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Motivation

Two general questions:

1. How much compactness can we get in the universe?

What is compactness? An instance where if a property holds
for all substructures of a given object, then it holds for the
object itself. Follows from large cardinals. Tends to fail in L

In other words, how L-like is the universe?

2. Isolate combinatorial principles that have similar consequences
as large cardinals, but can hold at small cardinals.

I.e. “capture the combinatorial essence of large cardinals” .

Some key properties:
the tree property, the super tree property (ITP), failure of
square.
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The tree property

TPκ: The tree property at κ holds if every tree of height κ with
levels of size less than κ has a cofinal branch.

Facts:

I Holds at ω (Konig’s infinity lemma);

I fails at ω1 (Aronszajn).

I What about other small cardinals? Say ω2.

I CH implies that the tree property fails at ω2; more generally,
for any regular τ , 2τ = τ+ implies failure of the tree property
at τ++.

On the other hand, the tree property follows from large cardinals.

Mitchell; Silver (1972): TPℵ2 is equiconsistent with a weakly
compact cardinal.
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Large cardinals

I A large cardinal is a cardinal with very strong compactness
type properties.
Examples:
I κ is inaccessible if it is uncountable, regular and strong limit

(τ < κ→ 2τ < κ);
I κ is measurable if there is an elementary embedding j : V→ M

with critical point κ;
I κ is supercompact if there is an elementary embedding as

above, but M can be chosen to be “arbitrarily close” to V.
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The tree property and large cardinals

Large cardinals imply compactness.
The tree property is an example of a compactness-type principle.
Fact If κ is measurable, then the tree property holds at κ.
proof:
Let j : V→ M be an elementary embedding with critical point κ;
Let T ∈ V be a tree of height κ and levels of size less than κ.
Look at j(T).

1. By elementarity, j(T) has height j(κ) > κ.

2. Pick a node σ ∈ j(T) of level κ.

3. Let b := {v | v < σ}, i.e. all predecessors of σ.

4. the pullback of b generates a branch through T.

5. We use that j � κ = id and that levels of T have size less than
κ.

Actually, need less:
For an inaccessible κ, κ is weakly compact iff TPκ.
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The tree property at successor cardinals

Holds at ω (Konig’s infinity lemma); fails at ω1 (Aronszajn).
Facts:

I Mitchell (1972): Starting from a weakly compact cardinal,
can force the tree property at ℵ2.

Old question: can we get the tree property (and some
strengthenings) at every regular cardinal greater than ω1

simultaneously?

I Abraham (1983): Can force the tree property at ℵ2 and ℵ3
simultaneously, from a supercompact and a weakly compact
above it.

I Cummings-Foreman (1998): TP at ℵn for all n > 1; Neeman
(2009) added TP at ℵω+1.
More on this later.

Dima Sinapova University of Illinois at Chicago Anogeia, Crete 2019The tree property and its strengthenings



The tree property at successor cardinals

Holds at ω (Konig’s infinity lemma); fails at ω1 (Aronszajn).

Facts:

I Mitchell (1972): Starting from a weakly compact cardinal,
can force the tree property at ℵ2.

Old question: can we get the tree property (and some
strengthenings) at every regular cardinal greater than ω1

simultaneously?

I Abraham (1983): Can force the tree property at ℵ2 and ℵ3
simultaneously, from a supercompact and a weakly compact
above it.

I Cummings-Foreman (1998): TP at ℵn for all n > 1; Neeman
(2009) added TP at ℵω+1.
More on this later.

Dima Sinapova University of Illinois at Chicago Anogeia, Crete 2019The tree property and its strengthenings



The tree property at successor cardinals

Holds at ω (Konig’s infinity lemma); fails at ω1 (Aronszajn).
Facts:

I Mitchell (1972): Starting from a weakly compact cardinal,
can force the tree property at ℵ2.

Old question: can we get the tree property (and some
strengthenings) at every regular cardinal greater than ω1

simultaneously?

