that allows these representations to be used to link linguistic inputs to
the world and to our knowledge of it.

The structure of this part of the book parallels that of the previous parts.
We will alternate discussions of the nature of meaning representations with
discussions of the computational processes that can produce them. More
specifically, this chapter introduces the basics of what is needed in a mean-
ing representation, while Chapter 15 introduces a number of techniques for
assigning meanings to linguistic inputs. Chapter 16 explores a range of com-
plex representational issues related to the meanings of words. Chapter 17
then explores some robust computational methods designed to exploit these
lexical representations.

Note that since the emphasis of this chapter is on the basic require-
ments of meaning representations, we will defer a number of extremely im-
portant issues to later chapters. In particular, the focus of this chapter is on
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relations denoting the possession of one by the other.
It is important to note that these representations can be viewed from at

least two distinct perspectives in all four of these approaches: as represen-
tations of the meaning of the particular linguistic input I have a car, and as
representations of the state of affairs in some world. It is this dual perspec-
tive that allows these representations to be used to link linguistic inputs to
the world and to our knowledge of it.

The structure of this part of the book parallels that of the previous parts.
We will alternate discussions of the nature of meaning representations with
discussions of the computational processes that can produce them. More
specifically, this chapter introduces the basics of what is needed in a mean-
ing representation, while Chapter 15 introduces a number of techniques for
assigning meanings to linguistic inputs. Chapter 16 explores a range of com-
plex representational issues related to the meanings of words. Chapter 17
then explores some robust computational methods designed to exploit these
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Note that since the emphasis of this chapter is on the basic require-
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relations denoting the possession of one by the other.
It is important to note that these representations can be viewed from at

least two distinct perspectives in all four of these approaches: as represen-
tations of the meaning of the particular linguistic input I have a car, and as
representations of the state of affairs in some world. It is this dual perspec-
tive that allows these representations to be used to link linguistic inputs to
the world and to our knowledge of it.

The structure of this part of the book parallels that of the previous parts.
We will alternate discussions of the nature of meaning representations with
discussions of the computational processes that can produce them. More
specifically, this chapter introduces the basics of what is needed in a mean-
ing representation, while Chapter 15 introduces a number of techniques for
assigning meanings to linguistic inputs. Chapter 16 explores a range of com-
plex representational issues related to the meanings of words. Chapter 17
then explores some robust computational methods designed to exploit these
lexical representations.

Note that since the emphasis of this chapter is on the basic require-
ments of meaning representations, we will defer a number of extremely im-
portant issues to later chapters. In particular, the focus of this chapter is on

First Order Logic



The Natural Language  
Challenge

How to design a formal grammar and a formal semantics, 
such that the former can be applied to  meanings of words  to 

obtain meanings for sentences.

Rules of Grammar Patterns of Meaning

Section 15.1. Syntax-Driven Semantic Analysis 545

Input Parser Semantic 
Analyzer

Output
Semantic
Representations

Figure 15.1 A simple pipeline approach to semantic analysis.

of saying that the meaning of a sentence is partially based on its syntactic
structure. Therefore, in syntax-driven semantic analysis, the composition of
meaning representations is guided by the syntactic components and relations
provided by the kind of grammars discussed in Chapters 9, 11, and 12.

We can begin by assuming that the syntactic analysis of an input sen-
tence will form the input to a semantic analyzer. Figure 15.1 illustrates the
obvious pipeline-oriented approach that follows directly from this assump-
tion. An input is first passed through a parser to derive its syntactic analysis.
This analysis is then passed as input to a semantic analyzer to produce a SEMANTIC

ANALYZER

meaning representation. Note that although this diagram shows a parse tree
as input, other syntactic representations such as feature structures, or lexi-
cal dependency diagrams, can be used. The remainder of this section will
assume tree-like inputs.

Before moving on, we should make explicit a major assumption about
the role ambiguity of this approach. In the syntax driven approach presented
here, ambiguities arising from the syntax and the lexicon will lead to the cre-
ation of multiple ambiguous meaning representations. It is not the job of the
semantic analyzer, narrowly defined, to resolve these ambiguities. Instead,
it is the job of subsequent interpretation processes with access to domain
specific knowledge, and knowledge of context to select among competing
representations. Of course, we can cut down on the number of ambiguous
representations produced, through the use of robust part-of-speech taggers,
prepositional phrase attachment mechanisms, and, as we will see in Chap-
ter 16, word-sense disambiguation mechanisms.

Let’s consider how such an analysis might proceed with the following
example.
(15.1) AyCaramba serves meat.
Figure 15.2 shows the simplified parse tree (lacking feature attachments),
along with an appropriate meaning representation for this example. As sug-
gested by the dashed arrows, a semantic analyzer given this tree as input
might fruitfully proceed by first retrieving a meaning representation from the
subtree corresponding to the verb serves. The analyzer might next retrieve
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relations denoting the possession of one by the other.
It is important to note that these representations can be viewed from at

least two distinct perspectives in all four of these approaches: as represen-
tations of the meaning of the particular linguistic input I have a car, and as
representations of the state of affairs in some world. It is this dual perspec-
tive that allows these representations to be used to link linguistic inputs to
the world and to our knowledge of it.

The structure of this part of the book parallels that of the previous parts.
We will alternate discussions of the nature of meaning representations with
discussions of the computational processes that can produce them. More
specifically, this chapter introduces the basics of what is needed in a mean-
ing representation, while Chapter 15 introduces a number of techniques for
assigning meanings to linguistic inputs. Chapter 16 explores a range of com-
plex representational issues related to the meanings of words. Chapter 17
then explores some robust computational methods designed to exploit these
lexical representations.

Note that since the emphasis of this chapter is on the basic require-
ments of meaning representations, we will defer a number of extremely im-
portant issues to later chapters. In particular, the focus of this chapter is on
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relations denoting the possession of one by the other.
It is important to note that these representations can be viewed from at

least two distinct perspectives in all four of these approaches: as represen-
tations of the meaning of the particular linguistic input I have a car, and as
representations of the state of affairs in some world. It is this dual perspec-
tive that allows these representations to be used to link linguistic inputs to
the world and to our knowledge of it.

The structure of this part of the book parallels that of the previous parts.
We will alternate discussions of the nature of meaning representations with
discussions of the computational processes that can produce them. More
specifically, this chapter introduces the basics of what is needed in a mean-
ing representation, while Chapter 15 introduces a number of techniques for
assigning meanings to linguistic inputs. Chapter 16 explores a range of com-
plex representational issues related to the meanings of words. Chapter 17
then explores some robust computational methods designed to exploit these
lexical representations.

Note that since the emphasis of this chapter is on the basic require-
ments of meaning representations, we will defer a number of extremely im-
portant issues to later chapters. In particular, the focus of this chapter is on

? ?
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• a transitive sentence is formed by the occur-
rence of a transitive verb to the right and left
of two noun phrases, e.g. “men kill cute dogs".

We need a mathematical structure with a non-
commutative operator to encode the occurrence of
one grammatical type after or before another. We
also need to have two notions of implication to en-
code the fact that certain grammatical types input
others, either from the left or the right, and produce
new grammatical types. For example, an adjective
inputs a noun phrase from its right and produces a
noun phrase, and an intransitive verb inputs a noun
phrase from its left and produces a sentence. An
example of such a structure is a residuated monoid
(see “Residuated Monoids").

In 1950’s, J. Lambek, then a ring theoretician, used
residuated monoids to model the grammatical struc-
ture of sentences of natural language. His seminal
paper [6] founded a new �eld in mathematical lin-
guistics, referred to by categorial, type categorial, or
type logical grammars; for advances and example of
application to di�erent fragments of English see [8].

Given a vocabulary ⌃ for the language L and a set
of its basic grammatical types B, we de�ne the type
dictionary of that language to be the relation

D ✓ ⌃ ⇥T(B),

for T(B) the free monoid generated over B. The
type dictionary is used to assign grammatical types
to the words of language. For instance, for B =
{n, s }, the type dictionary of our exemplar preceding
language is as follows:

D =

{(men, n), (dogs, n), (cute, n  n),
(kill, n ! s ), (kill, (n ! s ) n)}.

This says the following:

• “men” and “dogs" are noun phrases.

• Adjective “cute" takes a noun phrase on its
right and produces a (adjectival) noun phrase.

• Verb “kill" can be an intransitive verb, in which
case it takes a noun phrase on its left to pro-
duce a sentence, or it can be a transitive verb,
where it takes a noun phrase on its right to
produce a verb phrase, which then takes a
noun phrase on its left to produces a sentence.

Residuated Monoids

Recall that a monoid (L, ·, 1) is a set endowed
with a unital operator called multiplication. A
monoid without a unit is a semigroup. A par-
tially ordered monoid (L, , ·, 1) is a monoid
with a partial ordering preserved by its multi-
plication.

Monoid multiplication can have inverse-like
operators, like division, known as residuation.
These are used to formalise implicative no-
tions. For instance, the implication of classical
logic is the right residual to its conjunction.
Since conjunction is commutative, it only has
one implication, for which we have:

c ^ a  b () a  c ! b .

In this example,  denotes logical inference. A
corollary of residuation formalises the logical
rule of Modus Ponens:

c ^ c ! b  b .

In monoids, since the multiplication is not nec-
essarily commutative, we have two implica-
tions, one for each argument of multiplication.

A residuated monoid (L, , ·, 1,!, ) is a par-
tially ordered monoid with two families of or-
der preserving maps c ! � and �  c , as
the right residuals to c · � and � · c , for any
c 2 L. This means that for a, b 2 L we have:

c · a  b () a  c ! b,

a · c  b () a  b  c .

Two useful corollaries of the above are:

c · c ! b  b, b  c · c  b .

An example of a residuated monoid is the set
of functions on natural numbers with com-
position and the identity function as multipli-
cation and its unit, and the natural number
ordering extended to functions as the order-
ing. Here, the residuals are de�ned as follows:

c ! b := max{a 2 N | c · a  b},
b  c := max{a 2 N | a · c  b}.

Multiplying the above types in the right order then
allows us to derive sentences, for instance we have:
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beer

wine
cats drink beer

dogs sip wine

men drink beer, women too.

people drink.
men who drink beer

drunk people



a bit of History



The first algebraic grammar was written 2000 years ago  
by Panini for Sanskrit.  

Panini used a format resembling our modern day algebraic 
thinking of  Sanskrit expressions. 

These rules are still in use. 

AG



1935:  Ajdukiewicz introduced the first formal algebraic  
grammar. This has only  one rule: 

B|A   A   =>  B 

expressing  a cancelation scheme: 

If an expression of grammatical type  
A is preceded by an expression of type B|A, we obtain an 

expression of type B.  



The grammatical type B|A was thought of as  

the fraction B over A 

The cancelation scheme can be thought of as a 
 multiplication. 

B|A   A   =>  B 



The grammatical type B|A was thought of as  

a function from A to B 

The cancelation scheme can be thought of as a 
 application. 

B|A   A   =>  B 



A string of words has a satisfying syntactic connection, iff 
some ordering of its word types reduce to the distinguished 

type S via successive uses of the cancelation scheme. 

Grammaticality
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A refinement. 



In 1953  Bar-Hillel introduced directional division types:  

A\B   and   B/A  

together with  directional  cancelation schema: 

A   A\B   =>   B 
B/A   A   =>   B 

The resulting system is called the AB calculus. 
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Residuated Monoid 
J. Lambek, 1958



Fix the language
Consider an elementary fragment of English consisting of  
nouns, adjectives, intransitive, transitive verbs.

Consider the rules: 

1- An adjective noun phrase is formed by an adjective  
preceding a noun, as in  cute dogs.  
2- An intransitive sentence is formed by a noun phrase 
preceding an intransitive verb, as in men kill. 
3- A transitive sentence is formed by a transitive verb  
occurring between two noun phrases, as in men kill dogs.
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Unifying the Mathematics of Natural Language
Grammar and Data

MEHRNOOSH SADRZADEH

Abstract. Mathematical linguistics reasons about natural language using formal tools. Di�erent approaches
model di�erent aspects of language. Some encode the grammar in axiomatic structures; others build vector
representations for words using contextual data. Is there a mathematical structure that uni�es the two?

Natural language has di�erent characteristic features
and mathematical linguists look for mathematical
structures that can formalise and reason about them.
Two main features herein are rules of grammar and
patterns of meaning. Rules of grammar enable us
to put the words of a language together and form
phrases and sentences. Words have various mean-
ings attached to them; these get composed to form
meanings for phrases and sentences to which they
belong. Two main challenges in the �eld are how to
model meanings of words and how to formalise the
grammar so that it can be applied to meanings of
words.

On the grammatical side, mathematical structures
with noncommutative notions of multiplication and
division have proven useful. Words are assigned gram-
matical types that get encoded into elements of the
structure. Some words have atomic types, such as
“men", which is a noun phrase; some have complex
types, such as “sleep", which is an intransitive verb:
it takes noun phrases and produces sentences, such
as “men sleep". These types get encoded using the
division operator. Multiplication is used to model the
juxtaposition of the types. If we denote the noun
phrase type by n and the sentence type by s , an
intransitive verb will get the type n ! s and “men
kill" gets the type n ·n ! s , from which s is derivable.

On the side of meaning, recently, and in the presence
of large quantities of data, a model called “distribu-
tional semantics" has gained attention and success.
This model conjectures that words that often oc-
cur in the same contexts have similar meanings.
Examples are “beer” and “wine”, which often occur
in the context of “drink, alcoholic, pub", and “cat"
and “dog", which often occur in the context of “pet,
furry, stroke". The mathematical model used here
employs vectors to store co-occurrence counts over
their contexts. The predictions of the model have
been veri�ed on a variety of word similarity datasets

and applied to tasks such as indexing and automatic
extraction of thesauri.

To obtain meaning representations for sentences,
we need to combine the distributional semantics of
words with a model of grammar. It turns out that if
word meanings are modelled by higher order vectors,
known as tensors, and their juxtaposition by compo-
sition of tensors, known as tensor contraction, one
obtains vectors for sentences. For instance, build a
one dimensional vector for “men", a two dimensional
vector, i.e. a matrix, for “kill", then use their compo-
sition, in this case matrix multiplication, to obtain a
vector for the sentence “men kill". This idea has led
to the development of a uni�ed model of grammar
and data; the model has been implemented on large
corpora of data and applied to sentence similarity
tasks such as verb disambiguation and paraphrasing.

Formalising the grammar

Consider the basic fragment of a language consisting
of noun phrases, adjectives, intransitive and transi-
tive verbs, e.g. as given in the following vocabulary:

⌃ = {men, dogs, cute, kill},

where “men" and “dogs" are noun phrases, “cute" is
an adjective and “kill" can be an intransitive verb, e.g.
as in the sentence “men kill", or a transitive verb, e.g.
as in the sentence “men kill dogs". Suppose we want
to encode the following rules of English grammar:

• an adjectival noun phrase is formed by the oc-
currence of an adjective to the left of a noun
phrase, e.g. as in “cute dogs";

• an intransitive sentence is formed by the oc-
currence of an intransitive verb to the right of
a noun phrase, e.g. as in “men kill";

Fix a set of basic types

B = {n, s}
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• a transitive sentence is formed by the occur-
rence of a transitive verb to the right and left
of two noun phrases, e.g. “men kill cute dogs".

We need a mathematical structure with a non-
commutative operator to encode the occurrence of
one grammatical type after or before another. We
also need to have two notions of implication to en-
code the fact that certain grammatical types input
others, either from the left or the right, and produce
new grammatical types. For example, an adjective
inputs a noun phrase from its right and produces a
noun phrase, and an intransitive verb inputs a noun
phrase from its left and produces a sentence. An
example of such a structure is a residuated monoid
(see “Residuated Monoids").

In 1950’s, J. Lambek, then a ring theoretician, used
residuated monoids to model the grammatical struc-
ture of sentences of natural language. His seminal
paper [6] founded a new �eld in mathematical lin-
guistics, referred to by categorial, type categorial, or
type logical grammars; for advances and example of
application to di�erent fragments of English see [8].

Given a vocabulary ⌃ for the language L and a set
of its basic grammatical types B, we de�ne the type
dictionary of that language to be the relation

D ✓ ⌃ ⇥T(B),

for T(B) the free monoid generated over B. The
type dictionary is used to assign grammatical types
to the words of language. For instance, for B =
{n, s }, the type dictionary of our exemplar preceding
language is as follows:

D =

{(men, n), (dogs, n), (cute, n  n),
(kill, n ! s ), (kill, (n ! s ) n)}.

This says the following:

• “men” and “dogs" are noun phrases.

• Adjective “cute" takes a noun phrase on its
right and produces a (adjectival) noun phrase.

• Verb “kill" can be an intransitive verb, in which
case it takes a noun phrase on its left to pro-
duce a sentence, or it can be a transitive verb,
where it takes a noun phrase on its right to
produce a verb phrase, which then takes a
noun phrase on its left to produces a sentence.

Residuated Monoids

Recall that a monoid (L, ·, 1) is a set endowed
with a unital operator called multiplication. A
monoid without a unit is a semigroup. A par-
tially ordered monoid (L, , ·, 1) is a monoid
with a partial ordering preserved by its multi-
plication.

Monoid multiplication can have inverse-like
operators, like division, known as residuation.
These are used to formalise implicative no-
tions. For instance, the implication of classical
logic is the right residual to its conjunction.
Since conjunction is commutative, it only has
one implication, for which we have:

c ^ a  b () a  c ! b .

In this example,  denotes logical inference. A
corollary of residuation formalises the logical
rule of Modus Ponens:

c ^ c ! b  b .

In monoids, since the multiplication is not nec-
essarily commutative, we have two implica-
tions, one for each argument of multiplication.

A residuated monoid (L, , ·, 1,!, ) is a par-
tially ordered monoid with two families of or-
der preserving maps c ! � and �  c , as
the right residuals to c · � and � · c , for any
c 2 L. This means that for a, b 2 L we have:

c · a  b () a  c ! b,

a · c  b () a  b  c .

Two useful corollaries of the above are:

c · c ! b  b, b  c · c  b .

An example of a residuated monoid is the set
of functions on natural numbers with com-
position and the identity function as multipli-
cation and its unit, and the natural number
ordering extended to functions as the order-
ing. Here, the residuals are de�ned as follows:

c ! b := max{a 2 N | c · a  b},
b  c := max{a 2 N | a · c  b}.

Multiplying the above types in the right order then
allows us to derive sentences, for instance we have:

Define a type assignment
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Natural language has di�erent characteristic features
and mathematical linguists look for mathematical
structures that can formalise and reason about them.
Two main features herein are rules of grammar and
patterns of meaning. Rules of grammar enable us
to put the words of a language together and form
phrases and sentences. Words have various mean-
ings attached to them; these get composed to form
meanings for phrases and sentences to which they
belong. Two main challenges in the �eld are how to
model meanings of words and how to formalise the
grammar so that it can be applied to meanings of
words.

On the grammatical side, mathematical structures
with noncommutative notions of multiplication and
division have proven useful. Words are assigned gram-
matical types that get encoded into elements of the
structure. Some words have atomic types, such as
“men", which is a noun phrase; some have complex
types, such as “sleep", which is an intransitive verb:
it takes noun phrases and produces sentences, such
as “men sleep". These types get encoded using the
division operator. Multiplication is used to model the
juxtaposition of the types. If we denote the noun
phrase type by n and the sentence type by s , an
intransitive verb will get the type n ! s and “men
kill" gets the type n ·n ! s , from which s is derivable.

On the side of meaning, recently, and in the presence
of large quantities of data, a model called “distribu-
tional semantics" has gained attention and success.
This model conjectures that words that often oc-
cur in the same contexts have similar meanings.
Examples are “beer” and “wine”, which often occur
in the context of “drink, alcoholic, pub", and “cat"
and “dog", which often occur in the context of “pet,
furry, stroke". The mathematical model used here
employs vectors to store co-occurrence counts over
their contexts. The predictions of the model have
been veri�ed on a variety of word similarity datasets

and applied to tasks such as indexing and automatic
extraction of thesauri.

To obtain meaning representations for sentences,
we need to combine the distributional semantics of
words with a model of grammar. It turns out that if
word meanings are modelled by higher order vectors,
known as tensors, and their juxtaposition by compo-
sition of tensors, known as tensor contraction, one
obtains vectors for sentences. For instance, build a
one dimensional vector for “men", a two dimensional
vector, i.e. a matrix, for “kill", then use their compo-
sition, in this case matrix multiplication, to obtain a
vector for the sentence “men kill". This idea has led
to the development of a uni�ed model of grammar
and data; the model has been implemented on large
corpora of data and applied to sentence similarity
tasks such as verb disambiguation and paraphrasing.

Formalising the grammar

Consider the basic fragment of a language consisting
of noun phrases, adjectives, intransitive and transi-
tive verbs, e.g. as given in the following vocabulary:

⌃ = {men, dogs, cute, kill},

where “men" and “dogs" are noun phrases, “cute" is
an adjective and “kill" can be an intransitive verb, e.g.
as in the sentence “men kill", or a transitive verb, e.g.
as in the sentence “men kill dogs". Suppose we want
to encode the following rules of English grammar:

• an adjectival noun phrase is formed by the oc-
currence of an adjective to the left of a noun
phrase, e.g. as in “cute dogs";

• an intransitive sentence is formed by the oc-
currence of an intransitive verb to the right of
a noun phrase, e.g. as in “men kill";
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• a transitive sentence is formed by the occur-
rence of a transitive verb to the right and left
of two noun phrases, e.g. “men kill cute dogs".