I Abraham (1983): Can force the tree property at ℵ2 and ℵ3
simultaneously, from a supercompact and a weakly compact
above it.

I Cummings-Foreman (1998): TP at ℵn for all n > 1; Neeman
(2009) added TP at ℵω+1.
More on this later.

Dima Sinapova University of Illinois at Chicago Anogeia, Crete 2019The tree property and its strengthenings



The tree property at successor cardinals

Holds at ω (Konig’s infinity lemma); fails at ω1 (Aronszajn).
Facts:

I Mitchell (1972): Starting from a weakly compact cardinal,
can force the tree property at ℵ2.

Old question: can we get the tree property (and some
strengthenings) at every regular cardinal greater than ω1

simultaneously?

I Abraham (1983): Can force the tree property at ℵ2 and ℵ3
simultaneously, from a supercompact and a weakly compact
above it.

I Cummings-Foreman (1998): TP at ℵn for all n > 1; Neeman
(2009) added TP at ℵω+1.
More on this later.

Dima Sinapova University of Illinois at Chicago Anogeia, Crete 2019The tree property and its strengthenings



The tree property at successor cardinals

Holds at ω (Konig’s infinity lemma); fails at ω1 (Aronszajn).
Facts:

I Mitchell (1972): Starting from a weakly compact cardinal,
can force the tree property at ℵ2.

Old question: can we get the tree property (and some
strengthenings) at every regular cardinal greater than ω1

simultaneously?

I Abraham (1983): Can force the tree property at ℵ2 and ℵ3
simultaneously, from a supercompact and a weakly compact
above it.

I Cummings-Foreman (1998): TP at ℵn for all n > 1; Neeman
(2009) added TP at ℵω+1.
More on this later.

Dima Sinapova University of Illinois at Chicago Anogeia, Crete 2019The tree property and its strengthenings



The tree property at successor cardinals

Holds at ω (Konig’s infinity lemma); fails at ω1 (Aronszajn).
Facts:

I Mitchell (1972): Starting from a weakly compact cardinal,
can force the tree property at ℵ2.

Old question: can we get the tree property (and some
strengthenings) at every regular cardinal greater than ω1

simultaneously?

I Abraham (1983): Can force the tree property at ℵ2 and ℵ3
simultaneously,

from a supercompact and a weakly compact
above it.

I Cummings-Foreman (1998): TP at ℵn for all n > 1; Neeman
(2009) added TP at ℵω+1.
More on this later.

Dima Sinapova University of Illinois at Chicago Anogeia, Crete 2019The tree property and its strengthenings



The tree property at successor cardinals

Holds at ω (Konig’s infinity lemma); fails at ω1 (Aronszajn).
Facts:

I Mitchell (1972): Starting from a weakly compact cardinal,
can force the tree property at ℵ2.

Old question: can we get the tree property (and some
strengthenings) at every regular cardinal greater than ω1

simultaneously?

I Abraham (1983): Can force the tree property at ℵ2 and ℵ3
simultaneously, from a supercompact and a weakly compact
above it.

I Cummings-Foreman (1998): TP at ℵn for all n > 1; Neeman
(2009) added TP at ℵω+1.
More on this later.

Dima Sinapova University of Illinois at Chicago Anogeia, Crete 2019The tree property and its strengthenings



The tree property at successor cardinals

Holds at ω (Konig’s infinity lemma); fails at ω1 (Aronszajn).
Facts:

I Mitchell (1972): Starting from a weakly compact cardinal,
can force the tree property at ℵ2.

Old question: can we get the tree property (and some
strengthenings) at every regular cardinal greater than ω1

simultaneously?

I Abraham (1983): Can force the tree property at ℵ2 and ℵ3
simultaneously, from a supercompact and a weakly compact
above it.

I Cummings-Foreman (1998): TP at ℵn for all n > 1; Neeman
(2009) added TP at ℵω+1.

More on this later.