We need a mathematical structure with a non-
commutative operator to encode the occurrence of
one grammatical type after or before another. We
also need to have two notions of implication to en-
code the fact that certain grammatical types input
others, either from the left or the right, and produce
new grammatical types. For example, an adjective
inputs a noun phrase from its right and produces a
noun phrase, and an intransitive verb inputs a noun
phrase from its left and produces a sentence. An
example of such a structure is a residuated monoid
(see “Residuated Monoids").

In 1950’s, J. Lambek, then a ring theoretician, used
residuated monoids to model the grammatical struc-
ture of sentences of natural language. His seminal
paper [6] founded a new �eld in mathematical lin-
guistics, referred to by categorial, type categorial, or
type logical grammars; for advances and example of
application to di�erent fragments of English see [8].

Given a vocabulary ⌃ for the language L and a set
of its basic grammatical types B, we de�ne the type
dictionary of that language to be the relation

D ✓ ⌃ ⇥T(B),

for T(B) the free monoid generated over B. The
type dictionary is used to assign grammatical types
to the words of language. For instance, for B =
{n, s }, the type dictionary of our exemplar preceding
language is as follows:

D =

{(men, n), (dogs, n), (cute, n  n),
(kill, n ! s ), (kill, (n ! s ) n)}.

This says the following:

• “men” and “dogs" are noun phrases.

• Adjective “cute" takes a noun phrase on its
right and produces a (adjectival) noun phrase.

• Verb “kill" can be an intransitive verb, in which
case it takes a noun phrase on its left to pro-
duce a sentence, or it can be a transitive verb,
where it takes a noun phrase on its right to
produce a verb phrase, which then takes a
noun phrase on its left to produces a sentence.

Residuated Monoids

Recall that a monoid (L, ·, 1) is a set endowed
with a unital operator called multiplication. A
monoid without a unit is a semigroup. A par-
tially ordered monoid (L, , ·, 1) is a monoid
with a partial ordering preserved by its multi-
plication.

Monoid multiplication can have inverse-like
operators, like division, known as residuation.
These are used to formalise implicative no-
tions. For instance, the implication of classical
logic is the right residual to its conjunction.
Since conjunction is commutative, it only has
one implication, for which we have:

c ^ a  b () a  c ! b .

In this example,  denotes logical inference. A
corollary of residuation formalises the logical
rule of Modus Ponens:

c ^ c ! b  b .

In monoids, since the multiplication is not nec-
essarily commutative, we have two implica-
tions, one for each argument of multiplication.

A residuated monoid (L, , ·, 1,!, ) is a par-
tially ordered monoid with two families of or-
der preserving maps c ! � and �  c , as
the right residuals to c · � and � · c , for any
c 2 L. This means that for a, b 2 L we have:

c · a  b () a  c ! b,

a · c  b () a  b  c .

Two useful corollaries of the above are:

c · c ! b  b, b  c · c  b .

An example of a residuated monoid is the set
of functions on natural numbers with com-
position and the identity function as multipli-
cation and its unit, and the natural number
ordering extended to functions as the order-
ing. Here, the residuals are de�ned as follows:

c ! b := max{a 2 N | c · a  b},
b  c := max{a 2 N | a · c  b}.

Multiplying the above types in the right order then
allows us to derive sentences, for instance we have:

Define a type assignment

An algebra of types
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• a transitive sentence is formed by the occur-
rence of a transitive verb to the right and left
of two noun phrases, e.g. “men kill cute dogs".

We need a mathematical structure with a non-
commutative operator to encode the occurrence of
one grammatical type after or before another. We
also need to have two notions of implication to en-
code the fact that certain grammatical types input
others, either from the left or the right, and produce
new grammatical types. For example, an adjective
inputs a noun phrase from its right and produces a
noun phrase, and an intransitive verb inputs a noun
phrase from its left and produces a sentence. An
example of such a structure is a residuated monoid
(see “Residuated Monoids").

In 1950’s, J. Lambek, then a ring theoretician, used
residuated monoids to model the grammatical struc-
ture of sentences of natural language. His seminal
paper [6] founded a new �eld in mathematical lin-
guistics, referred to by categorial, type categorial, or
type logical grammars; for advances and example of
application to di�erent fragments of English see [8].

Given a vocabulary ⌃ for the language L and a set
of its basic grammatical types B, we de�ne the type
dictionary of that language to be the relation

D ✓ ⌃ ⇥T(B),

for T(B) the free monoid generated over B. The
type dictionary is used to assign grammatical types
to the words of language. For instance, for B =
{n, s }, the type dictionary of our exemplar preceding
language is as follows:

D =

{(men, n), (dogs, n), (cute, n  n),
(kill, n ! s ), (kill, (n ! s ) n)}.

This says the following:

• “men” and “dogs" are noun phrases.

• Adjective “cute" takes a noun phrase on its
right and produces a (adjectival) noun phrase.

• Verb “kill" can be an intransitive verb, in which
case it takes a noun phrase on its left to pro-
duce a sentence, or it can be a transitive verb,
where it takes a noun phrase on its right to
produce a verb phrase, which then takes a
noun phrase on its left to produces a sentence.

Residuated Monoids

Recall that a monoid (L, ·, 1) is a set endowed
with a unital operator called multiplication. A
monoid without a unit is a semigroup. A par-
tially ordered monoid (L, , ·, 1) is a monoid
with a partial ordering preserved by its multi-
plication.

Monoid multiplication can have inverse-like
operators, like division, known as residuation.
These are used to formalise implicative no-
tions. For instance, the implication of classical
logic is the right residual to its conjunction.
Since conjunction is commutative, it only has
one implication, for which we have:

c ^ a  b () a  c ! b .

In this example,  denotes logical inference. A
corollary of residuation formalises the logical
rule of Modus Ponens:

c ^ c ! b  b .

In monoids, since the multiplication is not nec-
essarily commutative, we have two implica-
tions, one for each argument of multiplication.

A residuated monoid (L, , ·, 1,!, ) is a par-
tially ordered monoid with two families of or-
der preserving maps c ! � and �  c , as
the right residuals to c · � and � · c , for any
c 2 L. This means that for a, b 2 L we have:

c · a  b () a  c ! b,

a · c  b () a  b  c .

Two useful corollaries of the above are:

c · c ! b  b, b  c · c  b .

An example of a residuated monoid is the set
of functions on natural numbers with com-
position and the identity function as multipli-
cation and its unit, and the natural number
ordering extended to functions as the order-
ing. Here, the residuals are de�ned as follows:

c ! b := max{a 2 N | c · a  b},
b  c := max{a 2 N | a · c  b}.

Multiplying the above types in the right order then
allows us to derive sentences, for instance we have:

A monoid is a set endowed with a multiplication .  that has a 
unit 1. 

A monoid without a unit is a semigroup. 
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• a transitive sentence is formed by the occur-
rence of a transitive verb to the right and left
of two noun phrases, e.g. “men kill cute dogs".

We need a mathematical structure with a non-
commutative operator to encode the occurrence of
one grammatical type after or before another. We
also need to have two notions of implication to en-
code the fact that certain grammatical types input
others, either from the left or the right, and produce
new grammatical types. For example, an adjective
inputs a noun phrase from its right and produces a
noun phrase, and an intransitive verb inputs a noun
phrase from its left and produces a sentence. An
example of such a structure is a residuated monoid
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dictionary of that language to be the relation
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for T(B) the free monoid generated over B. The
type dictionary is used to assign grammatical types
to the words of language. For instance, for B =
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language is as follows:
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{(men, n), (dogs, n), (cute, n  n),
(kill, n ! s ), (kill, (n ! s ) n)}.

This says the following:

• “men” and “dogs" are noun phrases.

• Adjective “cute" takes a noun phrase on its
right and produces a (adjectival) noun phrase.

• Verb “kill" can be an intransitive verb, in which
case it takes a noun phrase on its left to pro-
duce a sentence, or it can be a transitive verb,
where it takes a noun phrase on its right to
produce a verb phrase, which then takes a
noun phrase on its left to produces a sentence.
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Recall that a monoid (L, ·, 1) is a set endowed
with a unital operator called multiplication. A
monoid without a unit is a semigroup. A par-
tially ordered monoid (L, , ·, 1) is a monoid
with a partial ordering preserved by its multi-
plication.

Monoid multiplication can have inverse-like
operators, like division, known as residuation.
These are used to formalise implicative no-
tions. For instance, the implication of classical
logic is the right residual to its conjunction.
Since conjunction is commutative, it only has
one implication, for which we have:

c ^ a  b () a  c ! b .

In this example,  denotes logical inference. A
corollary of residuation formalises the logical
rule of Modus Ponens:

c ^ c ! b  b .

In monoids, since the multiplication is not nec-
essarily commutative, we have two implica-
tions, one for each argument of multiplication.

A residuated monoid (L, , ·, 1,!, ) is a par-
tially ordered monoid with two families of or-
der preserving maps c ! � and �  c , as
the right residuals to c · � and � · c , for any
c 2 L. This means that for a, b 2 L we have:
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Two useful corollaries of the above are:
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An example of a residuated monoid is the set
of functions on natural numbers with com-
position and the identity function as multipli-
cation and its unit, and the natural number
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ing. Here, the residuals are de�ned as follows:
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• a transitive sentence is formed by the occur-
rence of a transitive verb to the right and left
of two noun phrases, e.g. “men kill cute dogs".

We need a mathematical structure with a non-
commutative operator to encode the occurrence of
one grammatical type after or before another. We
also need to have two notions of implication to en-
code the fact that certain grammatical types input
others, either from the left or the right, and produce
new grammatical types. For example, an adjective
inputs a noun phrase from its right and produces a
noun phrase, and an intransitive verb inputs a noun
phrase from its left and produces a sentence. An
example of such a structure is a residuated monoid
(see “Residuated Monoids").

In 1950’s, J. Lambek, then a ring theoretician, used
residuated monoids to model the grammatical struc-
ture of sentences of natural language. His seminal
paper [6] founded a new �eld in mathematical lin-
guistics, referred to by categorial, type categorial, or
type logical grammars; for advances and example of
application to di�erent fragments of English see [8].

Given a vocabulary ⌃ for the language L and a set
of its basic grammatical types B, we de�ne the type
dictionary of that language to be the relation

D ✓ ⌃ ⇥T(B),

for T(B) the free monoid generated over B. The
type dictionary is used to assign grammatical types
to the words of language. For instance, for B =
{n, s }, the type dictionary of our exemplar preceding
language is as follows:

D =

{(men, n), (dogs, n), (cute, n  n),
(kill, n ! s ), (kill, (n ! s ) n)}.

This says the following:

• “men” and “dogs" are noun phrases.

• Adjective “cute" takes a noun phrase on its
right and produces a (adjectival) noun phrase.

• Verb “kill" can be an intransitive verb, in which
case it takes a noun phrase on its left to pro-
duce a sentence, or it can be a transitive verb,
where it takes a noun phrase on its right to
produce a verb phrase, which then takes a
noun phrase on its left to produces a sentence.

Residuated Monoids

Recall that a monoid (L, ·, 1) is a set endowed
with a unital operator called multiplication. A
monoid without a unit is a semigroup. A par-
tially ordered monoid (L, , ·, 1) is a monoid
with a partial ordering preserved by its multi-
plication.

Monoid multiplication can have inverse-like
operators, like division, known as residuation.
These are used to formalise implicative no-
tions. For instance, the implication of classical
logic is the right residual to its conjunction.
Since conjunction is commutative, it only has
one implication, for which we have:

c ^ a  b () a  c ! b .

In this example,  denotes logical inference. A
corollary of residuation formalises the logical
rule of Modus Ponens:

c ^ c ! b  b .

In monoids, since the multiplication is not nec-
essarily commutative, we have two implica-
tions, one for each argument of multiplication.

A residuated monoid (L, , ·, 1,!, ) is a par-
tially ordered monoid with two families of or-
der preserving maps c ! � and �  c , as
the right residuals to c · � and � · c , for any
c 2 L. This means that for a, b 2 L we have:

c · a  b () a  c ! b,

a · c  b () a  b  c .

Two useful corollaries of the above are:

c · c ! b  b, b  c · c  b .

An example of a residuated monoid is the set
of functions on natural numbers with com-
position and the identity function as multipli-
cation and its unit, and the natural number
ordering extended to functions as the order-
ing. Here, the residuals are de�ned as follows:

c ! b := max{a 2 N | c · a  b},
b  c := max{a 2 N | a · c  b}.

Multiplying the above types in the right order then
allows us to derive sentences, for instance we have:

A residuated monoid is a partially ordered a monoid 
where the multiplication has an adjoint on each of its 

arguments:
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Example
An example of a residuated monoid is the set of functions on 

natural numbers with composition of functions as multiplication 
and the identity function as its unit.  

The ordering is the natural number ordering extended to 
functions point wisely.  

The adjoints are defined using min and max:
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of its basic grammatical types B, we de�ne the type
dictionary of that language to be the relation

D ✓ ⌃ ⇥T(B),

for T(B) the free monoid generated over B. The
type dictionary is used to assign grammatical types
to the words of language. For instance, for B =
{n, s }, the type dictionary of our exemplar preceding
language is as follows:

D =

{(men, n), (dogs, n), (cute, n  n),
(kill, n ! s ), (kill, (n ! s ) n)}.

This says the following:

• “men” and “dogs" are noun phrases.

• Adjective “cute" takes a noun phrase on its
right and produces a (adjectival) noun phrase.

• Verb “kill" can be an intransitive verb, in which
case it takes a noun phrase on its left to pro-
duce a sentence, or it can be a transitive verb,
where it takes a noun phrase on its right to
produce a verb phrase, which then takes a
noun phrase on its left to produces a sentence.

Residuated Monoids

Recall that a monoid (L, ·, 1) is a set endowed
with a unital operator called multiplication. A
monoid without a unit is a semigroup. A par-
tially ordered monoid (L, , ·, 1) is a monoid
with a partial ordering preserved by its multi-
plication.

Monoid multiplication can have inverse-like
operators, like division, known as residuation.
These are used to formalise implicative no-
tions. For instance, the implication of classical
logic is the right residual to its conjunction.
Since conjunction is commutative, it only has
one implication, for which we have:

c ^ a  b () a  c ! b .

In this example,  denotes logical inference. A
corollary of residuation formalises the logical
rule of Modus Ponens:

c ^ c ! b  b .

In monoids, since the multiplication is not nec-
essarily commutative, we have two implica-
tions, one for each argument of multiplication.

A residuated monoid (L, , ·, 1,!, ) is a par-
tially ordered monoid with two families of or-
der preserving maps c ! � and �  c , as
the right residuals to c · � and � · c , for any
c 2 L. This means that for a, b 2 L we have:

c · a  b () a  c ! b,

a · c  b () a  b  c .

Two useful corollaries of the above are:

c · c ! b  b, b  c · c  b .

An example of a residuated monoid is the set
of functions on natural numbers with com-
position and the identity function as multipli-
cation and its unit, and the natural number
ordering extended to functions as the order-
ing. Here, the residuals are de�ned as follows:

c ! b := max{a 2 N | c · a  b},
b  c := max{a 2 N | a · c  b}.

Multiplying the above types in the right order then
allows us to derive sentences, for instance we have:
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one grammatical type after or before another. We
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code the fact that certain grammatical types input
others, either from the left or the right, and produce
new grammatical types. For example, an adjective
inputs a noun phrase from its right and produces a
noun phrase, and an intransitive verb inputs a noun
phrase from its left and produces a sentence. An
example of such a structure is a residuated monoid
(see “Residuated Monoids").
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Unifying the Mathematics of Natural Language
Grammar and Data

MEHRNOOSH SADRZADEH

Abstract. Mathematical linguistics reasons about natural language using formal tools. Di�erent approaches
model di�erent aspects of language. Some encode the grammar in axiomatic structures; others build vector
representations for words using contextual data. Is there a mathematical structure that uni�es the two?

Natural language has di�erent characteristic features
and mathematical linguists look for mathematical
structures that can formalise and reason about them.
Two main features herein are rules of grammar and
patterns of meaning. Rules of grammar enable us
to put the words of a language together and form
phrases and sentences. Words have various mean-
ings attached to them; these get composed to form
meanings for phrases and sentences to which they
belong. Two main challenges in the �eld are how to
model meanings of words and how to formalise the
grammar so that it can be applied to meanings of
words.

On the grammatical side, mathematical structures
with noncommutative notions of multiplication and
division have proven useful. Words are assigned gram-
matical types that get encoded into elements of the
structure. Some words have atomic types, such as
“men", which is a noun phrase; some have complex
types, such as “sleep", which is an intransitive verb:
it takes noun phrases and produces sentences, such
as “men sleep". These types get encoded using the
division operator. Multiplication is used to model the
juxtaposition of the types. If we denote the noun
phrase type by n and the sentence type by s , an
intransitive verb will get the type n ! s and “men
kill" gets the type n ·n ! s , from which s is derivable.

On the side of meaning, recently, and in the presence
of large quantities of data, a model called “distribu-
tional semantics" has gained attention and success.
This model conjectures that words that often oc-
cur in the same contexts have similar meanings.
Examples are “beer” and “wine”, which often occur
in the context of “drink, alcoholic, pub", and “cat"
and “dog", which often occur in the context of “pet,
furry, stroke". The mathematical model used here
employs vectors to store co-occurrence counts over
their contexts. The predictions of the model have
been veri�ed on a variety of word similarity datasets

and applied to tasks such as indexing and automatic
extraction of thesauri.

To obtain meaning representations for sentences,
we need to combine the distributional semantics of
words with a model of grammar. It turns out that if
word meanings are modelled by higher order vectors,
known as tensors, and their juxtaposition by compo-
sition of tensors, known as tensor contraction, one
obtains vectors for sentences. For instance, build a
one dimensional vector for “men", a two dimensional
vector, i.e. a matrix, for “kill", then use their compo-
sition, in this case matrix multiplication, to obtain a
vector for the sentence “men kill". This idea has led
to the development of a uni�ed model of grammar
and data; the model has been implemented on large
corpora of data and applied to sentence similarity
tasks such as verb disambiguation and paraphrasing.

Formalising the grammar

Consider the basic fragment of a language consisting
of noun phrases, adjectives, intransitive and transi-
tive verbs, e.g. as given in the following vocabulary:

⌃ = {men, dogs, cute, kill},

where “men" and “dogs" are noun phrases, “cute" is
an adjective and “kill" can be an intransitive verb, e.g.
as in the sentence “men kill", or a transitive verb, e.g.
as in the sentence “men kill dogs". Suppose we want
to encode the following rules of English grammar:

• an adjectival noun phrase is formed by the oc-
currence of an adjective to the left of a noun
phrase, e.g. as in “cute dogs";

• an intransitive sentence is formed by the oc-
currence of an intransitive verb to the right of
a noun phrase, e.g. as in “men kill";

B = {n, s}
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• a transitive sentence is formed by the occur-
rence of a transitive verb to the right and left
of two noun phrases, e.g. “men kill cute dogs".

We need a mathematical structure with a non-
commutative operator to encode the occurrence of
one grammatical type after or before another. We
also need to have two notions of implication to en-
code the fact that certain grammatical types input
others, either from the left or the right, and produce
new grammatical types. For example, an adjective
inputs a noun phrase from its right and produces a
noun phrase, and an intransitive verb inputs a noun
phrase from its left and produces a sentence. An
example of such a structure is a residuated monoid
(see “Residuated Monoids").

In 1950’s, J. Lambek, then a ring theoretician, used
residuated monoids to model the grammatical struc-
ture of sentences of natural language. His seminal
paper [6] founded a new �eld in mathematical lin-
guistics, referred to by categorial, type categorial, or
type logical grammars; for advances and example of
application to di�erent fragments of English see [8].

Given a vocabulary ⌃ for the language L and a set
of its basic grammatical types B, we de�ne the type
dictionary of that language to be the relation

D ✓ ⌃ ⇥T(B),

for T(B) the free monoid generated over B. The
type dictionary is used to assign grammatical types
to the words of language. For instance, for B =
{n, s }, the type dictionary of our exemplar preceding
language is as follows:

D =

{(men, n), (dogs, n), (cute, n  n),
(kill, n ! s ), (kill, (n ! s ) n)}.

This says the following:

• “men” and “dogs" are noun phrases.

• Adjective “cute" takes a noun phrase on its
right and produces a (adjectival) noun phrase.

• Verb “kill" can be an intransitive verb, in which
case it takes a noun phrase on its left to pro-
duce a sentence, or it can be a transitive verb,
where it takes a noun phrase on its right to
produce a verb phrase, which then takes a
noun phrase on its left to produces a sentence.

Residuated Monoids

Recall that a monoid (L, ·, 1) is a set endowed
with a unital operator called multiplication. A
monoid without a unit is a semigroup. A par-
tially ordered monoid (L, , ·, 1) is a monoid
with a partial ordering preserved by its multi-
plication.

Monoid multiplication can have inverse-like
operators, like division, known as residuation.
These are used to formalise implicative no-
tions. For instance, the implication of classical
logic is the right residual to its conjunction.
Since conjunction is commutative, it only has
one implication, for which we have:

c ^ a  b () a  c ! b .

In this example,  denotes logical inference. A
corollary of residuation formalises the logical
rule of Modus Ponens:

c ^ c ! b  b .

In monoids, since the multiplication is not nec-
essarily commutative, we have two implica-
tions, one for each argument of multiplication.