Dima Sinapova University of Illinois at Chicago Anogeia, Crete 2019The tree property and its strengthenings



The tree property at successor cardinals

Holds at ω (Konig’s infinity lemma); fails at ω1 (Aronszajn).
Facts:

I Mitchell (1972): Starting from a weakly compact cardinal,
can force the tree property at ℵ2.

Old question: can we get the tree property (and some
strengthenings) at every regular cardinal greater than ω1

simultaneously?

I Abraham (1983): Can force the tree property at ℵ2 and ℵ3
simultaneously, from a supercompact and a weakly compact
above it.

I Cummings-Foreman (1998): TP at ℵn for all n > 1; Neeman
(2009) added TP at ℵω+1.
More on this later.

Dima Sinapova University of Illinois at Chicago Anogeia, Crete 2019The tree property and its strengthenings



Characterizing large cardinals

The tree property characterizes weak compactness:

There are natural strengthenings of this principle that characterize
stronger large cardinals:

I strongly compact,

I supercompact.

Def:
κ is λ-supercompact if there is elementary j : V→ M with critical
point κ, j(κ) > λ, Mλ ⊂ M.
κ is supercompact if it is λ-supercompact for all λ.
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TP and friends

There are strengthenings of the tree property that characterize the
combinatorial essence of stronger large cardinals:

For an inaccessible κ,

1. κ is weakly compact iff TPκ.

2. (Jech, ’72) κ is strongly compact iff κ has the strong tree
property.

3. (Magidor, ’74) κ is super compact iff the super tree
property, ITP, holds at κ.

These strengthen the tree property in two directions:

I a two cardinal version of a tree;

I require the branch to pass often through nodes specified in
advance.

A key point: like TP, the strong tree property and ITP can also
hold at successor cardinals.
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TP, ITP at successor cardinals

For small cardinals:
At ℵ2:

I If we start with λ weakly compact and force with Mitchell, we
get TPℵ2 .

I If we start with λ supercompact and force with Mitchell, we
get ITPℵ2 .

I (Weiss, 2010) PFA implies ITPℵ2 .

At higher cardinals:

I Cummings-Foreman, 90s: From ω many supercompact
cardinals, can force TPℵn for all n > 1.

I Unger / Fontanella, 2013: In this model actually ITPℵn holds
for all n > 1.

What about ITP at successors of singular cardinals?
An immediate difficulty: no elementary embedding with such
critical point.
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Recall: getting the tree property from a large cardinal:

I Take an elementary embedding to get a top node;

I Look at its predecessors and pull back.

To show TP, ITP at successors at regulars:

I start with a large cardinal λ, force to make it a successor of a
regular via Mitchell type forcing;

I lift an elementary embedding with critical point λ in an outer
model;

I use the embedding and the top node to find a branch;

I use branch preservation lemmas to get the branch in the right
model.

At successors of singulars, this does not quite work.
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TP, ITP at the successor of a singular

I (Magidor-Shelah, ’96) If 〈κn | n < ω〉 are increasing strongly
compact cardinals with limit κ, then the tree property holds at
κ+.
Their idea:

1. Use the strong compactness of κ0, to narrow the tree to a
“subsystem” with levels bounded by some κn.

2. Use the strong compactness of κn+1 to find the branch.

I (Fontanella, 2014) The same is true for the strong tree
property, which is the two cardinal generalization of the tree
property.

The obstacle to an easy ITP-adaptation: the required branch must
pass though some prefixed nodes stationary often.
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TP and friends

I 〈xa | a ∈ Pκ(λ)〉 is a Pκ(λ)-list if each xa ⊂ a.

I 〈xa | a ∈ Pκ(λ)〉 is thin if for club many c ∈ Pκ(λ),
|{xa ∩ c | c ⊂ a}| < κ.
For example, if κ is inaccessible, every Pκ(λ)-list is thin.