A residuated monoid (L, , ·, 1,!, ) is a par-
tially ordered monoid with two families of or-
der preserving maps c ! � and �  c , as
the right residuals to c · � and � · c , for any
c 2 L. This means that for a, b 2 L we have:

c · a  b () a  c ! b,

a · c  b () a  b  c .

Two useful corollaries of the above are:

c · c ! b  b, b  c · c  b .

An example of a residuated monoid is the set
of functions on natural numbers with com-
position and the identity function as multipli-
cation and its unit, and the natural number
ordering extended to functions as the order-
ing. Here, the residuals are de�ned as follows:

c ! b := max{a 2 N | c · a  b},
b  c := max{a 2 N | a · c  b}.

Multiplying the above types in the right order then
allows us to derive sentences, for instance we have:
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men kill n · (n ! s )  s .
men kill dogs n · ((n ! s ) n) · n

 n · (n ! s )
 s .

men kill cute dogs n · ((n ! s ) n) · (n  n) · n
 n · ((n ! s ) n) · n
 n · (n ! s )
 s .

To wrap up, we de�ne a monoid grammar to be the
tuple (⌃,B, D, {s }), for s a designated element of
B. Herein, a sequence of words w1w2 · · ·wn forms
a grammatical sentence when for (wi, ti ) 2 D we
have:

t1 · t2 · · · · · tn  s .
This partial ordering is referred to as the grammatical
reduction of w1w2 · · ·wn .

Representing meanings of words

Vectors are often used to model phenomena that
have a magnitude and a direction, such as force, ve-
locity, and acceleration. At �rst sight, word meaning
does not seem to share anything with these exam-
ples and it might be hard to imagine words having a
magnitude and a direction. In the presence of large
quantities of data, however, one can use the context
of a word to model its meaning. The meaning of a
word can then be modelled by a vector, whose mag-
nitude is the frequency of its occurrence in context
and whose direction denotes the degree of its con-
textual similarity. The idea behind this approach was
put forward in the 50’s by linguists such as Harris
and Firth, see for example [5]. Later, it was referred
to as the distributional hypothesis, got implemented
on large corpora of data using vectors, and is now
routinely taught in textbooks such as [3].

According to the distributional hypothesis, words
that often occur in the same context have similar
meanings. In order to build a model of word meaning
based on the distributional hypothesis, one forms
a co-occurrence matrix. The columns of this matrix
are called context words; the rows of this matrix are
called target words. The value of a cell ci j at the
crossing of the context word ci and the target word
t j is a function of the number of times the two words
co-occurred. Co-occurrence can be proximity in a
window of k , e.g. 5 or 10 words, being part of the
same sentence, sharing a grammatical relation with
each other and such like. The function is often a
logarithmic function on conditional probabilities.

As an example, consider the following sample sen-
tences from the British National Corpus.

I’m a keen pet owner and I can’t recommend

a dog enough for its constant company and

affection.

Growling like a mother cat may make the

owner feel ridiculous.

Every pet lover knows the moment when a dog
approaches a new dish of food.

Ninety-five per cent of our cats are fed a

canned food.

Dog food is subject to stricter controls

than human food.

When you look after a police dog it becomes

your pet as well.

From this one builds a co-occurrence matrix with
"occurring in the same sentence" as the proximity
window, a set of context words containing {food,
owner, police} and the target words, lemmatised
versions of {dog, cat}.

food owner pet police mother · · ·
dog 2 1 2 1 0 · · ·
cat 1 1 0 0 1 · · ·

Co-occurrence matrices can be embedded in vector
spaces, in which the rows corresponding to each
word are represented by a vector. We refer to these
as co-occurrence vector spaces. For example, the 3d
projection of the vector space version of the above
co-occurrence matrix is the following.

food

- owner
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dog
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murder

The cosine of the angle between word vectors is the
most common similarity metric in distributional se-
mantics. Clearly, in the above vector space, cat and
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based on the distributional hypothesis, one forms
a co-occurrence matrix. The columns of this matrix
are called context words; the rows of this matrix are
called target words. The value of a cell ci j at the
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window of k , e.g. 5 or 10 words, being part of the
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each other and such like. The function is often a
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As an example, consider the following sample sen-
tences from the British National Corpus.
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Growling like a mother cat may make the
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approaches a new dish of food.
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than human food.

When you look after a police dog it becomes

your pet as well.

From this one builds a co-occurrence matrix with
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dog have a high degree of similarity. In order to see
the contrast, consider a version of the above vector
space, built from a piece of text that also contains
the target words: “kill" and “murder".
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Here, “dog" and “cat" have a high degree of similarity
to each other, and so do “kill" and “murder", whereas
“cat" and “kill" have a low degree of similarity, as do
pairs (cat, murder), (dog, kill), and (dog, murder).

Co-occurrence matrices and the notion of cosine
similarity have been tested on di�erent datasets,
such as WordSim-353, consisting of 353 pairs of
nouns such as (plane, car), SimLex-999, which con-
sists of noun, verb, as well as adjective pairs, such
as (bad, awful) and (kill, destroy), and the synonymy
part of the TOEFL test. Through similarity, vector
models of word meanings have found applications in
a wide range of natural language tasks, such as entity
recognition, parsing, and semantic role labelling, as
well as in question answering, summarization, and
automatic essay grading.

Representing meanings of sentences

A mapping can be de�ned between a monoid gram-
mar (⌃,B, D, {s }) and tensor products of a co-
occurrence vector spaceW with itself. We denote
this mapping by F. The basic grammatical types in
B are assigned the atomic spaceW :

F(t ) =W t 2 B.

Words with type a are assigned vectors in F(a):

F(w) = Ti 2W (w, t ) 2 D.

A shorthand for linear expansion

The sum notation for the linear expansions of
tensors is often shorthanded using a tradition
set by Einstein:

Ti1i2 · · ·in {
X

i1i2 · · ·in
Ci1i2 · · ·in

�!
bi1 ⌦

�!
bi2 ⌦ · · · ⌦

�!
bin

for
�!
bi a basis vector ofW . The simplest case

of the above shorthands vectors:

Ti {
X

i

Ci
�!
bi

The complex types in T(B)\B are assigned tensors
ofW by structural induction as follows.

F(t1 · t2) = F(t1) ⌦ F(t2),
F(t1 ! t2) = F(t1) ⌦ F(t2),
F(t1  t2) = F(t1) ⌦ F(t2).

So the three operations of the residuated monoid,
its multiplication (·) and its two residuals (! and  ),
get mapped to the tensor product. This uses the
fact that linear maps from U ! U 0 are in corre-
spondence with elements of the space U ⇤ ⌦U 0. So
a word with type t1 ! t2 will get assigned a matrix,
that is a linear map from U to U 0. If U is �nite
dimensional then choosing an orthonormal basis in
it identi�es U ⇤ and U and this map becomes an
element of U ⌦U 0. In the above, U = U 0 =W , and
W is a co-occurrence vector space and these are by
de�nition �nite.

Similar to the atomic case, words with complex types
are assigned elements of tensor spaces, the rank of
which is the same as the number of operations in
their type. Formally (for notation see “A shorthand
for linear expansion"), we have

F(w) = Ti1i2 · · ·in 2W ⌦ · · · ⌦W|           {z           }
n

when the type of w is

(w, t1 � · · · � tn) 2 D

for � either of ·,!, .

Using the above de�nitions and the grammatical
structure provided by our monoid grammar, we can
now assign a tensor to a grammatical sentence
w1w2 · · ·wn . This is via tensor contraction (see “Ten-
sor Contraction") on Fof each of the wordswi of the

1-Dim Tensors

n-Dim Tensors
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their type. Formally (for notation see “A shorthand
for linear expansion"), we have

F(w) = Ti1i2 · · ·in 2W ⌦ · · · ⌦W|           {z           }
n

when the type of w is

(w, t1 � · · · � tn) 2 D

for � either of ·,!, .

Using the above de�nitions and the grammatical
structure provided by our monoid grammar, we can
now assign a tensor to a grammatical sentence
w1w2 · · ·wn . This is via tensor contraction (see “Ten-
sor Contraction") on Fof each of the wordswi of the
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sentence. This idea is used in [1, 2] to develop similar
mappings for three di�erent categorial grammars.

As an example, the mapping on the monoid grammar
of the previous section assigns the co-occurrence
vector space W to the basic types n and s . This
means that “men" and “dogs" get assigned vectors
inW ; they are the rows corresponding to the two
words in the co-occurrence matrix underlyingW . For
the sake of coherence with the tensor notation, we
denote them byT dogs

k andT men
j . To n  n, this map-

ping assigns the tensor spaceW ⌦W and thus to
the adjective “cute" the matrix T cute

lk . An intransitive
verb gets assigned a similar type, e.g. T kill

i j . The type
(n ! s ) n gets assigned the spaceW ⌦W ⌦W ,
and the transitive verb “kill" the cube T kill

i j k .

Sentences “men kill”, “men kill dogs”, and “men kill
cute dogs” get assigned tensors inW via the follow-
ing contractions.

men kill T kill
i j T

men
j

men kill dogs (T kill
i j k T

dogs
k )T men

j

men kill cute dogs (T kill
i j l (T

cute
lk T dog

k ))T men
j

Tensor Contraction

For Ti1i2 · · ·in an element ofW ⌦ · · · ⌦W|           {z           }
n

and

Tinin+1 · · ·in+k an element ofW ⌦ · · · ⌦W|           {z           }
k+1

, the

contraction is formed as follows

Ti1i2 · · ·inTinin+1 · · ·in+k

and is a tensor

Ti1i2 · · ·in+1 · · ·in+k

inW ⌦ · · · ⌦W|           {z           }
n+k�1

.

Concrete Constructions and Experiments

Amongst the various ways tensors are built from
data, two models stand out. One is a model that
employs machine learning and the other a model
that uses analytical methods.

The machine learning model approximates a ma-
trix for words with one argument, e.g. adjectives
and intransitive verbs, as follows. We �rst build co-
occurrence vectors T xi

j for the word w and its argu-
ments xi , that is, for each of the wxi phrases. Then,
a matrix T w

i j is learned for w in such a way that it
provides a good approximation for thewxi ’s, through
tensor contraction, that is:

from

��!wx1��!wx2
· · ·
���!wxn

9>>>>>=>>>>>;
we learn
=) T w

i j s.t.

8>>>>>><>>>>>>:

T w
1 jT

x1
j ⇠ ��!wx1

T w
2 jT

x2
j ⇠ ��!wx2
· · ·

T w
n jT

xn
j ⇠ ���!wxn

For instance, suppose we want to build a matrix for
the adjective “red”. We observe that it has modi�ed
nouns “car”, “carpet”, “�ower”, in the corpus. We
build the following co-occurrence vectors using the
method described in the section on vectors:

������!
red car,

���������!
red carpet,

���������!
red �ower.

From the above, we then learn a matrixT red
i j for “red”

such that after it contracts with each of its modi�ed
nouns, it provides a good approximation of the above
co-occurrence vectors:

T red
i j T

car
j ⇠ ������!

red car,

T red
i j T

car pet
j ⇠ ���������!

red carpet,

T red
i j T

f lower
j ⇠ ���������!

red �ower.

For words with more than one argument, such as
those that are transitive (2 arguments) and ditransi-
tive (3 arguments), one follows a similar procedure to
build cubes and hypercubes, etc, but using the multi
step version of the approximation algorithm. This
model only works if the words and their arguments
have occurred together a reasonable amount of time
and other wise su�ers from data sparsity.

The analytic method argues that a tensor has to be
populated by the properties of its arguments. Words
with one argument are sums of the co-occurrence
vectors of their arguments. Words with two argu-
ments are sums of the tensor products of the co-
occurrence vectors of their arguments, and so on:

T w
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X�!xi,T w
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X

i
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Ti
1

i
2

···in W ⌦W ⌦ · · · ⌦W|                {z                }
n

Tinin+1

···in+k W ⌦W ⌦ · · · ⌦W|                {z                }
k+1

Ti
1

i
2

···in Tinin+1

···in+k W ⌦W ⌦ · · · ⌦W|                {z                }
n+k�1

B = {n, s}

T cats
i Ti j

np 7! N s 7! S

A  A · ^A 7! A =) A ⇥A

A · ^B  ^B · A 7! A ⌦ B =) B ⌦A

TiT j =) T jTi

(A \ B)/C

Ti =) TiTi

V : I ! R M : I ! I ! R C : I ! I ! I ! R

I ! I ! · · ·! I ! R

a · b · a|c  a · b · c

a|c := ^a \ c

a · b · ^a \ c 
a · ^a · b · ^a \ c  a · b · ^a · ^a \ c  a · b · c

a  ^a · a ^b · a  a · ^b a · ^b  ^b · a

(M, ·, 1,, \, /, |)



Monoid to Tensor Mapping

A mapping between a monoid grammar and tensor products 
of a finite dimensional vector space W with a fixed set of 

orthonormal basis is defined as follows:
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dog have a high degree of similarity. In order to see
the contrast, consider a version of the above vector
space, built from a piece of text that also contains
the target words: “kill" and “murder".
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murder

Here, “dog" and “cat" have a high degree of similarity
to each other, and so do “kill" and “murder", whereas
“cat" and “kill" have a low degree of similarity, as do
pairs (cat, murder), (dog, kill), and (dog, murder).

Co-occurrence matrices and the notion of cosine
similarity have been tested on di�erent datasets,
such as WordSim-353, consisting of 353 pairs of
nouns such as (plane, car), SimLex-999, which con-
sists of noun, verb, as well as adjective pairs, such
as (bad, awful) and (kill, destroy), and the synonymy
part of the TOEFL test. Through similarity, vector
models of word meanings have found applications in
a wide range of natural language tasks, such as entity
recognition, parsing, and semantic role labelling, as
well as in question answering, summarization, and
automatic essay grading.

Representing meanings of sentences

A mapping can be de�ned between a monoid gram-
mar (⌃,B, D, {s }) and tensor products of a co-
occurrence vector spaceW with itself. We denote
this mapping by F. The basic grammatical types in
B are assigned the atomic spaceW :

F(t ) =W t 2 B.

Words with type a are assigned vectors in F(a):

F(w) = Ti 2W (w, t ) 2 D.

A shorthand for linear expansion

The sum notation for the linear expansions of
tensors is often shorthanded using a tradition
set by Einstein:

Ti1i2 · · ·in {
X

i1i2 · · ·in
Ci1i2 · · ·in

�!
bi1 ⌦

�!
bi2 ⌦ · · · ⌦

�!
bin

for
�!
bi a basis vector ofW . The simplest case

of the above shorthands vectors:

Ti {
X

i

Ci
�!
bi

The complex types in T(B)\B are assigned tensors
ofW by structural induction as follows.

F(t1 · t2) = F(t1) ⌦ F(t2),
F(t1 ! t2) = F(t1) ⌦ F(t2),
F(t1  t2) = F(t1) ⌦ F(t2).

So the three operations of the residuated monoid,
its multiplication (·) and its two residuals (! and  ),
get mapped to the tensor product. This uses the
fact that linear maps from U ! U 0 are in corre-
spondence with elements of the space U ⇤ ⌦U 0. So
a word with type t1 ! t2 will get assigned a matrix,
that is a linear map from U to U 0. If U is �nite
dimensional then choosing an orthonormal basis in
it identi�es U ⇤ and U and this map becomes an
element of U ⌦U 0. In the above, U = U 0 =W , and
W is a co-occurrence vector space and these are by
de�nition �nite.

Similar to the atomic case, words with complex types
are assigned elements of tensor spaces, the rank of
which is the same as the number of operations in
their type. Formally (for notation see “A shorthand
for linear expansion"), we have

F(w) = Ti1i2 · · ·in 2W ⌦ · · · ⌦W|           {z           }
n

when the type of w is

(w, t1 � · · · � tn) 2 D

for � either of ·,!, .

Using the above de�nitions and the grammatical
structure provided by our monoid grammar, we can
now assign a tensor to a grammatical sentence
w1w2 · · ·wn . This is via tensor contraction (see “Ten-
sor Contraction") on Fof each of the wordswi of the



Monoid to Tensor Mapping
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dog have a high degree of similarity. In order to see
the contrast, consider a version of the above vector
space, built from a piece of text that also contains
the target words: “kill" and “murder".

food

- owner

6
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murder

Here, “dog" and “cat" have a high degree of similarity
to each other, and so do “kill" and “murder", whereas
“cat" and “kill" have a low degree of similarity, as do
pairs (cat, murder), (dog, kill), and (dog, murder).

Co-occurrence matrices and the notion of cosine
similarity have been tested on di�erent datasets,
such as WordSim-353, consisting of 353 pairs of
nouns such as (plane, car), SimLex-999, which con-
sists of noun, verb, as well as adjective pairs, such
as (bad, awful) and (kill, destroy), and the synonymy
part of the TOEFL test. Through similarity, vector
models of word meanings have found applications in
a wide range of natural language tasks, such as entity
recognition, parsing, and semantic role labelling, as
well as in question answering, summarization, and
automatic essay grading.

Representing meanings of sentences

A mapping can be de�ned between a monoid gram-
mar (⌃,B, D, {s }) and tensor products of a co-
occurrence vector spaceW with itself. We denote
this mapping by F. The basic grammatical types in
B are assigned the atomic spaceW :

F(t ) =W t 2 B.

Words with type a are assigned vectors in F(a):

F(w) = Ti 2W (w, t ) 2 D.

A shorthand for linear expansion

The sum notation for the linear expansions of
tensors is often shorthanded using a tradition
set by Einstein:

Ti1i2 · · ·in {
X

i1i2 · · ·in
Ci1i2 · · ·in

�!
bi1 ⌦

�!
bi2 ⌦ · · · ⌦

�!
bin

for
�!
bi a basis vector ofW . The simplest case

of the above shorthands vectors:

Ti {
X
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The complex types in T(B)\B are assigned tensors
ofW by structural induction as follows.

F(t1 · t2) = F(t1) ⌦ F(t2),
F(t1 ! t2) = F(t1) ⌦ F(t2),
F(t1  t2) = F(t1) ⌦ F(t2).

So the three operations of the residuated monoid,
its multiplication (·) and its two residuals (! and  ),
get mapped to the tensor product. This uses the
fact that linear maps from U ! U 0 are in corre-
spondence with elements of the space U ⇤ ⌦U 0. So
a word with type t1 ! t2 will get assigned a matrix,
that is a linear map from U to U 0. If U is �nite
dimensional then choosing an orthonormal basis in
it identi�es U ⇤ and U and this map becomes an
element of U ⌦U 0. In the above, U = U 0 =W , and
W is a co-occurrence vector space and these are by
de�nition �nite.

Similar to the atomic case, words with complex types
are assigned elements of tensor spaces, the rank of
which is the same as the number of operations in
their type. Formally (for notation see “A shorthand
for linear expansion"), we have

F(w) = Ti1i2 · · ·in 2W ⌦ · · · ⌦W|           {z           }
n

when the type of w is

(w, t1 � · · · � tn) 2 D

for � either of ·,!, .

Using the above de�nitions and the grammatical
structure provided by our monoid grammar, we can
now assign a tensor to a grammatical sentence
w1w2 · · ·wn . This is via tensor contraction (see “Ten-
sor Contraction") on Fof each of the wordswi of the

Basic types

All other types
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dog have a high degree of similarity. In order to see
the contrast, consider a version of the above vector
space, built from a piece of text that also contains
the target words: “kill" and “murder".
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6
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murder

Here, “dog" and “cat" have a high degree of similarity
to each other, and so do “kill" and “murder", whereas
“cat" and “kill" have a low degree of similarity, as do
pairs (cat, murder), (dog, kill), and (dog, murder).

Co-occurrence matrices and the notion of cosine
similarity have been tested on di�erent datasets,
such as WordSim-353, consisting of 353 pairs of
nouns such as (plane, car), SimLex-999, which con-
sists of noun, verb, as well as adjective pairs, such
as (bad, awful) and (kill, destroy), and the synonymy
part of the TOEFL test. Through similarity, vector
models of word meanings have found applications in
a wide range of natural language tasks, such as entity
recognition, parsing, and semantic role labelling, as
well as in question answering, summarization, and
automatic essay grading.

Representing meanings of sentences

A mapping can be de�ned between a monoid gram-
mar (⌃,B, D, {s }) and tensor products of a co-
occurrence vector spaceW with itself. We denote
this mapping by F. The basic grammatical types in
B are assigned the atomic spaceW :

F(t ) =W t 2 B.

Words with type a are assigned vectors in F(a):

F(w) = Ti 2W (w, t ) 2 D.

A shorthand for linear expansion

The sum notation for the linear expansions of
tensors is often shorthanded using a tradition
set by Einstein:

Ti1i2 · · ·in {
X

i1i2 · · ·in
Ci1i2 · · ·in

�!
bi1 ⌦

�!
bi2 ⌦ · · · ⌦

�!
bin

for
�!
bi a basis vector ofW . The simplest case

of the above shorthands vectors:

Ti {
X

i

Ci
�!
bi

The complex types in T(B)\B are assigned tensors
ofW by structural induction as follows.

F(t1 · t2) = F(t1) ⌦ F(t2),
F(t1 ! t2) = F(t1) ⌦ F(t2),
F(t1  t2) = F(t1) ⌦ F(t2).

So the three operations of the residuated monoid,
its multiplication (·) and its two residuals (! and  ),
get mapped to the tensor product. This uses the
fact that linear maps from U ! U 0 are in corre-
spondence with elements of the space U ⇤ ⌦U 0. So
a word with type t1 ! t2 will get assigned a matrix,
that is a linear map from U to U 0. If U is �nite
dimensional then choosing an orthonormal basis in
it identi�es U ⇤ and U and this map becomes an
element of U ⌦U 0. In the above, U = U 0 =W , and
W is a co-occurrence vector space and these are by
de�nition �nite.

Similar to the atomic case, words with complex types
are assigned elements of tensor spaces, the rank of
which is the same as the number of operations in
their type. Formally (for notation see “A shorthand
for linear expansion"), we have

F(w) = Ti1i2 · · ·in 2W ⌦ · · · ⌦W|           {z           }
n

when the type of w is

(w, t1 � · · · � tn) 2 D

for � either of ·,!, .

Using the above de�nitions and the grammatical
structure provided by our monoid grammar, we can
now assign a tensor to a grammatical sentence
w1w2 · · ·wn . This is via tensor contraction (see “Ten-
sor Contraction") on Fof each of the wordswi of the



Monoid to Tensor Mapping

4

dog have a high degree of similarity. In order to see
the contrast, consider a version of the above vector
space, built from a piece of text that also contains
the target words: “kill" and “murder".
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murder

Here, “dog" and “cat" have a high degree of similarity
to each other, and so do “kill" and “murder", whereas
“cat" and “kill" have a low degree of similarity, as do
pairs (cat, murder), (dog, kill), and (dog, murder).

Co-occurrence matrices and the notion of cosine
similarity have been tested on di�erent datasets,
such as WordSim-353, consisting of 353 pairs of
nouns such as (plane, car), SimLex-999, which con-
sists of noun, verb, as well as adjective pairs, such
as (bad, awful) and (kill, destroy), and the synonymy
part of the TOEFL test. Through similarity, vector
models of word meanings have found applications in
a wide range of natural language tasks, such as entity
recognition, parsing, and semantic role labelling, as
well as in question answering, summarization, and
automatic essay grading.

Representing meanings of sentences

A mapping can be de�ned between a monoid gram-
mar (⌃,B, D, {s }) and tensor products of a co-
occurrence vector spaceW with itself. We denote
this mapping by F. The basic grammatical types in
B are assigned the atomic spaceW :

F(t ) =W t 2 B.

Words with type a are assigned vectors in F(a):

F(w) = Ti 2W (w, t ) 2 D.

A shorthand for linear expansion

The sum notation for the linear expansions of
tensors is often shorthanded using a tradition
set by Einstein:

Ti1i2 · · ·in {
X

i1i2 · · ·in
Ci1i2 · · ·in

�!
bi1 ⌦

�!
bi2 ⌦ · · · ⌦

�!
bin

for
�!
bi a basis vector ofW . The simplest case

of the above shorthands vectors:

Ti {
X

i

Ci
�!
bi

The complex types in T(B)\B are assigned tensors
ofW by structural induction as follows.

F(t1 · t2) = F(t1) ⌦ F(t2),
F(t1 ! t2) = F(t1) ⌦ F(t2),
F(t1  t2) = F(t1) ⌦ F(t2).

So the three operations of the residuated monoid,
its multiplication (·) and its two residuals (! and  ),
get mapped to the tensor product. This uses the
fact that linear maps from U ! U 0 are in corre-
spondence with elements of the space U ⇤ ⌦U 0. So
a word with type t1 ! t2 will get assigned a matrix,
that is a linear map from U to U 0. If U is �nite
dimensional then choosing an orthonormal basis in
it identi�es U ⇤ and U and this map becomes an
element of U ⌦U 0. In the above, U = U 0 =W , and
W is a co-occurrence vector space and these are by
de�nition �nite.

Similar to the atomic case, words with complex types
are assigned elements of tensor spaces, the rank of
which is the same as the number of operations in
their type. Formally (for notation see “A shorthand
for linear expansion"), we have

F(w) = Ti1i2 · · ·in 2W ⌦ · · · ⌦W|           {z           }
n

when the type of w is

(w, t1 � · · · � tn) 2 D

for � either of ·,!, .

Using the above de�nitions and the grammatical
structure provided by our monoid grammar, we can
now assign a tensor to a grammatical sentence
w1w2 · · ·wn . This is via tensor contraction (see “Ten-
sor Contraction") on Fof each of the wordswi of the

Words with atomic type

All other words

4

dog have a high degree of similarity. In order to see
the contrast, consider a version of the above vector
space, built from a piece of text that also contains
the target words: “kill" and “murder".
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Here, “dog" and “cat" have a high degree of similarity
to each other, and so do “kill" and “murder", whereas
“cat" and “kill" have a low degree of similarity, as do
pairs (cat, murder), (dog, kill), and (dog, murder).

Co-occurrence matrices and the notion of cosine
similarity have been tested on di�erent datasets,
such as WordSim-353, consisting of 353 pairs of
nouns such as (plane, car), SimLex-999, which con-
sists of noun, verb, as well as adjective pairs, such
as (bad, awful) and (kill, destroy), and the synonymy
part of the TOEFL test. Through similarity, vector
models of word meanings have found applications in
a wide range of natural language tasks, such as entity
recognition, parsing, and semantic role labelling, as
well as in question answering, summarization, and
automatic essay grading.

Representing meanings of sentences

A mapping can be de�ned between a monoid gram-
mar (⌃,B, D, {s }) and tensor products of a co-
occurrence vector spaceW with itself. We denote
this mapping by F. The basic grammatical types in
B are assigned the atomic spaceW :

F(t ) =W t 2 B.

Words with type a are assigned vectors in F(a):

F(w) = Ti 2W (w, t ) 2 D.

A shorthand for linear expansion

The sum notation for the linear expansions of
tensors is often shorthanded using a tradition
set by Einstein:
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The complex types in T(B)\B are assigned tensors
ofW by structural induction as follows.

F(t1 · t2) = F(t1) ⌦ F(t2),
F(t1 ! t2) = F(t1) ⌦ F(t2),
F(t1  t2) = F(t1) ⌦ F(t2).

So the three operations of the residuated monoid,
its multiplication (·) and its two residuals (! and  ),
get mapped to the tensor product. This uses the
fact that linear maps from U ! U 0 are in corre-
spondence with elements of the space U ⇤ ⌦U 0. So
a word with type t1 ! t2 will get assigned a matrix,
that is a linear map from U to U 0. If U is �nite
dimensional then choosing an orthonormal basis in
it identi�es U ⇤ and U and this map becomes an
element of U ⌦U 0. In the above, U = U 0 =W , and
W is a co-occurrence vector space and these are by
de�nition �nite.

Similar to the atomic case, words with complex types
are assigned elements of tensor spaces, the rank of
which is the same as the number of operations in
their type. Formally (for notation see “A shorthand
for linear expansion"), we have

F(w) = Ti1i2 · · ·in 2W ⌦ · · · ⌦W|           {z           }
n

when the type of w is

(w, t1 � · · · � tn) 2 D

for � either of ·,!, .

Using the above de�nitions and the grammatical
structure provided by our monoid grammar, we can
now assign a tensor to a grammatical sentence
w1w2 · · ·wn . This is via tensor contraction (see “Ten-
sor Contraction") on Fof each of the wordswi of the
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dog have a high degree of similarity. In order to see
the contrast, consider a version of the above vector
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men kill n · (n ! s )  s .
men kill dogs n · ((n ! s ) n) · n

 n · (n ! s )
 s .

men kill cute dogs n · ((n ! s ) n) · (n  n) · n
 n · ((n ! s ) n) · n
 n · (n ! s )
 s .

To wrap up, we de�ne a monoid grammar to be the
tuple (⌃,B, D, {s }), for s a designated element of
B. Herein, a sequence of words w1w2 · · ·wn forms
a grammatical sentence when for (wi, ti ) 2 D we
have:

t1 · t2 · · · · · tn  s .
This partial ordering is referred to as the grammatical
reduction of w1w2 · · ·wn .

Representing meanings of words

Vectors are often used to model phenomena that
have a magnitude and a direction, such as force, ve-
locity, and acceleration. At �rst sight, word meaning
does not seem to share anything with these exam-
ples and it might be hard to imagine words having a
magnitude and a direction. In the presence of large
quantities of data, however, one can use the context
of a word to model its meaning. The meaning of a
word can then be modelled by a vector, whose mag-
nitude is the frequency of its occurrence in context
and whose direction denotes the degree of its con-
textual similarity. The idea behind this approach was
put forward in the 50’s by linguists such as Harris
and Firth, see for example [5]. Later, it was referred
to as the distributional hypothesis, got implemented
on large corpora of data using vectors, and is now
routinely taught in textbooks such as [3].

According to the distributional hypothesis, words
that often occur in the same context have similar
meanings. In order to build a model of word meaning
based on the distributional hypothesis, one forms
a co-occurrence matrix. The columns of this matrix
are called context words; the rows of this matrix are
called target words. The value of a cell ci j at the
crossing of the context word ci and the target word
t j is a function of the number of times the two words
co-occurred. Co-occurrence can be proximity in a
window of k , e.g. 5 or 10 words, being part of the
same sentence, sharing a grammatical relation with
each other and such like. The function is often a
logarithmic function on conditional probabilities.

As an example, consider the following sample sen-
tences from the British National Corpus.

I’m a keen pet owner and I can’t recommend

a dog enough for its constant company and

affection.

Growling like a mother cat may make the

owner feel ridiculous.

Every pet lover knows the moment when a dog
approaches a new dish of food.

Ninety-five per cent of our cats are fed a

canned food.

Dog food is subject to stricter controls

than human food.

When you look after a police dog it becomes

your pet as well.

From this one builds a co-occurrence matrix with
"occurring in the same sentence" as the proximity
window, a set of context words containing {food,
owner, police} and the target words, lemmatised
versions of {dog, cat}.

food owner pet police mother · · ·
dog 2 1 2 1 0 · · ·
cat 1 1 0 0 1 · · ·

Co-occurrence matrices can be embedded in vector
spaces, in which the rows corresponding to each
word are represented by a vector. We refer to these
as co-occurrence vector spaces. For example, the 3d
projection of the vector space version of the above
co-occurrence matrix is the following.
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The cosine of the angle between word vectors is the
most common similarity metric in distributional se-
mantics. Clearly, in the above vector space, cat and
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sentence. This idea is used in [1, 2] to develop similar
mappings for three di�erent categorial grammars.

As an example, the mapping on the monoid grammar
of the previous section assigns the co-occurrence
vector space W to the basic types n and s . This
means that “men" and “dogs" get assigned vectors
inW ; they are the rows corresponding to the two
words in the co-occurrence matrix underlyingW . For
the sake of coherence with the tensor notation, we
denote them byT dogs

k andT men
j . To n  n, this map-

ping assigns the tensor spaceW ⌦W and thus to
the adjective “cute" the matrix T cute

lk . An intransitive
verb gets assigned a similar type, e.g. T kill

i j . The type
(n ! s ) n gets assigned the spaceW ⌦W ⌦W ,
and the transitive verb “kill" the cube T kill

i j k .

Sentences “men kill”, “men kill dogs”, and “men kill
cute dogs” get assigned tensors inW via the follow-
ing contractions.

men kill T kill
i j T

men
j

men kill dogs (T kill
i j k T

dogs
k )T men

j

men kill cute dogs (T kill
i j l (T

cute
lk T dog

k ))T men
j

Tensor Contraction

For Ti1i2 · · ·in an element ofW ⌦ · · · ⌦W|           {z           }
n

and

Tinin+1 · · ·in+k an element ofW ⌦ · · · ⌦W|           {z           }
k+1

, the

contraction is formed as follows

Ti1i2 · · ·inTinin+1 · · ·in+k

and is a tensor

Ti1i2 · · ·in+1 · · ·in+k

inW ⌦ · · · ⌦W|           {z           }
n+k�1

.

Concrete Constructions and Experiments

Amongst the various ways tensors are built from
data, two models stand out. One is a model that
employs machine learning and the other a model
that uses analytical methods.

The machine learning model approximates a ma-
trix for words with one argument, e.g. adjectives
and intransitive verbs, as follows. We �rst build co-
occurrence vectors T xi

j for the word w and its argu-
ments xi , that is, for each of the wxi phrases. Then,
a matrix T w

i j is learned for w in such a way that it
provides a good approximation for thewxi ’s, through
tensor contraction, that is:

from

��!wx1��!wx2
· · ·
���!wxn

9>>>>>=>>>>>;
we learn
=) T w

i j s.t.

8>>>>>><>>>>>>:

T w
1 jT

x1
j ⇠ ��!wx1

T w
2 jT

x2
j ⇠ ��!wx2
· · ·

T w
n jT

xn
j ⇠ ���!wxn

For instance, suppose we want to build a matrix for
the adjective “red”. We observe that it has modi�ed
nouns “car”, “carpet”, “�ower”, in the corpus. We
build the following co-occurrence vectors using the
method described in the section on vectors:

������!
red car,

���������!
red carpet,

���������!
red �ower.

From the above, we then learn a matrixT red
i j for “red”

such that after it contracts with each of its modi�ed
nouns, it provides a good approximation of the above
co-occurrence vectors:

T red
i j T

car
j ⇠ ������!

red car,

T red
i j T

car pet
j ⇠ ���������!

red carpet,

T red
i j T

f lower
j ⇠ ���������!

red �ower.

For words with more than one argument, such as
those that are transitive (2 arguments) and ditransi-
tive (3 arguments), one follows a similar procedure to
build cubes and hypercubes, etc, but using the multi
step version of the approximation algorithm. This
model only works if the words and their arguments
have occurred together a reasonable amount of time
and other wise su�ers from data sparsity.

The analytic method argues that a tensor has to be
populated by the properties of its arguments. Words
with one argument are sums of the co-occurrence
vectors of their arguments. Words with two argu-
ments are sums of the tensor products of the co-
occurrence vectors of their arguments, and so on:

T w
i =

X�!xi,T w
i j =

X

i

�!xi ⌦ �!yi ,T w
i jk

=
X

i

�!xi ⌦ �!yi ⌦ �!zi , · · · .
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x yHaving x Haver Speaker x HadThing y x Car y

Having

Haver Had-Thing

Speaker Car

Car Having
POSS-BY Haver: Speaker

Speaker HadThing: Car

Figure 14.1 A list of symbols, two directed graphs, and a record structure:
a sampler of meaning representations for I have a car.

relations denoting the possession of one by the other.
It is important to note that these representations can be viewed from at

least two distinct perspectives in all four of these approaches: as represen-
tations of the meaning of the particular linguistic input I have a car, and as
representations of the state of affairs in some world. It is this dual perspec-
tive that allows these representations to be used to link linguistic inputs to
the world and to our knowledge of it.

The structure of this part of the book parallels that of the previous parts.
We will alternate discussions of the nature of meaning representations with
discussions of the computational processes that can produce them. More
specifically, this chapter introduces the basics of what is needed in a mean-
ing representation, while Chapter 15 introduces a number of techniques for
assigning meanings to linguistic inputs. Chapter 16 explores a range of com-
plex representational issues related to the meanings of words. Chapter 17
then explores some robust computational methods designed to exploit these
lexical representations.

Note that since the emphasis of this chapter is on the basic require-
ments of meaning representations, we will defer a number of extremely im-
portant issues to later chapters. In particular, the focus of this chapter is on

Monoid Grammer Tensor 
Algebras

4

dog have a high degree of similarity. In order to see
the contrast, consider a version of the above vector
space, built from a piece of text that also contains
the target words: “kill" and “murder".

food

- owner

6

�
�

�
�
� 

police

�
�✓

cat

�
�
�
�
�� dog

�����⇡
kill

⇠⇠⇠⇠⇠9

murder

Here, “dog" and “cat" have a high degree of similarity
to each other, and so do “kill" and “murder", whereas
“cat" and “kill" have a low degree of similarity, as do
pairs (cat, murder), (dog, kill), and (dog, murder).

Co-occurrence matrices and the notion of cosine
similarity have been tested on di�erent datasets,
such as WordSim-353, consisting of 353 pairs of
nouns such as (plane, car), SimLex-999, which con-
sists of noun, verb, as well as adjective pairs, such
as (bad, awful) and (kill, destroy), and the synonymy
part of the TOEFL test. Through similarity, vector
models of word meanings have found applications in
a wide range of natural language tasks, such as entity
recognition, parsing, and semantic role labelling, as
well as in question answering, summarization, and
automatic essay grading.

Representing meanings of sentences

A mapping can be de�ned between a monoid gram-
mar (⌃,B, D, {s }) and tensor products of a co-
occurrence vector spaceW with itself. We denote
this mapping by F. The basic grammatical types in
B are assigned the atomic spaceW :

F(t ) =W t 2 B.

Words with type a are assigned vectors in F(a):

F(w) = Ti 2W (w, t ) 2 D.

A shorthand for linear expansion

The sum notation for the linear expansions of
tensors is often shorthanded using a tradition
set by Einstein:

Ti1i2 · · ·in {
X

i1i2 · · ·in
Ci1i2 · · ·in

�!
bi1 ⌦

�!
bi2 ⌦ · · · ⌦

�!
bin

for
�!
bi a basis vector ofW . The simplest case

of the above shorthands vectors:

Ti {
X

i

Ci
�!
bi

The complex types in T(B)\B are assigned tensors
ofW by structural induction as follows.

F(t1 · t2) = F(t1) ⌦ F(t2),
F(t1 ! t2) = F(t1) ⌦ F(t2),
F(t1  t2) = F(t1) ⌦ F(t2).

So the three operations of the residuated monoid,
its multiplication (·) and its two residuals (! and  ),
get mapped to the tensor product. This uses the
fact that linear maps from U ! U 0 are in corre-
spondence with elements of the space U ⇤ ⌦U 0. So
a word with type t1 ! t2 will get assigned a matrix,
that is a linear map from U to U 0. If U is �nite
dimensional then choosing an orthonormal basis in
it identi�es U ⇤ and U and this map becomes an
element of U ⌦U 0. In the above, U = U 0 =W , and
W is a co-occurrence vector space and these are by
de�nition �nite.

Similar to the atomic case, words with complex types
are assigned elements of tensor spaces, the rank of
which is the same as the number of operations in
their type. Formally (for notation see “A shorthand
for linear expansion"), we have

F(w) = Ti1i2 · · ·in 2W ⌦ · · · ⌦W|           {z           }
n

when the type of w is

(w, t1 � · · · � tn) 2 D

for � either of ·,!, .

Using the above de�nitions and the grammatical
structure provided by our monoid grammar, we can
now assign a tensor to a grammatical sentence
w1w2 · · ·wn . This is via tensor contraction (see “Ten-
sor Contraction") on Fof each of the wordswi of the
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between A and B ⇥ C. Given a set S with elements si, sj 2 S, the epsilon and eta maps are given as
follows:

✏l = ✏r : S ⇥ S ! {?} given by {((si, sj), ?) | si, sj 2 S, si = sj}
⌘l = ⌘r : {?} ! S ⇥ S given by {(?, (si, sj)) | si, sj 2 S, si = sj}

Every object in Rel has a Frobenius algebra over it given by the diagonal and codiagonal relations,
as described below:

� : S ! S ⇥ S given by {(si, (sj , sk)) | si, sj , sk 2 S, si = sj = sk}
µ : S ⇥ S ! S given by {(si, sj), sk) | si, sj , sk 2 S, si = sj = sk}
◆ : S ! {?} given by {(si, ?) | si 2 S}
⇣ : {?} ! S given by {(?, si) | si 2 S}

For the details of verifying that for each of the two examples above, the corresponding conditions
hold see [3].

2.3 String Diagrams

The framework of compact closed categories and Frobenius algebras comes with a complete diagram-
matic calculus that visualises derivations, and which also simplifies the categorical and vector space
computations. Morphisms are depicted by boxes and objects by lines, representing their identity mor-
phisms. For instance a morphism f : A ! B, and an object A with the identity arrow 1A : A ! A, are
depicted as follows:

f

A

B

A

The tensor products of the objects and morphisms are depicted by juxtaposing their diagrams side
by side, whereas compositions of morphisms are depicted by putting one on top of the other; for instance
the object A⌦B, and the morphisms f ⌦ g and f � h, for f : A ! B, g : C ! D, and h : B ! C, are
depicted as follows:

f

A

B D

g

C f

A

B

h

C

A B

The ✏ maps are depicted by cups, ⌘ maps by caps, and yanking by their composition and straighten-
ing of the strings. For instance, the diagrams for ✏l : Al⌦A ! I , ⌘ : I ! A⌦Al and (✏l⌦ 1A) � (1A⌦
⌘l) = 1A are as follows:

Elements within objects

Al

A Al

A
Al A Al

= A

As for Frobenius algebras, the diagrams for the monoid and comonoid morphisms are as follows:

(µ, ⇣) (�, ◆)

with the Frobenius condition being depicted as:

= =

The defining axioms guarantee that any picture depicting a Frobenius computation can be reduced to a
normal form that only depends on the number of input and output strings of the nodes, independent of
the topology. These normal forms can be simplified to so-called ‘spiders’:

=

· · ·

· · ·
···

···

In the category FdVect, apart from spaces V,W , which are objects of the category, we also have
vectors �!v ,�!w . These are depicted by their representing morphisms and as triangles with a number of
strings emanating from them. The number of strings of a triangle denote the tensor rank of the vector;
for instance, the diagrams for �!v 2 V,

�!
v0 2 V ⌦W , and

�!
v00 2 V ⌦W ⌦ Z are as follows:

V W WV ZV

3 Diagrammatic Compact Closed Semantics

Following the terminology and notation of [2], given a phrase containing a quantifier followed by a
noun, that is ‘Q noun’, we call ‘Q’ a determiner and the phrase ‘Q noun’ a quantified phrase.Hence, a
quantified phrase is a noun phrase which is created by the application of a determiner to a noun phrase.
We suggest the following diagrammatic semantics for a determiner Det:

Det

N

N

N N

N

N
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µ : S ⇥ S ! S given by {(si, sj), sk) | si, sj , sk 2 S, si = sj = sk}
◆ : S ! {?} given by {(si, ?) | si 2 S}
⇣ : {?} ! S given by {(?, si) | si 2 S}

For the details of verifying that for each of the two examples above, the corresponding conditions
hold see [3].