I Given a Pκ(λ)-list 〈xa | a ∈ Pκ(λ)〉 and b ⊂ λ,
I b is a cofinal branch if for all a ∈ Pκ(λ), there is c ∈ Pκ(λ),

a ⊂ c, s.t. xc ∩ a = b ∩ a,
I b is an ineffable branch if {a | xa = b ∩ a} is stationary.

I The strong tree property at κ holds if for all λ > κ, every
thin Pκ(λ)-list has a cofinal branch.

I The super tree property at κ (ITPκ) holds if for all λ > κ,
every thin Pκ(λ)-list has an ineffable branch.
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An example - obtaining ITP

Fact. If κ is supercompact, then ITP holds at κ.
proof: Fix a thin Pκ(λ)-list d.
Let j : V→ M be a λ supercompact elementary embedding with
critical point κ;

1. By elementarity j(d) is a thin Pj(κ)(j(λ))-list.

2. Pick the node of level j”λ and let b be its inverse image.

3. Then b coheres with the list on a measure one set, and so
stationary often.

The main obstacle with implementing Magidor-Shelah’s strategy:
the measures on say κ0 and κn+1 do not cohere.
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ITP at the successor of a singular

Theorem
(Hachtman-S., 2018) Suppose that 〈κn | n < ω〉 are increasing
supercompact cardinals and µ := (supn κn)+.Then ITP holds at µ.

Main points:

I Step 1: narrow down the list to levels of size κn for some n.

I Step 2: Use the supercompactness of κn+1 to define a system
of unbounded branches 〈bδ | δ < κn〉 that “fill out the list”.

I do a careful interplay between the various normal measures.

I Finally: pick ᾱ < µ above which all of the above branches
split. Show that one of them must be ineffable by partitioning
a stationary subset of µ into κn many sets.
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I Finally: pick ᾱ < µ above which all of the above branches
split. Show that one of them must be ineffable by partitioning
a stationary subset of µ into κn many sets.

Dima Sinapova University of Illinois at Chicago Anogeia, Crete 2019The tree property and its strengthenings



ITP at the successor of a singular

Theorem
(Hachtman-S., 2018) Suppose that 〈κn | n < ω〉 are increasing
supercompact cardinals and µ := (supn κn)+.Then ITP holds at µ.

Main points:

I Step 1: narrow down the list to levels of size κn for some n.

I Step 2: Use the supercompactness of κn+1 to define a system
of unbounded branches 〈bδ | δ < κn〉 that “fill out the list”.

I do a careful interplay between the various normal measures.
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At smaller cardinals

Using some forcing, we can obtain the above for ℵω+1.

Theorem
(Hachtman-S., 2018) Suppose that 〈κn | n < ω〉 are increasing
supercompact cardinals and µ := (supn κn)+.
Then there is a generic extension where ITP holds at ℵω+1.

The forcing: various Levy collapses.

Need to lift elementary embeddings.

Need branch preservation lemmas.
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Then there is a generic extension where ITP holds at ℵω+1.

The forcing: various Levy collapses.

Need to lift elementary embeddings.

Need branch preservation lemmas.
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ITP at ℵω+1

Let 〈κn | n < ω〉 be increasing supercompacts and µ := (supn κn)+.

I Use a model of Neeman for TPℵω+1 , ’12.

I Do Laver preparation, then force with
C :=

∏
Col(κn, < κn+1).

I For each τ < κ0 of the form τ = δ+ with cf(δ) = ω, let
Lτ := Col(ω, δ)× Col(τ+, < κ). Note that Lτ makes τ = ℵ1.

I Main part: show for some τ < κ0, V[C][Lτ ] |= ITP at ℵω+1

I Here each κn becomes ℵn+3 and µ becomes ℵω+1.

Dima Sinapova University of Illinois at Chicago Anogeia, Crete 2019The tree property and its strengthenings



ITP at ℵω+1

Let 〈κn | n < ω〉 be increasing supercompacts and µ := (supn κn)+.

I Use a model of Neeman for TPℵω+1 , ’12.

I Do Laver preparation, then force with
C :=

∏
Col(κn, < κn+1).