2.3 String Diagrams

The framework of compact closed categories and Frobenius algebras comes with a complete diagram-
matic calculus that visualises derivations, and which also simplifies the categorical and vector space
computations. Morphisms are depicted by boxes and objects by lines, representing their identity mor-
phisms. For instance a morphism f : A ! B, and an object A with the identity arrow 1A : A ! A, are
depicted as follows:

f

A

B

A

The tensor products of the objects and morphisms are depicted by juxtaposing their diagrams side
by side, whereas compositions of morphisms are depicted by putting one on top of the other; for instance
the object A⌦B, and the morphisms f ⌦ g and f � h, for f : A ! B, g : C ! D, and h : B ! C, are
depicted as follows:

f

A

B D

g

C f

A

B

h

C

A B

The ✏ maps are depicted by cups, ⌘ maps by caps, and yanking by their composition and straighten-
ing of the strings. For instance, the diagrams for ✏l : Al⌦A ! I , ⌘ : I ! A⌦Al and (✏l⌦ 1A) � (1A⌦
⌘l) = 1A are as follows:

Tensors of morphisms



Compact Closed Category

4 A Study of Entanglement in a Categorical Framework of Natural Language

The above categorical computations simplify to the following form:

(happy⇥
��!
kids)T⇥ play⇥���!games (10)

where symbol ⇥ denotes tensor contraction and the above is a vector living in our basic vector space W .

3 Pictorial calculus

Compact closed categories are complete with regard to a pictorial calculus [14, 24], which can be used
for visualizing the derivations and simplifying the computations. We introduce the fragment of calculus
that is relevant to the current paper. A morphism f : A ! B is depicted as a box with incoming and
outgoing wires representing the objects; the identity morphism 1A : A ! A is a straight line.

A

f A

B

Recall that the objects of FVectW are vector spaces. However, for our purposes it is also important
to access individual vectors within a vector space. In order to do that, we represent a vector �!v 2 V as
a morphism �!v : I ! V . The unit object is depicted as a triangle, while the number of wires emanating
from it denotes the order of the corresponding tensor.

V V W V W Z

Tensor products of objects and morphisms are depicted by juxtaposing the corresponding diagrams
side by side. Composition, on the other hand, is represented as a vertical superposition. For example,
from left to right, here are the pictorial representations of the tensor of a vector in A with a vector in B,
a tensor of morphisms f ⌦g : A⌦C ! B⌦D, and a composition of morphisms h� f for f : A ! B and
h : B !C:

A

A C f

Bf g

hA B
B D

C

The e-maps are represented as cups ([) and the h-maps as caps (\). Equations such as (e l
A ⌦1Ar)�

(1Al ⌦hr
A) = 1A now get an intuitive visual justification:

Al A Al A Ar = A
A Ar

We are now in position to provide a diagram for the meaning of the sentence ‘happy kids play games’.
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Elements of tensors of various ranks

4 A Study of Entanglement in a Categorical Framework of Natural Language

The above categorical computations simplify to the following form:

(happy⇥
��!
kids)T⇥ play⇥���!games (10)

where symbol ⇥ denotes tensor contraction and the above is a vector living in our basic vector space W .

3 Pictorial calculus

Compact closed categories are complete with regard to a pictorial calculus [14, 24], which can be used
for visualizing the derivations and simplifying the computations. We introduce the fragment of calculus
that is relevant to the current paper. A morphism f : A ! B is depicted as a box with incoming and
outgoing wires representing the objects; the identity morphism 1A : A ! A is a straight line.

A

f A

B

Recall that the objects of FVectW are vector spaces. However, for our purposes it is also important
to access individual vectors within a vector space. In order to do that, we represent a vector �!v 2 V as
a morphism �!v : I ! V . The unit object is depicted as a triangle, while the number of wires emanating
from it denotes the order of the corresponding tensor.

V V W V W Z

Tensor products of objects and morphisms are depicted by juxtaposing the corresponding diagrams
side by side. Composition, on the other hand, is represented as a vertical superposition. For example,
from left to right, here are the pictorial representations of the tensor of a vector in A with a vector in B,
a tensor of morphisms f ⌦g : A⌦C ! B⌦D, and a composition of morphisms h� f for f : A ! B and
h : B !C:

A

A C f

Bf g

hA B
B D

C

The e-maps are represented as cups ([) and the h-maps as caps (\). Equations such as (e l
A ⌦1Ar)�

(1Al ⌦hr
A) = 1A now get an intuitive visual justification:

Al A Al A Ar = A
A Ar

We are now in position to provide a diagram for the meaning of the sentence ‘happy kids play games’.



Non Symmetric CCC
Left and right epsilon and eta maps

Al

A Al

A
Al A Al

= A

As for Frobenius algebras, the diagrams for the monoid and comonoid morphisms are as follows:

(µ, ⇣) (�, ◆)

with the Frobenius condition being depicted as:

= =

The defining axioms guarantee that any picture depicting a Frobenius computation can be reduced to a
normal form that only depends on the number of input and output strings of the nodes, independent of
the topology. These normal forms can be simplified to so-called ‘spiders’:

=

· · ·

· · ·
···

···

In the category FdVect, apart from spaces V,W , which are objects of the category, we also have
vectors �!v ,�!w . These are depicted by their representing morphisms and as triangles with a number of
strings emanating from them. The number of strings of a triangle denote the tensor rank of the vector;
for instance, the diagrams for �!v 2 V,

�!
v0 2 V ⌦W , and

�!
v00 2 V ⌦W ⌦ Z are as follows:

V W WV ZV

3 Diagrammatic Compact Closed Semantics

Following the terminology and notation of [2], given a phrase containing a quantifier followed by a
noun, that is ‘Q noun’, we call ‘Q’ a determiner and the phrase ‘Q noun’ a quantified phrase.Hence, a
quantified phrase is a noun phrase which is created by the application of a determiner to a noun phrase.
We suggest the following diagrammatic semantics for a determiner Det:

Det

N

N

N N

N

N

PG ✓ ⌃⇥ T (B)

✏

r
A : A⌦A

r ! I ⌘

r
A : I ! A

r ⌦A

✏

l
A : Al ⌦A ! I ⌘

l
A : I ! A⌦A

l

2



satisfying
satisfying:

(1A ⌦ ✏lA) � (⌘lA ⌦ 1A) = 1A (✏rA ⌦ 1A) � (1A ⌦ ⌘rA) = 1A

(✏lA ⌦ 1Al) � (1Al ⌦ ⌘lA) = 1Al (1Ar ⌦ ✏rA) � (⌘rA ⌦ 1Ar ) = 1Ar

Non Symmetric CCC

meaning of the whole sentence, the meaning of the verb will need to interact with
the meaning of both the object and subject, so it cannot be decomposed into three
disconnected entities:

verb

object subject
meaning of sentence

=

In this graphical language, the topology (i.e. either being connected or not) repre-
sents when interaction occurs. In other words, ‘connectedness’ encodes ‘correla-
tions’.

That we cannot always decompose triangles representing meanings of type A⌦
B in compact closed categories can be immediately seen in the graphical calculus
of compact closed categories, which explicitly introduces wires between different
types, and these will mediate flows of information between words in a sentence. A
fully worked out example of sentences of this type is given in section 4.1.

Graphical language for compact closed categories. When depicting the mor-
phisms ⌘

l
, ✏

l
, ⌘

r
, ✏

r as (read in a top-down fashion)

A Al A A
A Al

r

A Ar

rather than as triangles, the axioms of compact closure simplify to:

=

A

A

A

A

=A

A A

A

r

r

=

A

A

A

A

=A

A A

Al l

ll

r

r

i.e. they boil down to ‘yanking wires’.

Vector spaces, linear maps and tensor product as a compact closed category.
Let FVect be the category which has vector spaces over the base field R as objects,
linear maps as morphisms and the vector space tensor product as the monoidal
tensor. In this category, the tensor is commutative, i.e. V ⌦W

⇠= W ⌦ V , and left
and right adjoints are the same, i.e. V

l = V

r so we denote either by V

⇤, which

12



For example

Al

A Al

A
Al A Al

= A

As for Frobenius algebras, the diagrams for the monoid and comonoid morphisms are as follows:

(µ, ⇣) (�, ◆)

with the Frobenius condition being depicted as:

= =

The defining axioms guarantee that any picture depicting a Frobenius computation can be reduced to a
normal form that only depends on the number of input and output strings of the nodes, independent of
the topology. These normal forms can be simplified to so-called ‘spiders’:

=

· · ·

· · ·
···

···

In the category FdVect, apart from spaces V,W , which are objects of the category, we also have
vectors �!v ,�!w . These are depicted by their representing morphisms and as triangles with a number of
strings emanating from them. The number of strings of a triangle denote the tensor rank of the vector;
for instance, the diagrams for �!v 2 V,

�!
v0 2 V ⌦W , and

�!
v00 2 V ⌦W ⌦ Z are as follows:

V W WV ZV

3 Diagrammatic Compact Closed Semantics

Following the terminology and notation of [2], given a phrase containing a quantifier followed by a
noun, that is ‘Q noun’, we call ‘Q’ a determiner and the phrase ‘Q noun’ a quantified phrase.Hence, a
quantified phrase is a noun phrase which is created by the application of a determiner to a noun phrase.
We suggest the following diagrammatic semantics for a determiner Det:

Det

N

N

N N

N

N

between A and B ⇥ C. Given a set S with elements si, sj 2 S, the epsilon and eta maps are given as
follows:

✏l = ✏r : S ⇥ S ! {?} given by {((si, sj), ?) | si, sj 2 S, si = sj}
⌘l = ⌘r : {?} ! S ⇥ S given by {(?, (si, sj)) | si, sj 2 S, si = sj}

Every object in Rel has a Frobenius algebra over it given by the diagonal and codiagonal relations,
as described below:

� : S ! S ⇥ S given by {(si, (sj , sk)) | si, sj , sk 2 S, si = sj = sk}
µ : S ⇥ S ! S given by {(si, sj), sk) | si, sj , sk 2 S, si = sj = sk}
◆ : S ! {?} given by {(si, ?) | si 2 S}
⇣ : {?} ! S given by {(?, si) | si 2 S}

For the details of verifying that for each of the two examples above, the corresponding conditions
hold see [3].

2.3 String Diagrams

The framework of compact closed categories and Frobenius algebras comes with a complete diagram-
matic calculus that visualises derivations, and which also simplifies the categorical and vector space
computations. Morphisms are depicted by boxes and objects by lines, representing their identity mor-
phisms. For instance a morphism f : A ! B, and an object A with the identity arrow 1A : A ! A, are
depicted as follows:

f

A

B

A

The tensor products of the objects and morphisms are depicted by juxtaposing their diagrams side
by side, whereas compositions of morphisms are depicted by putting one on top of the other; for instance
the object A⌦B, and the morphisms f ⌦ g and f � h, for f : A ! B, g : C ! D, and h : B ! C, are
depicted as follows:

f

A

B D

g

C f

A

B

h

C

A B

The ✏ maps are depicted by cups, ⌘ maps by caps, and yanking by their composition and straighten-
ing of the strings. For instance, the diagrams for ✏l : Al⌦A ! I , ⌘ : I ! A⌦Al and (✏l⌦ 1A) � (1A⌦
⌘l) = 1A are as follows:

Satisfies
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A
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= A

As for Frobenius algebras, the diagrams for the monoid and comonoid morphisms are as follows:

(µ, ⇣) (�, ◆)

with the Frobenius condition being depicted as:

= =

The defining axioms guarantee that any picture depicting a Frobenius computation can be reduced to a
normal form that only depends on the number of input and output strings of the nodes, independent of
the topology. These normal forms can be simplified to so-called ‘spiders’:

=

· · ·

· · ·
···

···

In the category FdVect, apart from spaces V,W , which are objects of the category, we also have
vectors �!v ,�!w . These are depicted by their representing morphisms and as triangles with a number of
strings emanating from them. The number of strings of a triangle denote the tensor rank of the vector;
for instance, the diagrams for �!v 2 V,

�!
v0 2 V ⌦W , and

�!
v00 2 V ⌦W ⌦ Z are as follows:

V W WV ZV

3 Diagrammatic Compact Closed Semantics

Following the terminology and notation of [2], given a phrase containing a quantifier followed by a
noun, that is ‘Q noun’, we call ‘Q’ a determiner and the phrase ‘Q noun’ a quantified phrase.Hence, a
quantified phrase is a noun phrase which is created by the application of a determiner to a noun phrase.
We suggest the following diagrammatic semantics for a determiner Det:

Det

N

N

N N

N

N
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Monoidal Functors

A functor between two monoidal categories 

satisfying:

(1A ⌦ ✏lA) � (⌘lA ⌦ 1A) = 1A (✏rA ⌦ 1A) � (1A ⌦ ⌘rA) = 1A

(✏lA ⌦ 1Al) � (1Al ⌦ ⌘lA) = 1Al (1Ar ⌦ ✏rA) � (⌘rA ⌦ 1Ar ) = 1Ar

A functor F from a monoidal category C to a monoidal category D

F : C ! D

is a monoidal functor, whenever there exits a morphism

I ! F(I)

and a natural transformation:

F(A)⌦ F(B) ! F(A⌦B)

A monoidal functor is strongly monoidal, whenever the above morphism and natu-

ral transformation are invertible.

A Recap on Category Theory

A strongly monoidal functor on two compact closed categories C and D, preserves the

compact structure:

F(Al) = F(A)l and F(Ar) = F(A)r

To see this, consider the case of the left adjoint, for which we have the following two

compositions of morphisms:

F(Al)⌦ F(A) ! F(Al ⌦A) ! F(I) ! I

I ! F(I) ! F(A⌦Al) ! F(A)⌦ F(Al)

From these and since adjoints are unique it follows that F(Al) must be left adjoint to

F(A). The case for the right adjoint is similar.

satisfying:

(1A ⌦ ✏lA) � (⌘lA ⌦ 1A) = 1A (✏rA ⌦ 1A) � (1A ⌦ ⌘rA) = 1A

(✏lA ⌦ 1Al) � (1Al ⌦ ⌘lA) = 1Al (1Ar ⌦ ✏rA) � (⌘rA ⌦ 1Ar ) = 1Ar

A functor F from a monoidal category C to a monoidal category D

F : C ! D

is a monoidal functor, whenever there exits a morphism

I ! F(I)

and a natural transformation:

F(A)⌦ F(B) ! F(A⌦B)

A monoidal functor is strongly monoidal, whenever the above morphism and natu-

ral transformation are invertible.

A Recap on Category Theory

A strongly monoidal functor on two compact closed categories C and D, preserves the

compact structure:

F(Al) = F(A)l and F(Ar) = F(A)r

To see this, consider the case of the left adjoint, for which we have the following two

compositions of morphisms:

F(Al)⌦ F(A) ! F(Al ⌦A) ! F(I) ! I

I ! F(I) ! F(A⌦Al) ! F(A)⌦ F(Al)

From these and since adjoints are unique it follows that F(Al) must be left adjoint to

F(A). The case for the right adjoint is similar.

satisfying:

(1A ⌦ ✏lA) � (⌘lA ⌦ 1A) = 1A (✏rA ⌦ 1A) � (1A ⌦ ⌘rA) = 1A

(✏lA ⌦ 1Al) � (1Al ⌦ ⌘lA) = 1Al (1Ar ⌦ ✏rA) � (⌘rA ⌦ 1Ar ) = 1Ar

A functor F from a monoidal category C to a monoidal category D

F : C ! D

is a monoidal functor, whenever there exits a morphism

I ! F(I)

and a natural transformation:

F(A)⌦ F(B) ! F(A⌦B)

A monoidal functor is strongly monoidal, whenever the above morphism and natu-

ral transformation are invertible.

A Recap on Category Theory

A strongly monoidal functor on two compact closed categories C and D, preserves the

compact structure:

F(Al) = F(A)l and F(Ar) = F(A)r

To see this, consider the case of the left adjoint, for which we have the following two

compositions of morphisms:

F(Al)⌦ F(A) ! F(Al ⌦A) ! F(I) ! I

I ! F(I) ! F(A⌦Al) ! F(A)⌦ F(Al)

From these and since adjoints are unique it follows that F(Al) must be left adjoint to

F(A). The case for the right adjoint is similar.

is monoidal if exists a unit morphism

and a natural transformation

A monoidal functor strong if the above have inverses.
 
These preserve the compact structure.



A strongly monoidal functor on compact closed 
categories preserves the compact structure.
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and a natural transformation:

F(A)⌦ F(B) ! F(A⌦B)

A monoidal functor is strongly monoidal, whenever the above morphism and natu-

ral transformation are invertible.

A Recap on Category Theory

A strongly monoidal functor on two compact closed categories C and D, preserves the

compact structure:

F(Al) = F(A)l and F(Ar) = F(A)r

To see this, consider the case of the left adjoint, for which we have the following two

compositions of morphisms:

F(Al)⌦ F(A) ! F(Al ⌦A) ! F(I) ! I

I ! F(I) ! F(A⌦Al) ! F(A)⌦ F(Al)

From these and since adjoints are unique it follows that F(Al) must be left adjoint to
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satisfying:
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A functor F from a monoidal category C to a monoidal category D

F : C ! D

is a monoidal functor, whenever there exits a morphism

I ! F(I)

and a natural transformation:

F(A)⌦ F(B) ! F(A⌦B)

A monoidal functor is strongly monoidal, whenever the above morphism and natu-

ral transformation are invertible.

A Recap on Category Theory

A strongly monoidal functor on two compact closed categories C and D, preserves the

compact structure:

F(Al) = F(A)l and F(Ar) = F(A)r

To see this, consider the case of the left adjoint, for which we have the following two

compositions of morphisms:
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I ! F(I) ! F(A⌦Al) ! F(A)⌦ F(Al)
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satisfying:
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F(A)⌦ F(B) ! F(A⌦B)

A monoidal functor is strongly monoidal, whenever the above morphism and natu-
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A Recap on Category Theory

A strongly monoidal functor on two compact closed categories C and D, preserves the

compact structure:

F(Al) = F(A)l and F(Ar) = F(A)r

To see this, consider the case of the left adjoint, for which we have the following two

compositions of morphisms:

F(Al)⌦ F(A) ! F(Al ⌦A) ! F(I) ! I
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F(A). The case for the right adjoint is similar.

To see this, chase the following morphisms:

and recall the uniqueness of adjoints. 



… from Residuated Monoids to Pregroups

↵ 2 ⌃ � 2 (⌃ [ N)

⇤

a · b = b · a

(M, ·, 1)

a, b 2 M, a · b 2 M, a · 1 = 1 · a = a a · b , b · a

⌃ = {a, b} ⌃⇤ = {a, aa, aaa, · · · , b, bb, bbb, . . . , ab, aba, abb, · · · }

(M, ·, 1,)  ✓ M ⇥ M

a, b, c 2 M a  c =) a · b  c · b and b · a  b · c

f , g : M ! M (M ) f a g f (a)  b () a  g(b)

(M, ·, 1,, /, \)

c \ b = b/c

c ^ c \ b  c

c · a  b () a  c \ b

a · c  b () a  b/c

c · c \ b  b

b/c · c  b

c ^ c! b  b

b c ^ c =) b

✓ *

a/b{ ab

l

a \ b{ a

r
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Pregroup Algebras
Lambek, 1997, LACL

A pregroup algebra is a partially ordered monoid, 
where each element has a left and a right adjoint.

A ghoul is a folkloric monster or spirit associated with graveyards and con-
suming human flesh, often classified as undead. The oldest surviving literature
that mention ghouls is likely One Thousand and One Nights. The term was
first used in English literature in 1786, in William Beckford’s Orientalist novel
Vathek, which describes the ghul of Arabian folklore. By extension, the word
ghoul is also used in a derogatory sense to refer to a person who delights in the
macabre, or whose profession is linked directly to death, such as a gravedig-

ger. In ancient Arabian folklore, the ghul dwells in burial grounds and other
uninhabited places. The creature also preys on young children, drinks blood,
steals coins, and eats the dead, then taking the form of the person most recently
eaten.

A pregroup P = (P,, ·, (�)l, (�)r)

p · pr  1  pr · p pl · p  1  p · pl
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Vathek, which describes the ghul of Arabian folklore. By extension, the word
ghoul is also used in a derogatory sense to refer to a person who delights in the
macabre, or whose profession is linked directly to death, such as a gravedig-

ger. In ancient Arabian folklore, the ghul dwells in burial grounds and other
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steals coins, and eats the dead, then taking the form of the person most recently
eaten.
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ghoul is also used in a derogatory sense to refer to a person who delights in the
macabre, or whose profession is linked directly to death, such as a gravedig-

ger. In ancient Arabian folklore, the ghul dwells in burial grounds and other
uninhabited places. The creature also preys on young children, drinks blood,
steals coins, and eats the dead, then taking the form of the person most recently
eaten.
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8p 2 P, 9pl, pr 2 P

p · pr  1  pr · p pl · p  1  p · pl

1



PA’s are Compact Closed Categories

elements, adjoints             objects, adjoints

partial orders                 arrows

monoid multiplication, 1             tensor product, unit

contraction expansion

(1N ⌦ µN ⌦ ◆S ⌦ 1N ) � (⌘N ⌦ ⌘N )
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A functor F from a monoidal category C to a monoidal category D

F : C ! D

is a monoidal functor, whenever there exits a morphism

I ! F(I)

and a natural transformation:

F(A)⌦ F(B) ! F(A⌦B)

A monoidal functor is strongly monoidal, whenever the above morphism and natu-

ral transformation are invertible.

A Recap on Category Theory

A strongly monoidal functor on two compact closed categories C and D, preserves the

compact structure:

F(Al) = F(A)l and F(Ar) = F(A)r

To see this, consider the case of the left adjoint, for which we have the following two

compositions of morphisms:

F(Al)⌦ F(A) ! F(Al ⌦A) ! F(I) ! I

I ! F(I) ! F(A⌦A

l) ! F(A)⌦ F(Al)

From these and since adjoints are unique it follows that F(Al) must be left adjoint to

F(A). The case for the right adjoint is similar.
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Grammatical structures become morphisms.



Epsilon map

Eta map

FVect are Compact Closed Categories

vector spaces, adjoints               objects, dual spaces

linear maps                  arrows
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 The Passage is a Strongly Monoidal Functor

Butterflie are beautiful, flying insects with large scaly wings. Like all insects, they

have six jointed legs, 3 body parts, a pair of antennae, compound eyes, and an exoskele-

ton. The three body parts are the head, thorax (the chest), and abdomen (the tail end).

The butterfly’s body is covered by tiny sensory hairs. The four wings and the six legs

of the butterfly are attached to the thorax. The thorax contains the muscles that make

the legs and wings move. Butterflies are very good fliers. They have two pairs of large

wings covered with colorful, iridescent scales in overlapping rows. Lepidoptera

( butterflies and moths) are the only insects that have scaly wings. The wings are at-

tached to the butterfly’s thorax (mid-section). Veins support the delicate wings and

nourish them with blood.
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Butterflie are beautiful, flying insects with large scaly wings. Like all insects, they

have six jointed legs, 3 body parts, a pair of antennae, compound eyes, and an exoskele-

ton. The three body parts are the head, thorax (the chest), and abdomen (the tail end).

The butterfly’s body is covered by tiny sensory hairs. The four wings and the six legs

of the butterfly are attached to the thorax. The thorax contains the muscles that make

the legs and wings move. Butterflies are very good fliers. They have two pairs of large

wings covered with colorful, iridescent scales in overlapping rows. Lepidoptera

( butterflies and moths) are the only insects that have scaly wings. The wings are at-

tached to the butterfly’s thorax (mid-section). Veins support the delicate wings and

nourish them with blood.
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Google Books: 25 million books and magazines. 

Google News: news article from 50,000 sources 

Wikipedia: 40 million articles, 301 languages. 

British National Corpus: 100 million words 

ukWaCkypedia: 200 billion words



Distributional Semantics
“oculist and eye-doctor . . . occur in almost the same environments”  

“If A and B have almost identical environments. . . we say that they are 
synonyms.”  

Harris (1954) 

“You shall know a word by the company it keeps!” 
Firth (1957) 

Words that occur in similar contexts tend to have similar meanings. 



Imagine you had never seen the word marinee, but given a context: 
  

Mareeni is a folkloric creature.
Mainee drinks blood.

Mainee  comes alive in dark.
People are scared of  marinee.

you can guess what it means: 

?



Imagine you had never seen the word marinee, but given a context: 
  

Mareeni is a folkloric creature.
Mainee drinks blood.

Mainee  comes alive in dark.
People are scared of  marinee.

you can guess what it means: 

something like a vampire



It is difficult to make a single, definitive description of the folkloric vampire,

though there are several elements common to many European legends. Vampire

were usually reported as bloated in appearance, and ruddy, purplish, or dark in

colour; these characteristics were often attributed to the drinking of blood. [· · · ]
Indeed, blood was often seen seeping from the mouth and nose of the vampire

when it was seen in its shroud or coffin and its left eye was often open. [· · · ] In

Christianity, the vampire was viewed as ”a dead person who retained a semblance

of life and could leave its grave-much in the same way that Jesus had risen after

his death and burial and appeared before his followers. In Asia, [· · · ] a vampire

wanders around animating dead bodies at night, attacking the living much like a

ghoul.
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The butterfly’s body is covered by tiny sensory hairs. The four wings and the six legs

of the butterfly are attached to the thorax. The thorax contains the muscles that make

the legs and wings move. Butterflies are very good fliers. They have two pairs of large

wings covered with colorful, iridescent scales in overlapping rows. Lepidoptera

( butterflies and moths) are the only insects that have scaly wings. The wings are at-

tached to the butterfly’s thorax (mid-section). Veins support the delicate wings and

nourish them with blood.
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15.1 • WORDS AND VECTORS 5

sugar, a sliced lemon, a tablespoonful of apricot preserve or jam, a pinch each of,
their enjoyment. Cautiously she sampled her first pineapple and another fruit whose taste she likened

well suited to programming on the digital computer. In finding the optimal R-stage policy from
for the purpose of gathering data and information necessary for the study authorized in the

For each word we collect the counts (from the windows around each occurrence)
of the occurrences of context words. Fig. 15.4 shows a selection from the word-word
co-occurrence matrix computed from the Brown corpus for these four words.

aardvark ... computer data pinch result sugar ...
apricot 0 ... 0 0 1 0 1

pineapple 0 ... 0 0 1 0 1
digital 0 ... 2 1 0 1 0

information 0 ... 1 6 0 4 0
Figure 15.4 Co-occurrence vectors for four words, computed from the Brown corpus,
showing only six of the dimensions (hand-picked for pedagogical purposes). The vector for
the word digital is outlined in red. Note that a real vector would have vastly more dimensions
and thus be much sparser.

Fig. 15.5 shows a spatial visualization. Note in Fig. 15.4 that the two words
apricot and pineapple are more similar (both pinch and sugar tend to occur in their
window) while digital and information are more similar.
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Figure 15.5 A spatial visualization of word vectors for digital and information, showing
just two of the dimensions, corresponding to the words data and result.

Note that |V |, the length of the vector, is generally the size of the vocabulary,
usually between 10,000 and 50,000 words (using the most frequent words in the
training corpus; keeping words after about the most frequent 50,000 or so is gener-
ally not helpful). But of course since most of these numbers are zero these are sparse
vector representations, and there are efficient algorithms for storing and computing
with sparse matrices.

The size of the window used to collect counts can vary based on the goals of
the representation, but is generally between 1 and 8 words on each side of the target
word (for a total context of 3-17 words). In general, the shorter the window, the
more syntactic the representations, since the information is coming from immedi-
ately nearby words; the longer the window, the more semantic the relations.

We have been talking loosely about similarity, but it’s often useful to distinguish
two kinds of similarity or association between words (Schütze and Pedersen, 1993).
Two words have first-order co-occurrence (sometimes called syntagmatic associ-first-order

co-occurrence
ation) if they are typically nearby each other. Thus wrote is a first-order associate
of book or poem. Two words have second-order co-occurrence (sometimes calledsecond-order

co-occurrence
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computer data pinch result sugar
apricot 0 0 2.25 0 2.25

pineapple 0 0 2.25 0 2.25
digital 1.66 0 0 0 0

information 0 0.57 0 0.47 0
Figure 15.7 The PPMI matrix showing the association between words and context words,
computed from the counts in Fig. 15.4 again showing five dimensions. Note that the 0
ppmi values are ones that had a negative pmi; for example pmi(information,computer) =
log2(.05/(.16 ⇤ .58)) = �0.618, meaning that information and computer co-occur in this
mini-corpus slightly less often than we would expect by chance, and with ppmi we re-
place negative values by zero. Many of the zero ppmi values had a pmi of �•, like
pmi(apricot,computer) = log2(0/(0.16⇤0.11)) = log2(0) =�•.

events is to slightly change the computation for P(c), using a different function Pa(c)
that raises contexts to the power of a (Levy et al., 2015):

PPMIa(w,c) = max(log2
P(w,c)

P(w)Pa(c)
,0) (15.8)

Pa(c) =
count(c)a

P
c count(c)a (15.9)

Levy et al. (2015) found that a setting of a = 0.75 improved performance of
embeddings on a wide range of tasks (drawing on a similar weighting used for skip-
grams (Mikolov et al., 2013b) and GloVe (Pennington et al., 2014)). This works
because raising the probability to a = 0.75 increases the probability assigned to rare
contexts, and hence lowers their PMI (Pa(c)> P(c) when c is rare).

Another possible solution is Laplace smoothing: Before computing PMI, a small
constant k (values of 0.1-3 are common) is added to each of the counts, shrinking
(discounting) all the non-zero values. The larger the k, the more the non-zero counts
are discounted.

computer data pinch result sugar
apricot 2 2 3 2 3

pineapple 2 2 3 2 3
digital 4 3 2 3 2

information 3 8 2 6 2
Figure 15.8 Laplace (add-2) smoothing of the counts in Fig. 15.4.

computer data pinch result sugar
apricot 0 0 0.56 0 0.56

pineapple 0 0 0.56 0 0.56
digital 0.62 0 0 0 0

information 0 0.58 0 0.37 0
Figure 15.9 The Add-2 Laplace smoothed PPMI matrix from the add-2 smoothing counts
in Fig. 15.8.

15.2.1 Alternatives to PPMI for measuring association
While PPMI is quite popular, it is by no means the only measure of association
between two words (or between a word and some other feature). Other common

PPMI
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chance, we would need to be certain that the probability of the two occurring to-
gether is significantly different than 10�12, and this kind of granularity would require
an enormous corpus. Furthermore it’s not clear whether it’s even possible to evalu-
ate such scores of ‘unrelatedness’ with human judgments. For this reason it is more
common to use Positive PMI (called PPMI) which replaces all negative PMI valuesPPMI
with zero (Church and Hanks 1989, Dagan et al. 1993, Niwa and Nitta 1994)2:

PPMI(w,c) = max(log2
P(w,c)

P(w)P(c)
,0) (15.5)

More formally, let’s assume we have a co-occurrence matrix F with W rows
(words) and C columns (contexts), where fi j gives the number of times word wi
occurs in context c j. This can be turned into a PPMI matrix where ppmii j gives the
PPMI value of word wi with context c j as follows:

pi j =
fi jPW

i=1
PC

j=1 fi j
pi⇤ =

PC
j=1 fi jPW

i=1
PC

j=1 fi j
p⇤ j =

PW
i=1 fi jPW

i=1
PC

j=1 fi j
(15.6)

PPMIi j = max(log2
pi j

pi⇤p⇤ j
,0) (15.7)

Thus for example we could compute PPMI(w=information,c=data), assuming
we pretended that Fig. 15.4 encompassed all the relevant word contexts/dimensions,
as follows:

P(w=information,c=data) =
6
19

= .316

P(w=information) =
11
19

= .579

P(c=data) =
7

19
= .368

ppmi(information,data) = log2(.316/(.368⇤ .579)) = .568

Fig. 15.6 shows the joint probabilities computed from the counts in Fig. 15.4,
and Fig. 15.7 shows the PPMI values.

p(w,context) p(w)
computer data pinch result sugar p(w)

apricot 0 0 0.05 0 0.05 0.11
pineapple 0 0 0.05 0 0.05 0.11

digital 0.11 0.05 0 0.05 0 0.21
information 0.05 .32 0 0.21 0 0.58

p(context) 0.16 0.37 0.11 0.26 0.11
Figure 15.6 Replacing the counts in Fig. 15.4 with joint probabilities, showing the
marginals around the outside.

PMI has the problem of being biased toward infrequent events; very rare words
tend to have very high PMI values. One way to reduce this bias toward low frequency

2 Positive PMI also cleanly solves the problem of what to do with zero counts, using 0 to replace the
�• from log(0).
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Evaluations/Applications
WordSim-353: noun pairs  

(cup, coffee) 
SimLex-999: adjective, noun, and verb pairs 

(cup, drink) 
TOEFL: 80 questions 

“Levied” is closest in meaning to 
imposed, believed, requested, correlated 

SCWS: 2003 words in sentences 
Analogy: a to b is like c to do 

Athens to Greece is like Oslo to Norway



At the Sentence Level?



Sentence Similarity

z

x

y

z

project present problem

man shut door programme face difficulty

gentleman close eye



z

Model Ambig. Disamb.

BL Verbs only 0.310 ⌧ 0.341
M1 Multiplicative 0.325 ⌧ 0.404
M2 Additive 0.368 ⌧ 0.410
T1 Relational 0.368 ⌧ 0.397
T2 Kronecker 0.404 < 0.412

T3 Copy-subject 0.310 ⌧ 0.337
T4 Copy-object 0.321 ⌧ 0.368

Human agreement 0.550
Difference between T2 and M2 is not s.s.

Table 4: Transitive version of M&L task.

livered by one of the tensor-based models (Kro-
necker), with a difference not statistically signifi-
cant from disambiguated additive. In any case, the
result suggests that as the length of the text seg-
ments increases, the performance of vector mix-
tures and tensor-based models converges. Indeed,
note how the performance of the vector mixture
models are significantly decreased compared with
the verb phrase task.

9 Discussion

The purpose of this work was twofold: our main
objective was to investigate how disambiguation
can affect the compositional models which are
based on higher-order vector spaces; a second, but
not less important goal, was to compare this more
linguistically motivated approach to the simpler
vector mixture methods. Based on the experimen-
tal work presented here, we can say with enough
confidence that disambiguation as an additional
step prior to composition can be indeed very ben-
eficial for tensor-based models. Furthermore, our
experiments confirm and strengthen previous work
(Reddy et al., 2011; Kartsaklis et al., 2013) that
showed better performance of disambiguated vec-
tor mixture models compared to their ambiguous
versions. The positive effect of disambiguation is
more evident for the vector mixture models (espe-
cially for the additive model) than for the tensor-
based ones. This is expected: composite repre-
sentations created by element-wise operations are
averages, and a prior step of disambiguation can
make a great difference.

From a task perspective, the effect of dis-
ambiguation was much more definite in the
phrase/sentence similarity task. This observation
is really interesting, since the words of that dataset
were not selected in order to be ambiguous in
any way. The superior performance of the dis-
ambiguated models, therefore, implies that the
proposed methodology can improve tasks based
on phrase or sentence similarity regardless of the
level of ambiguity in the vocabulary. For these
cases, disambiguation acts as a fine-tuning pro-

cess, the outcome of which seems to be always
positive: it can only produce better composite rep-
resentations, not worse. This is not true for tasks
similar to those of §8.1, by design; hence the sub-
optimal performance of disambiguated models in
the G&S dataset, compared to the dataset of Kart-
saklis et al..

The results are less conclusive for the second
question we posed in the beginning of this sec-
tion, regarding the comparison of the two classes
of models. Despite the obvious benefits of the
tensor-based approaches, this work suggests for
one more time that vector mixture models might
constitute a hard-to-beat baseline; similar obser-
vations have been made, for example, in the com-
parative study of Blacoe and Lapata (2012). How-
ever, when trying to interpret the mixing results re-
garding the effectiveness of the tensor-based mod-
els compared to vector mixtures, we need to take
into account that the tensor-based models tested
in this work were all “hybrid”, in the sense that
they all involved some element of element-wise
operation; in other words, they constituted a trade-
off between transformational power and complex-
ity. Even with this compromise, though, the study
presented in §8.2 implies that the effectiveness
of each method depends to some extent on the
length of the text segment: when more words
are involved, vector mixture models tend to be
less effective; on the contrary, the performance of
tensor-based models seems to be proportional to
the length of the phrase or sentence—the more, the
better. These observations comply with the nature
of the approaches: “averaging” larger numbers of
points results in more general (hence less accu-
rate) representations; on the other hand, a larger
number of arguments makes a function (such as a
verb) more accurate.

10 Conclusion and future work

In the present paper we showed how to improve
a number of tensor-based compositional distribu-
tional models of meaning by introducing a step
of disambiguation prior to composition. Our sim-
ple algorithm (based on the procedure of Schütze
(1998)) disambiguates the tensors before they are
composed with vectors of nouns and construct
vectors for sentences and phrases. This algo-
rithm is quite generic, and can be applied to any
model that follows the tensor contraction process
described in §4. As for future work, we aim to in-
vestigate the application of this procedure to the
regression model of Grefenstette et al. (2013), and
work is already in progress towards this purpose.

Karsaklis, Sadrzadeh, EMNLP 2013, ACL 2014, CoNLL 2013
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Computational Linguistics Volume VV, Number NN

Model ⇢

Verb Baseline 0.20
Bigram Baseline 0.14
Trigram Baseline 0.16
Additive 0.10
Multiplicative
AdjMult 0.20
AdjNoun 0.05
CategoricalAdj 0.20
Categorical
AdjMult 0.14
AdjNoun 0.16
CategoricalAdj 0.19
Kronecker
AdjMult 0.26
AdjNoun 0.17
CategoricalAdj 0.27
Upperbound 0.48

Table 8
Model correlation coefficients with human judgements, third experiment. p < 0.05 for each ⇢.

natory process. We reviewed an existing compositional framework which leverages
the ability to communicate information across mathematical structures provided by
category theory in order to define a general way of linking syntactic structure to syntax-
sensitive composition operations. We presented concrete ways to apply this framework
to linguistic tasks and evaluate it, and developed algorithms to construct semantic
representations for words and relation within this framework. In this section, we first
briefly comment upon the combined results of all three experiments, and then conclude
by discussing what aspects of compositionality require further attention, and how
experiment design should adapt towards this goal.

Results Commentary. We evaluated this framework against other unsupervised compo-
sitional distributional model, using non-compositional models and n-gram language
models as baselines, within the context of three experiments. These experiments show
that the concrete categorical model developed here, and the kronecker-based variant
presented alongside it, outperform all other models in each experiment save the first,
where they perform on par with what was the leading model at the time this experiment
was performed (namely 2011). As the experiments involved progressively more syntac-
tically complicated sentences, the increased reliability of our categorical approaches rel-
ative to competing models as sentence complexity rises seems to indicate that both the
categorical and kronecker model successfully leverage the added information provided
by additional terms and syntactic structures.

The third experiment also served to show that using different combinations of
composition operations depending on the syntactic type of the terms being combined
can yield better results, and that some models combine better than others. Notably,
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occurrence vector spaces, this version is not lem-
matized.

The negative sampling method improves the ob-
jective function of Equation 1 by introducing neg-
ative examples to the training algorithm. Assume
that the probability of a specific (c, t) pair of words
(where t is a target word and c another word in
the same context with t), coming from the training
data, is denoted as p(D = 1|c, t). The objective
function is then expressed as follows:

Y

(c,t)2D

p(D = 1|c, t) (2)

That is, the goal is to set the model parameters in
a way that maximizes the probability of all obser-
vations coming from the training data. Assume
now that D0 is a set of randomly selected incorrect
(c

0
, t

0
) pairs that do not occur in D, then Equation

2 above can be recasted in the following way:
Y

(c,t)2D

p(D = 1|c, t)
Y

(c0,t0)2D0

p(D = 0|c0, t0)

(3)
In other words, the model tries to distinguish a tar-
get word t from random draws that come from a
noise distribution. In the implementation we used
for our experiments, c is always selected from
a 5-word window around t. More details about
the negative sampling approach can be found in
(Mikolov et al., 2013b); the note of Goldberg and
Levy (2014) also provides an intuitive explanation
of the underlying setting.

5 Experiments

Our experiments explore the use of the vector
spaces above, together with the compositional op-
erators described in Section 3, in a range of tasks
all of which require semantic composition: verb
sense disambiguation; sentence similarity; para-
phrasing; and dialogue act tagging.

5.1 Disambiguation

We use the transitive verb disambiguation dataset
described in Grefenstette and Sadrzadeh (2011a)5.
This dataset consists of ambiguous transitive verbs
together with their arguments, landmark verbs
that identify one of the verb senses, and human
judgements that specify how similar is the disam-
biguated sense of the verb in the given context to

5This and the sentence similarity dataset are avail-
able at http://www.cs.ox.ac.uk/activities/

compdistmeaning/

one of the landmarks. This is similar to the in-
transitive dataset described in (Mitchell and Lap-
ata, 2008). Consider the sentence “system meets
specification”; here, meets is the ambiguous tran-
sitive verb, and system and specification are its ar-
guments in this context. Possible landmarks for
meet are satisfy and visit; for this sentence, the
human judgements show that the disambiguated
meaning of the verb is more similar to the land-
mark satisfy and less similar to visit.

The task is to estimate the similarity of the sense
of a verb in a context with a given landmark. To
get our similarity measures, we compose the verb
with its arguments using one of our compositional
models; we do the same for the landmark and then
compute the cosine similarity of the two vectors.
We evaluate the performance by averaging the hu-
man judgements for the same verb, argument and
landmark entries, and calculating the Spearman’s
correlation between the average values and the co-
sine scores. As a baseline, we compare this with
the correlation produced by using only the verb
vector, without composing it with its arguments.

Table 3 shows the results of the experiment.
NWE copy-object composition yields the best cor-
relation with the human judgements, and top per-
formance across all vector spaces and models with
a Spearman ⇢ of 0.456. For the KS14 space, the
best result comes from Frobenius outer (0.350),

Method GS11 KS14 NWE

Verb only 0.212 0.325 0.107

Addition 0.103 0.275 0.149
Multiplication 0.348 0.041 0.095

Kronecker 0.304 0.176 0.117
Relational 0.285 0.341 0.362
Copy subject 0.089 0.317 0.131
Copy object 0.334 0.331 0.456

Frobenius add. 0.261 0.344 0.359
Frobenius mult. 0.233 0.341 0.239
Frobenius outer 0.284 0.350 0.375

Table 3: Spearman ⇢ correlations of models with
human judgements for the word sense disam-
biguation task. The best result (NWE Copy ob-
ject) outperforms the nearest co-occurrence-based
competitor (KS14 Frobenius outer) with a statisti-
cally significant difference (p < 0.05, t-test).
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Subject-verb Verb-object Subject-verb-object
evidence suggest ` information express develop skill ` create ability report describe result ` document explain process

people believe ` group think solve problem ` understand difficulty report outline progress ` document describe change
paper present ` material show sign contract ` write agreement value suit budget ` number meet standard
station serve ` facility meet reduce number ` decrease amount book present account ` work show evidence
survey reveal ` work show publish book ` produce publication woman marry man ` female join male

student develop ` person create sing song ` perform music author retain house ` person hold property
company operate ` organization manage rejoin army ` join force report highlight lack ` document stress need

player play ` contestant compete gain experience ` obtain education public trust reference ` people accept message
study demonstrate ` examination show serve purpose ` meet goal study demonstrate importance ` work show value

news come ` message travel identify area ` determine location police fight crime ` force compete activity
summer finish ` season end promote development ` support event experiment test hypothesis ` research evaluate proposal
report note ` document state suffer injury ` experience condition university publish paper ` body produce research
book offer ` product supply undertake research ` initiate investigation brochure outline feature ` booklet explain concept

tree mature ` plant grow drive car ` handle vehicle widow sell estate ` woman exchange property

Table 1. Positive entailments from the three tasks at phrase and sentence level.

any instance where we judged one of them to be nonsensical. This process resulted
in 135 subject-verb pairs, 218 verb-object pairs, and 70 subject-verb-object pairs, the
phrases/sentences of which stand in a fairly clear entailment relationship. Each dataset
was extended with the reverse direction of the entailments as negative examples, creat-
ing three strictly directional entailment datasets of 270 (subject-verb), 436 (verb-object)
and 140 (subject-verb-object) entries. Table 1 presents a sample of positive entailments
from each dataset.

6.2 Compositional models

We tested the additive and multiplicative compositional operators, as defined in Equa-
tion 1, a point-wise minimum model as discussed in Section 4.1, and a variation on
the tensor-based model introduced via Equations 17-20. In relation to this latter model,
informal experimentation showed that by taking into account directly the features of
the distributional vector of the verb, the results improve. Let the distributional vec-
tor of the verb be �!v and the verb tensor be v

x

, as computed in Equations 17-20, for
x 2 {itv, vp, trv}. Then a new tensor is computed via the formula ev

x

:=

�!v � v
x

, the
feature inclusion behaviour of which is derivable as follows:

F(ev
x

) = F(

�!v ) \ F(v
x

)

For the experiments on the intransitive and the verb-phrase datasets, we also use
a least-squares fitting model for approximating the distributional behaviour of holistic
vectors (see discussion in Section 4.2), along the lines of [2]. For each verb, we compute
analytically an estimator for predicting the ith element of the resulting vector as follows:

�!w
i

= (XTX)

�1XT�!y
i

Here, the rows of matrix X are the vectors of the subjects (or objects) that occur with
our verb, and �!y

i

is a vector containing the ith elements of the holistic phrase vectors
across all training instances; the resulting �!w

i

’s form the rows of our verb matrix.
Finally, a non-compositional baseline, where the phrase is represented by the vector

(or tensor) of its head verb, is also evaluated where appropriate.



Sentence Entailment

Subject-verb task
Model Inclusion KL-div ↵Skew WeedsPrec ClarkeDE APinc balAPinc SAPinc SBalAPinc
Verb 0.59 0.59 0.63 0.67 0.57 0.69 0.65 0.65 0.65
� 0.54 0.66 0.75 0.75 0.66 0.78 0.72 0.81 0.81

min 0.54 0.68 0.72 0.75 0.63 0.78 0.71 0.74 0.75
+ 0.63 0.57 0.74 0.65 0.62 0.72 0.70 0.72 0.72

max 0.63 0.57 0.70 0.65 0.60 0.71 0.65 0.71 0.71
Least-Sqr 0.50 0.59 0.62 0.59 0.56 0.60 0.58 0.63 0.64
⌦proj 0.59 0.59 0.65 0.67 0.59 0.70 0.67 0.71 0.69

⌦rel/frob 0.54 0.64 0.77 0.74 0.68 0.78 0.73 0.84 0.83
Verb-object task

Model Inclusion KL-div ↵Skew WeedsPrec ClarkeDE APinc balAPinc SAPinc SBalAPinc
Verb 0.58 0.62 0.65 0.67 0.58 0.69 0.66 0.62 0.66
� 0.52 0.64 0.74 0.70 0.67 0.75 0.70 0.82 0.79

min 0.52 0.66 0.70 0.71 0.63 0.75 0.69 0.74 0.74
+ 0.64 0.61 0.75 0.68 0.63 0.74 0.71 0.72 0.73

max 0.64 0.62 0.73 0.68 0.62 0.72 0.68 0.62 0.66
Least-Sqr 0.50 0.58 0.57 0.56 0.53 0.56 0.55 0.58 0.59
⌦proj 0.58 0.60 0.66 0.67 0.60 0.70 0.67 0.68 0.68

⌦rel/frob 0.52 0.63 0.75 0.71 0.67 0.75 0.70 0.82 0.79

Table 1: AUC results for the subject-verb and verb-object tasks. ‘Verb’ refers to a non-compositional
baseline, where the vector/tensor of the phrase is taken to be the vector/tensor of the head verb. �,
+ refer to vector element-wise multiplication and addition, respectively, ⌦proj to the projective tensor
models of Section 6.3, and ⌦rel/frob to the construction of Section 6.1. The tensor models (except the
least squares one) are further enhanced with information from the distributional vector of the verb, as
detailed in Section 6.4.

Model Inclusion KL-div ↵Skew WeedsPrec ClarkeDE APinc balAPinc SAPinc SBalAPinc
Verb 0.61 0.61 0.66 0.69 0.58 0.74 0.67 0.59 0.63
� 0.55 0.65 0.74 0.79 0.67 0.76 0.71 0.80 0.80

min 0.55 0.71 0.74 0.78 0.63 0.77 0.71 0.73 0.76
+ 0.58 0.54 0.71 0.59 0.60 0.65 0.64 0.67 0.67

max 0.58 0.55 0.68 0.58 0.58 0.63 0.61 0.60 0.61
Least-Sqr – – – – – – – – –
⌦rel 0.51 0.64 0.78 0.79 0.69 0.79 0.72 0.84 0.83
⌦proj 0.64 0.60 0.70 0.69 0.61 0.74 0.70 0.75 0.76
⌦CpSbj 0.57 0.65 0.73 0.77 0.63 0.73 0.68 0.79 0.78
⌦CpObj 0.54 0.62 0.73 0.72 0.64 0.76 0.71 0.81 0.79
⌦FrAdd 0.60 0.60 0.75 0.72 0.67 0.77 0.75 0.84 0.82
⌦FrMul 0.55 0.62 0.76 0.81 0.68 0.78 0.73 0.86 0.83

Table 2: AUC results for the subject-verb-object task. ⌦Rel refers to the relational tensor model of
Section 6.1, while ⌦CpSbj, ⌦CpObj, ⌦FrAdd, and ⌦FrMul to the Frobenius models of Section 6.2. As
in the other tasks, the distributional vector of the verb has been taken into account in all tensor-based
models except Least-Sqr.

9 Conclusion and future work

In this paper we investigated the application of the distributional inclusion hypothesis on evaluating
entailment between phrase and sentence vectors produced by compositional operators with a focus on
tensor-based models. Our results showed that intersective composition in general, and the Frobenius
tensor models in particular, achieve the best performance when evaluating upward monotone entailment,
especially when combined with the sentence-level measures of (Kartsaklis and Sadrzadeh, 2016). Ex-
perimenting with different versions of tensor models for entailment is an interesting topic that we plan
to pursue further in a future paper. Furthermore, the extension of word-level entailment to phrases and
sentences provides connections with natural logic (MacCartney and Manning, 2007), a topic that is worth
a separate treatment and constitutes a future direction.
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At the Discourse Level?



Anaphora and Ellipsis
Cats chase dogs, children too. 

Cats chase dogs. Children do too. 

Cats chase their tales, dogs too.  

Cats chase themselves, dogs too. 

Cats miaow. They are cute. 



x

y

z

man drew ceremonial sword, samurai too.

man pulled ceremonial sword.

Improves Disambiguation



x

y

z

man drew ceremonial sword, artist too.

man sketched ceremonial sword.

Improves Disambiguation



x

y

z

man likes his coat, woman too.

Improves Disambiguating



x

y

z

man likes his coat, woman too.

woman bought a coat.

Improves Disambiguating



x

y

z

man likes his code, woman too.

woman likes man.

Improves Disambiguating



a cat miaowed, an animal made a noiseKL( )

cats run across roads, animals move.KL( )

Degrees of Inclusion

Improves Entailment



a cat miaowed, a dog did too. an animal made a noiseKL( )

cats run across roads, dogs too. animals move.KL( )

Increase/Decrease 
Degrees of Inclusion

Improves Entailment



Evaluation
race stands
swm1 swm2

man runs 0.88 0.78

man runs, governor does-too.
man runs, athlete  does-too.

0.91

0.92

UnResolved

man runs, governor does-too.
man runs, athlete  does-too.

0.98
0.95

Resolved
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ML2008 word2vec Count Based

Verb Only Vector 0.274 0.078
Verb Only Tensor 0.060 0.108

Additive 0.278 0.081
Multiplicative 0.229 0.177

Table 7: Spearman r correlation scores on the ML2008 dataset.

frequently with the more likely unambiguous verb (the one marked HIGH). For ex-
ample, the word “economy” occurs with “boom” but it occurs significantly more of-
ten with “prosper” then it does with “thunder”. And similarly, “cannon” occurs with
“boom” and “thunder” but not so often with “prosper”. We then format the pairs from
the ML2008 dataset using the new subject and the elliptical setting. For the examples
above, we then got

Landmark export boom and economy does too gun boom and cannon does too

HIGH export prosper and economy does too gun thunder and cannon does too
LOW export thunder and economy does too gun prosper and cannon does too

In total, we added two new subjects to each sentence pair, producing a dataset of
240 entries. We used the human similarity judgments of the original ML2008 dataset
to see whether the addition of disambiguating context, combined with our ellipsis
model, will be able to better distinguish verb meaning. As explained in the start of
this section, we use several different concrete models to compute the representation
of the sentences in the dataset, and compute the cosine similarity between sentences
in a pair; the predicted judgments are then evaluated by computing the (linear) de-
gree of correlation with human similarity judgments, using the standard Spearman r
measure.

We used two different instantiations of a vector space model: the first is a 300-
dimensional model trained on the Google News corpus, taken from the popular and
widely used word2vec package3, which is based on the Skipgram model with neg-
ative sampling of Mikolov et al. [29]. This model is known to lead to high-quality
dense vector embeddings of words. The second space we used is a custom trained
2000-dimensional vector space, trained on the combined UKWaC and Wackypedia
corpus, using a context window of 5, and Positive Pointwise Mutual Information as a
normalisation scheme on the raw co-occurrence counts. The vectors of this space do
not involve any dimensionality reduction techniques, making the vectors relatively
sparse compared to those in the word2vec vector space.

For the original dataset, we compare a non-compositional baseline, in which just
the vector or matrix for the verb is compared, and additive/multiplicative models, and
get the results below:

3
https://code.google.com/p/word2vec/

frequency search  

economy: occurs with boom, but much more with prosper 
than thunder. 
cannon: occurs with boom, but much more with  thunder  
than prosper.

Wijholds, Sadrzadeh,  JoLLI 2019, NAACL 2019
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These results are higher than found in the literature: the original evaluation of
Mitchell & Lapata [31] achieved a highest correlation score of 0.19, and the regres-
sion model of Grefenstette et al. [10] achieves a top correlation score of 0.23. These
scores are surpassed already by the non-compositional baseline on the word2vec

space here. Although the highest scores are indeed obtained using a compositional
model, note that the correlation for the word2vec model doesn’t increase substan-
tially. In the count based space we do see a bump in the correlation when using a
compositional model, but here the baseline correlation isn’t that high to start with.
The situation is better for the extended dataset. There, we compare the same four
models against four combined models, which combine and additive with a multi-
plicative model, after resolving the ellipsis. The results are in the table below:

MLELLDIS word2vec Count Based

Verb Only Vector 0.274 0.078
Verb Only Tensor 0.060 0.108

Additive 0.292 0.040
Multiplicative 0.068 0.206

Multiplicative � 0.213 0.391

Multiplicative + 0.294 0.179
Additive � 0.229 0.172
Additive + 0.298 0.078

Table 8: Spearman r correlation scores on the extended ML2008 dataset.

Our first observation is that the naive additive and multiplicative models already
do better than the non-compositional baseline, save for the additive model on the
count based space. Secondly, even better results are obtained by applying a non-
linear compositional model, i.e. a model that actually resolves the ellipsis and copies
the representation of the verb. For the case of the word2vec space the best perform-
ing model is the fully additive model that adds together all the vectors to give the
result

��!
sub j +

��!
verb+

���!
sub j⇤ +

��!
verb. For the count based space, it is the exact oppo-

site: the fully multiplicative model achieves the best overall score of 0.391 with the
representation

��!
sub j�

��!
verb�

���!
sub j⇤ �

��!
verb.

That the word2vec vectors work well under addition but not under multiplication,
whereas the count based vectors work well under multiplication but not under addi-
tion, we attribute to the difference in sparsity of the representations: since word2vec
vectors are very dense representations, multiplying them will not have a very strong
effect on the resulting representation, whereas adding them will have a greater net
effect on the final result. In contrast, multiplying two sparse vectors will eliminate
a lot of information, since the entries that are zero in one of the vectors leads to a
zero entry in the final vector. In other words, the final representation will be incredi-
ble specific, allowing for better disambiguation. Addition on sparse vectors however,
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Mitchell & Lapata [31] achieved a highest correlation score of 0.19, and the regres-
sion model of Grefenstette et al. [10] achieves a top correlation score of 0.23. These
scores are surpassed already by the non-compositional baseline on the word2vec

space here. Although the highest scores are indeed obtained using a compositional
model, note that the correlation for the word2vec model doesn’t increase substan-
tially. In the count based space we do see a bump in the correlation when using a
compositional model, but here the baseline correlation isn’t that high to start with.
The situation is better for the extended dataset. There, we compare the same four
models against four combined models, which combine and additive with a multi-
plicative model, after resolving the ellipsis. The results are in the table below:

MLELLDIS word2vec Count Based

Verb Only Vector 0.274 0.078
Verb Only Tensor 0.060 0.108

Additive 0.292 0.040
Multiplicative 0.068 0.206

Multiplicative � 0.213 0.391

Multiplicative + 0.294 0.179
Additive � 0.229 0.172
Additive + 0.298 0.078

Table 8: Spearman r correlation scores on the extended ML2008 dataset.

Our first observation is that the naive additive and multiplicative models already
do better than the non-compositional baseline, save for the additive model on the
count based space. Secondly, even better results are obtained by applying a non-
linear compositional model, i.e. a model that actually resolves the ellipsis and copies
the representation of the verb. For the case of the word2vec space the best perform-
ing model is the fully additive model that adds together all the vectors to give the
result

��!
sub j +

��!
verb+

���!
sub j⇤ +

��!
verb. For the count based space, it is the exact oppo-

site: the fully multiplicative model achieves the best overall score of 0.391 with the
representation

��!
sub j�

��!
verb�

���!
sub j⇤ �

��!
verb.

That the word2vec vectors work well under addition but not under multiplication,
whereas the count based vectors work well under multiplication but not under addi-
tion, we attribute to the difference in sparsity of the representations: since word2vec
vectors are very dense representations, multiplying them will not have a very strong
effect on the resulting representation, whereas adding them will have a greater net
effect on the final result. In contrast, multiplying two sparse vectors will eliminate
a lot of information, since the entries that are zero in one of the vectors leads to a
zero entry in the final vector. In other words, the final representation will be incredi-
ble specific, allowing for better disambiguation. Addition on sparse vectors however,
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(Lau and Baldwin, 2016)10, 4096-dimensional
embeddings from two InferSent encoders11, and
512-dimensional embeddings from Universal Sen-
tence Encoder12.

5 Results

To validate the quality of the trained word spaces,
we evaluate on several standard word similarity
tasks: we used Rubenstein & Goodenough (RG,
1965), WordSim353 (WS353, 2001), Miller &
Charles (MC, 1991), SimLex-999 (SL999, 2015),
and the MEN dataset (Bruni et al., 2012). The re-
sults are displayed in Table 2, for the spaces de-
scribed in the previous section.

RG WS353 MC SL999 MEN

Count .6081 .3583 .5455 .2593 .5527
Word2Vec .8227 .6983 .7682 .4026 .7810
GloVe .8312 .6180 .7377 .3902 .7727
FastText .7724 .5461 .6961 .4021 .7683

Table 2: Spearman ⇢ scores on word similarity tasks.

Verb Disambiguation: Table 3 shows the results
of the linear, non-linear and tensor-based models
for this task, compared against a baseline in which
only the verb vector or verb matrix is compared.

Our first observation is that generally, the high-
est performing models were tensor-based. The
highest found correlation score was 0.5385 in the
count based space for a tensor-based model (CO
model above, Kronecker matrix, r = +), with
the Frobenius Additive model giving the second
best result of 0.5263 (FA model above, Kronecker
matrix, r = +). For the neural spaces, the high-
est performing models were mostly tensor-based
as well; they were always the Frobenius Addi-
tive (FA) model and the Frobenius Outer (FO)
model, using the relational tensor and addition
for the coordinator, except in the case of GloVe,
where the Copy Object (CO) model was the sec-
ond best. The only exception to this observation
is the GloVe space, for which the baseline Vector
Only model in fact has a higher correlation than
any other model on that space.
Our second observation is that the non-linear vari-
ants of the additive and multiplicative models
(which resolve ellipsis but in a naive way) show

10
github.com/jhlau/doc2vec

11
github.com/facebookresearch/InferSent

12
tfhub.dev/google/

universal-sentence-encoder

CB W2V GloVe FT

Verb Only Vector .4363 .2406 .4451 .2290
Verb Only Tensor .3295 .4376 .3942 .3876

Add. Linear .4416 .2728 .3046 .1409
Mult. Linear 3250 -.0123 .1821 .2928

Add. Non-Linear .4448 .3275 .3262 .1399
Mult. Non-Linear .5029 .2087 .2446 .0440

Best Tensor .5385 .4621 .3688 .4937
2nd Best Tensor .5263 .4544 .3581 .4652

Table 3: Spearman ⇢ scores for the ellipsis disambigua-
tion experiment. CB: count based, W2V: Word2Vec,
FT: FastText.

D2V1 D2V2 ST IS1 IS2 USE

Base .1448 .2432 -.1932 .3471 .3841 .2693
Res .2340 .2980 -.1720 .3436 .3373 .2770
Abl .1899 .2423 -.1297 .3525 .3571 .2402

Table 4: Spearman ⇢ scores for the ellipsis disambigua-
tion experiment. D2V1: Doc2Vec1, D2V2: Doc2Vec
2, ST: Skip-Thought, IS1: InferSent 1, IS2: InferSent
2, USE: Universal Sentence Encoder.

an increased performance over the linear models
(which do not resolve ellipsis). All of this holds
for all the four vector spaces, except for the Fast-
Text space where the linear multiplicative model
achieves significantly higher correlation (0.2928)
than its non-linear counterpart (0.0440).

Overall, these results suggests that a logical re-
solving of ellipsis and further grammatical sensi-
tivity benefits the performance of composition.

One interesting fact about our results is that
the best compositional methods across the board
were those that interpret the coordinator ‘and’ as
addition; in set-theoretic semantics one interprets
this coordinator as set intersection, which corre-
sponds to multiplication rather than addition in a
vectorial setting. We suggest that the feature in-
tersection approach using multiplication leads to
sparsity in the resulting vectorial representation,
which then has a negative effect on the overall
result. This would explain the case of FastText,
since those vectors take into account subword in-
formation one would expect them to be more fine-
grained and therefore conflate more of their fea-
tures under multiplication.

The choice of verb matrix was mixed: for the
count-based models the Kronecker matrix worked
best, for the neural embeddings it was best to use
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A Problem: 

What is the algebra of discourse and how 
does its interface to tensor semantics work?



(I) Copying and Moving

-  Jaeger, A multimodal analysis of anaphora with 
ellipsis, 1998. 
- Morrill & Saladrigas, Generalising discontinuity, 1996.  
- Hendriks, Ellipsis and multimodal categorial type 

logic, 1995. 
- M. Kanovich, Kuznetsov, Schedrov, Lambek Calculus 

with a Relevant Modality, 2017.



(II) Bidirectional Implication

- Kubota and Levine, Gapping and like-category 
coordination, 2012. 

- Kubota and Levine, Pseudo gapping as pseudo 
vp-ellipsis, 2017. 

- Jaeger, Anaphora and Type-Logical Grammars, 
2006.
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Bidirectional Implication

8 Gijs Wijnholds, Mehrnoosh Sadrzadeh

Intuitively, the Lambek connectives •,\,/ represent a ‘logic of concatenation’: •
represents the concatenation of resources, where \,/ represent directional decatena-
tion, behaving as the residual implications with respect to the multiplication •. The
extra connective | is a separate implication that behaves non-linearly: its deduction
rules allow a mix of permutations and contractions, which effectively treat anaphora
and VP ellipsis markers as phrases that look leftward to find a proper binding an-
tecedent. Our convention is that we read A|B as a function with input of type A and
an output of type B.

w
x : s(w)

Lex

M : A N : B
hM,Ni : A•B

I• M : A•B
p1(M) : A p2(M) : B

E•

x : A i
....

....
M : B

lx.M : A\B
I\, i

N : A M : A\B
M N : B

E\

....

x : A i
....

M : B
lx.M : B/A

I/, i
M : B/A N : A

M N : B
E/

[N : A]i ...
M : A|B
M N : B

E|, i

Fig. 1: Labelled natural deduction for LLC.

The rules of LLC are given in a natural deduction style in Figure 1. The Lex
rule is an axiom of the logic: it allows us to relate the judgements of the logic to the
words of the lexicon. For instance, in the example proof tree provided in Figure 2,
the judgement alice : np is related to the word Alice, the judgement bob : np to the
word Bob, and the judgement and : (s\s)/s to the word and. Then, as it is usual in
natural deduction, every connective has an introduction rule, marked with I and an
elimination rule, marked with E. In the introduction rules for / and \, the variable x
stands for an axiom, in the introduction rule for • and eliminations rules for •,/ and
\, we have proofs for the premise types A,B,A •B,A/B and A\B, i.e. general terms
N and M.

Informally speaking, the introduction rule for •, takes two terms M and N, one
of which (M) proves a formula A and another of which (N) proves the formula B,
and it pairs the terms with the tensor product of the formulae. that is, tells us that
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x yHaving x Haver Speaker x HadThing y x Car y

Having

Haver Had-Thing

Speaker Car

Car Having
POSS-BY Haver: Speaker

Speaker HadThing: Car

Figure 14.1 A list of symbols, two directed graphs, and a record structure:
a sampler of meaning representations for I have a car.

relations denoting the possession of one by the other.
It is important to note that these representations can be viewed from at

least two distinct perspectives in all four of these approaches: as represen-
tations of the meaning of the particular linguistic input I have a car, and as
representations of the state of affairs in some world. It is this dual perspec-
tive that allows these representations to be used to link linguistic inputs to
the world and to our knowledge of it.

The structure of this part of the book parallels that of the previous parts.
We will alternate discussions of the nature of meaning representations with
discussions of the computational processes that can produce them. More
specifically, this chapter introduces the basics of what is needed in a mean-
ing representation, while Chapter 15 introduces a number of techniques for
assigning meanings to linguistic inputs. Chapter 16 explores a range of com-
plex representational issues related to the meanings of words. Chapter 17
then explores some robust computational methods designed to exploit these
lexical representations.

Note that since the emphasis of this chapter is on the basic require-
ments of meaning representations, we will defer a number of extremely im-
portant issues to later chapters. In particular, the focus of this chapter is on

Monoid Grammer Tensor 
Algebras

4

dog have a high degree of similarity. In order to see
the contrast, consider a version of the above vector
space, built from a piece of text that also contains
the target words: “kill" and “murder".

food

- owner
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�
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police

�
�✓

cat

�
�
�
�
�� dog

�����⇡
kill

⇠⇠⇠⇠⇠9

murder

Here, “dog" and “cat" have a high degree of similarity
to each other, and so do “kill" and “murder", whereas
“cat" and “kill" have a low degree of similarity, as do
pairs (cat, murder), (dog, kill), and (dog, murder).

Co-occurrence matrices and the notion of cosine
similarity have been tested on di�erent datasets,
such as WordSim-353, consisting of 353 pairs of
nouns such as (plane, car), SimLex-999, which con-
sists of noun, verb, as well as adjective pairs, such
as (bad, awful) and (kill, destroy), and the synonymy
part of the TOEFL test. Through similarity, vector
models of word meanings have found applications in
a wide range of natural language tasks, such as entity
recognition, parsing, and semantic role labelling, as
well as in question answering, summarization, and
automatic essay grading.

Representing meanings of sentences

A mapping can be de�ned between a monoid gram-
mar (⌃,B, D, {s }) and tensor products of a co-
occurrence vector spaceW with itself. We denote
this mapping by F. The basic grammatical types in
B are assigned the atomic spaceW :

F(t ) =W t 2 B.

Words with type a are assigned vectors in F(a):

F(w) = Ti 2W (w, t ) 2 D.

A shorthand for linear expansion

The sum notation for the linear expansions of
tensors is often shorthanded using a tradition
set by Einstein:

Ti1i2 · · ·in {
X

i1i2 · · ·in
Ci1i2 · · ·in

�!
bi1 ⌦

�!
bi2 ⌦ · · · ⌦

�!
bin

for
�!
bi a basis vector ofW . The simplest case

of the above shorthands vectors:

Ti {
X

i

Ci
�!
bi

The complex types in T(B)\B are assigned tensors
ofW by structural induction as follows.

F(t1 · t2) = F(t1) ⌦ F(t2),
F(t1 ! t2) = F(t1) ⌦ F(t2),
F(t1  t2) = F(t1) ⌦ F(t2).

So the three operations of the residuated monoid,
its multiplication (·) and its two residuals (! and  ),
get mapped to the tensor product. This uses the
fact that linear maps from U ! U 0 are in corre-
spondence with elements of the space U ⇤ ⌦U 0. So
a word with type t1 ! t2 will get assigned a matrix,
that is a linear map from U to U 0. If U is �nite
dimensional then choosing an orthonormal basis in
it identi�es U ⇤ and U and this map becomes an
element of U ⌦U 0. In the above, U = U 0 =W , and
W is a co-occurrence vector space and these are by
de�nition �nite.

Similar to the atomic case, words with complex types
are assigned elements of tensor spaces, the rank of
which is the same as the number of operations in
their type. Formally (for notation see “A shorthand
for linear expansion"), we have

F(w) = Ti1i2 · · ·in 2W ⌦ · · · ⌦W|           {z           }
n

when the type of w is

(w, t1 � · · · � tn) 2 D

for � either of ·,!, .

Using the above de�nitions and the grammatical
structure provided by our monoid grammar, we can
now assign a tensor to a grammatical sentence
w1w2 · · ·wn . This is via tensor contraction (see “Ten-
sor Contraction") on Fof each of the wordswi of the

Strongly Monoidal Functor
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Figure 14.1 A list of symbols, two directed graphs, and a record structure:
a sampler of meaning representations for I have a car.

relations denoting the possession of one by the other.
It is important to note that these representations can be viewed from at

least two distinct perspectives in all four of these approaches: as represen-
tations of the meaning of the particular linguistic input I have a car, and as
representations of the state of affairs in some world. It is this dual perspec-
tive that allows these representations to be used to link linguistic inputs to
the world and to our knowledge of it.

The structure of this part of the book parallels that of the previous parts.
We will alternate discussions of the nature of meaning representations with
discussions of the computational processes that can produce them. More
specifically, this chapter introduces the basics of what is needed in a mean-
ing representation, while Chapter 15 introduces a number of techniques for
assigning meanings to linguistic inputs. Chapter 16 explores a range of com-
plex representational issues related to the meanings of words. Chapter 17
then explores some robust computational methods designed to exploit these
lexical representations.

Note that since the emphasis of this chapter is on the basic require-
ments of meaning representations, we will defer a number of extremely im-
portant issues to later chapters. In particular, the focus of this chapter is on
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dog have a high degree of similarity. In order to see
the contrast, consider a version of the above vector
space, built from a piece of text that also contains
the target words: “kill" and “murder".

food

- owner
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�
�

�
�
� 

police

�
�✓

cat

�
�
�
�
�� dog

�����⇡
kill

⇠⇠⇠⇠⇠9

murder

Here, “dog" and “cat" have a high degree of similarity
to each other, and so do “kill" and “murder", whereas
“cat" and “kill" have a low degree of similarity, as do
pairs (cat, murder), (dog, kill), and (dog, murder).

Co-occurrence matrices and the notion of cosine
similarity have been tested on di�erent datasets,
such as WordSim-353, consisting of 353 pairs of
nouns such as (plane, car), SimLex-999, which con-
sists of noun, verb, as well as adjective pairs, such
as (bad, awful) and (kill, destroy), and the synonymy
part of the TOEFL test. Through similarity, vector
models of word meanings have found applications in
a wide range of natural language tasks, such as entity
recognition, parsing, and semantic role labelling, as
well as in question answering, summarization, and
automatic essay grading.

Representing meanings of sentences

A mapping can be de�ned between a monoid gram-
mar (⌃,B, D, {s }) and tensor products of a co-
occurrence vector spaceW with itself. We denote
this mapping by F. The basic grammatical types in
B are assigned the atomic spaceW :

F(t ) =W t 2 B.

Words with type a are assigned vectors in F(a):

F(w) = Ti 2W (w, t ) 2 D.

A shorthand for linear expansion

The sum notation for the linear expansions of
tensors is often shorthanded using a tradition
set by Einstein:

Ti1i2 · · ·in {
X

i1i2 · · ·in
Ci1i2 · · ·in

�!
bi1 ⌦

�!
bi2 ⌦ · · · ⌦

�!
bin

for
�!
bi a basis vector ofW . The simplest case

of the above shorthands vectors:

Ti {
X

i

Ci
�!
bi

The complex types in T(B)\B are assigned tensors
ofW by structural induction as follows.

F(t1 · t2) = F(t1) ⌦ F(t2),
F(t1 ! t2) = F(t1) ⌦ F(t2),
F(t1  t2) = F(t1) ⌦ F(t2).

So the three operations of the residuated monoid,
its multiplication (·) and its two residuals (! and  ),
get mapped to the tensor product. This uses the
fact that linear maps from U ! U 0 are in corre-
spondence with elements of the space U ⇤ ⌦U 0. So
a word with type t1 ! t2 will get assigned a matrix,
that is a linear map from U to U 0. If U is �nite
dimensional then choosing an orthonormal basis in
it identi�es U ⇤ and U and this map becomes an
element of U ⌦U 0. In the above, U = U 0 =W , and
W is a co-occurrence vector space and these are by
de�nition �nite.

Similar to the atomic case, words with complex types
are assigned elements of tensor spaces, the rank of
which is the same as the number of operations in
their type. Formally (for notation see “A shorthand
for linear expansion"), we have

F(w) = Ti1i2 · · ·in 2W ⌦ · · · ⌦W|           {z           }
n

when the type of w is

(w, t1 � · · · � tn) 2 D

for � either of ·,!, .

Using the above de�nitions and the grammatical
structure provided by our monoid grammar, we can
now assign a tensor to a grammatical sentence
w1w2 · · ·wn . This is via tensor contraction (see “Ten-
sor Contraction") on Fof each of the wordswi of the

?
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Figure 14.1 A list of symbols, two directed graphs, and a record structure:
a sampler of meaning representations for I have a car.

relations denoting the possession of one by the other.
It is important to note that these representations can be viewed from at

least two distinct perspectives in all four of these approaches: as represen-
tations of the meaning of the particular linguistic input I have a car, and as
representations of the state of affairs in some world. It is this dual perspec-
tive that allows these representations to be used to link linguistic inputs to
the world and to our knowledge of it.

The structure of this part of the book parallels that of the previous parts.
We will alternate discussions of the nature of meaning representations with
discussions of the computational processes that can produce them. More
specifically, this chapter introduces the basics of what is needed in a mean-
ing representation, while Chapter 15 introduces a number of techniques for
assigning meanings to linguistic inputs. Chapter 16 explores a range of com-
plex representational issues related to the meanings of words. Chapter 17
then explores some robust computational methods designed to exploit these
lexical representations.

Note that since the emphasis of this chapter is on the basic require-
ments of meaning representations, we will defer a number of extremely im-
portant issues to later chapters. In particular, the focus of this chapter is on
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dog have a high degree of similarity. In order to see
the contrast, consider a version of the above vector
space, built from a piece of text that also contains
the target words: “kill" and “murder".
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Here, “dog" and “cat" have a high degree of similarity
to each other, and so do “kill" and “murder", whereas
“cat" and “kill" have a low degree of similarity, as do
pairs (cat, murder), (dog, kill), and (dog, murder).

Co-occurrence matrices and the notion of cosine
similarity have been tested on di�erent datasets,
such as WordSim-353, consisting of 353 pairs of
nouns such as (plane, car), SimLex-999, which con-
sists of noun, verb, as well as adjective pairs, such
as (bad, awful) and (kill, destroy), and the synonymy
part of the TOEFL test. Through similarity, vector
models of word meanings have found applications in
a wide range of natural language tasks, such as entity
recognition, parsing, and semantic role labelling, as
well as in question answering, summarization, and
automatic essay grading.

Representing meanings of sentences

A mapping can be de�ned between a monoid gram-
mar (⌃,B, D, {s }) and tensor products of a co-
occurrence vector spaceW with itself. We denote
this mapping by F. The basic grammatical types in
B are assigned the atomic spaceW :

F(t ) =W t 2 B.

Words with type a are assigned vectors in F(a):

F(w) = Ti 2W (w, t ) 2 D.

A shorthand for linear expansion

The sum notation for the linear expansions of
tensors is often shorthanded using a tradition
set by Einstein:

Ti1i2 · · ·in {
X

i1i2 · · ·in
Ci1i2 · · ·in

�!
bi1 ⌦

�!
bi2 ⌦ · · · ⌦

�!
bin

for
�!
bi a basis vector ofW . The simplest case

of the above shorthands vectors:

Ti {
X

i

Ci
�!
bi

The complex types in T(B)\B are assigned tensors
ofW by structural induction as follows.

F(t1 · t2) = F(t1) ⌦ F(t2),
F(t1 ! t2) = F(t1) ⌦ F(t2),
F(t1  t2) = F(t1) ⌦ F(t2).

So the three operations of the residuated monoid,
its multiplication (·) and its two residuals (! and  ),
get mapped to the tensor product. This uses the
fact that linear maps from U ! U 0 are in corre-
spondence with elements of the space U ⇤ ⌦U 0. So
a word with type t1 ! t2 will get assigned a matrix,
that is a linear map from U to U 0. If U is �nite
dimensional then choosing an orthonormal basis in
it identi�es U ⇤ and U and this map becomes an
element of U ⌦U 0. In the above, U = U 0 =W , and
W is a co-occurrence vector space and these are by
de�nition �nite.

Similar to the atomic case, words with complex types
are assigned elements of tensor spaces, the rank of
which is the same as the number of operations in
their type. Formally (for notation see “A shorthand
for linear expansion"), we have

F(w) = Ti1i2 · · ·in 2W ⌦ · · · ⌦W|           {z           }
n

when the type of w is

(w, t1 � · · · � tn) 2 D

for � either of ·,!, .

Using the above de�nitions and the grammatical
structure provided by our monoid grammar, we can
now assign a tensor to a grammatical sentence
w1w2 · · ·wn . This is via tensor contraction (see “Ten-
sor Contraction") on Fof each of the wordswi of the
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sentence. This idea is used in [1, 2] to develop similar
mappings for three di�erent categorial grammars.

As an example, the mapping on the monoid grammar
of the previous section assigns the co-occurrence
vector space W to the basic types n and s . This
means that “men" and “dogs" get assigned vectors
inW ; they are the rows corresponding to the two
words in the co-occurrence matrix underlyingW . For
the sake of coherence with the tensor notation, we
denote them byT dogs

k andT men
j . To n  n, this map-

ping assigns the tensor spaceW ⌦W and thus to
the adjective “cute" the matrix T cute

lk . An intransitive
verb gets assigned a similar type, e.g. T kill

i j . The type
(n ! s ) n gets assigned the spaceW ⌦W ⌦W ,
and the transitive verb “kill" the cube T kill

i j k .

Sentences “men kill”, “men kill dogs”, and “men kill
cute dogs” get assigned tensors inW via the follow-
ing contractions.

men kill T kill
i j T

men
j

men kill dogs (T kill
i j k T

dogs
k )T men

j

men kill cute dogs (T kill
i j l (T

cute
lk T dog

k ))T men
j

Tensor Contraction

For Ti1i2 · · ·in an element ofW ⌦ · · · ⌦W|           {z           }
n

and

Tinin+1 · · ·in+k an element ofW ⌦ · · · ⌦W|           {z           }
k+1

, the

contraction is formed as follows

Ti1i2 · · ·inTinin+1 · · ·in+k

and is a tensor

Ti1i2 · · ·in+1 · · ·in+k

inW ⌦ · · · ⌦W|           {z           }
n+k�1

.

Concrete Constructions and Experiments

Amongst the various ways tensors are built from
data, two models stand out. One is a model that
employs machine learning and the other a model
that uses analytical methods.

The machine learning model approximates a ma-
trix for words with one argument, e.g. adjectives
and intransitive verbs, as follows. We �rst build co-
occurrence vectors T xi

j for the word w and its argu-
ments xi , that is, for each of the wxi phrases. Then,
a matrix T w

i j is learned for w in such a way that it
provides a good approximation for thewxi ’s, through
tensor contraction, that is:

from

��!wx1��!wx2
· · ·
���!wxn

9>>>>>=>>>>>;
we learn
=) T w

i j s.t.

8>>>>>><>>>>>>:

T w
1 jT

x1
j ⇠ ��!wx1

T w
2 jT

x2
j ⇠ ��!wx2
· · ·

T w
n jT

xn
j ⇠ ���!wxn

For instance, suppose we want to build a matrix for
the adjective “red”. We observe that it has modi�ed
nouns “car”, “carpet”, “�ower”, in the corpus. We
build the following co-occurrence vectors using the
method described in the section on vectors:

������!
red car,

���������!
red carpet,

���������!
red �ower.

From the above, we then learn a matrixT red
i j for “red”

such that after it contracts with each of its modi�ed
nouns, it provides a good approximation of the above
co-occurrence vectors:

T red
i j T

car
j ⇠ ������!

red car,

T red
i j T

car pet
j ⇠ ���������!

red carpet,

T red
i j T

f lower
j ⇠ ���������!

red �ower.

For words with more than one argument, such as
those that are transitive (2 arguments) and ditransi-
tive (3 arguments), one follows a similar procedure to
build cubes and hypercubes, etc, but using the multi
step version of the approximation algorithm. This
model only works if the words and their arguments
have occurred together a reasonable amount of time
and other wise su�ers from data sparsity.

The analytic method argues that a tensor has to be
populated by the properties of its arguments. Words
with one argument are sums of the co-occurrence
vectors of their arguments. Words with two argu-
ments are sums of the tensor products of the co-
occurrence vectors of their arguments, and so on:

T w
i =

X�!xi,T w
i j =

X

i

�!xi ⌦ �!yi ,T w
i jk

=
X

i

�!xi ⌦ �!yi ⌦ �!zi , · · · .

~ T men,T love,T large,T Teenagers

nnl

W ⌦W ⌦W

F (n) = F (s) = W

F (w
1

)F (w
2

) · · · F (wn)

Ti
1

i
2

···in W ⌦W ⌦ · · · ⌦W|                {z                }
n

Tinin+1

···in+k W ⌦W ⌦ · · · ⌦W|                {z                }
k+1

Ti
1

i
2

···in Tinin+1

···in+k W ⌦W ⌦ · · · ⌦W|                {z                }
n+k�1

B = {n, s}

T cats
i Ti j

np 7! N s 7! S

A  A · ^A 7! A =) A ⇥A

A · ^B  ^B · A 7! A ⌦ B =) B ⌦A

TiT j =) T jTi

(A \ B)/C

Ti =) TiTi

V : I ! R M : I ! I ! R C : I ! I ! I ! R

I ! I ! · · ·! I ! R

a · b · a|c  a · b · c
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Concrete Constructions and Experiments

Amongst the various ways tensors are built from
data, two models stand out. One is a model that
employs machine learning and the other a model
that uses analytical methods.

The machine learning model approximates a ma-
trix for words with one argument, e.g. adjectives
and intransitive verbs, as follows. We �rst build co-
occurrence vectors T xi

j for the word w and its argu-
ments xi , that is, for each of the wxi phrases. Then,
a matrix T w

i j is learned for w in such a way that it
provides a good approximation for thewxi ’s, through
tensor contraction, that is:
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For instance, suppose we want to build a matrix for
the adjective “red”. We observe that it has modi�ed
nouns “car”, “carpet”, “�ower”, in the corpus. We
build the following co-occurrence vectors using the
method described in the section on vectors:

������!
red car,
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red carpet,
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red �ower.

From the above, we then learn a matrixT red
i j for “red”

such that after it contracts with each of its modi�ed
nouns, it provides a good approximation of the above
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For words with more than one argument, such as
those that are transitive (2 arguments) and ditransi-
tive (3 arguments), one follows a similar procedure to
build cubes and hypercubes, etc, but using the multi
step version of the approximation algorithm. This
model only works if the words and their arguments
have occurred together a reasonable amount of time
and other wise su�ers from data sparsity.

The analytic method argues that a tensor has to be
populated by the properties of its arguments. Words
with one argument are sums of the co-occurrence
vectors of their arguments. Words with two argu-
ments are sums of the tensor products of the co-
occurrence vectors of their arguments, and so on:
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