I For each τ < κ0 of the form τ = δ+ with cf(δ) = ω, let
Lτ := Col(ω, δ)× Col(τ+, < κ). Note that Lτ makes τ = ℵ1.

I Main part: show for some τ < κ0, V[C][Lτ ] |= ITP at ℵω+1

I Here each κn becomes ℵn+3 and µ becomes ℵω+1.

Dima Sinapova University of Illinois at Chicago Anogeia, Crete 2019The tree property and its strengthenings



ITP at ℵω+1

Let 〈κn | n < ω〉 be increasing supercompacts and µ := (supn κn)+.

I Use a model of Neeman for TPℵω+1 , ’12.

I Do Laver preparation, then force with
C :=

∏
Col(κn, < κn+1).

I For each τ < κ0 of the form τ = δ+ with cf(δ) = ω, let
Lτ := Col(ω, δ)× Col(τ+, < κ). Note that Lτ makes τ = ℵ1.

I Main part: show for some τ < κ0, V[C][Lτ ] |= ITP at ℵω+1

I Here each κn becomes ℵn+3 and µ becomes ℵω+1.

Dima Sinapova University of Illinois at Chicago Anogeia, Crete 2019The tree property and its strengthenings



ITP at ℵω+1

Let 〈κn | n < ω〉 be increasing supercompacts and µ := (supn κn)+.

I Use a model of Neeman for TPℵω+1 , ’12.

I Do Laver preparation, then force with
C :=

∏
Col(κn, < κn+1).

I For each τ < κ0 of the form τ = δ+ with cf(δ) = ω, let
Lτ := Col(ω, δ)× Col(τ+, < κ). Note that Lτ makes τ = ℵ1.

I Main part: show for some τ < κ0, V[C][Lτ ] |= ITP at ℵω+1

I Here each κn becomes ℵn+3 and µ becomes ℵω+1.

Dima Sinapova University of Illinois at Chicago Anogeia, Crete 2019The tree property and its strengthenings



ITP at ℵω+1

Let 〈κn | n < ω〉 be increasing supercompacts and µ := (supn κn)+.

I Use a model of Neeman for TPℵω+1 , ’12.

I Do Laver preparation, then force with
C :=

∏
Col(κn, < κn+1).

I For each τ < κ0 of the form τ = δ+ with cf(δ) = ω,

let
Lτ := Col(ω, δ)× Col(τ+, < κ). Note that Lτ makes τ = ℵ1.

I Main part: show for some τ < κ0, V[C][Lτ ] |= ITP at ℵω+1

I Here each κn becomes ℵn+3 and µ becomes ℵω+1.

Dima Sinapova University of Illinois at Chicago Anogeia, Crete 2019The tree property and its strengthenings



ITP at ℵω+1

Let 〈κn | n < ω〉 be increasing supercompacts and µ := (supn κn)+.

I Use a model of Neeman for TPℵω+1 , ’12.

I Do Laver preparation, then force with
C :=

∏
Col(κn, < κn+1).

I For each τ < κ0 of the form τ = δ+ with cf(δ) = ω, let
Lτ := Col(ω, δ)× Col(τ+, < κ).

Note that Lτ makes τ = ℵ1.

I Main part: show for some τ < κ0, V[C][Lτ ] |= ITP at ℵω+1

I Here each κn becomes ℵn+3 and µ becomes ℵω+1.

Dima Sinapova University of Illinois at Chicago Anogeia, Crete 2019The tree property and its strengthenings



ITP at ℵω+1

Let 〈κn | n < ω〉 be increasing supercompacts and µ := (supn κn)+.

I Use a model of Neeman for TPℵω+1 , ’12.

I Do Laver preparation, then force with
C :=

∏
Col(κn, < κn+1).

I For each τ < κ0 of the form τ = δ+ with cf(δ) = ω, let
Lτ := Col(ω, δ)× Col(τ+, < κ). Note that Lτ makes τ = ℵ1.

I Main part: show for some τ < κ0, V[C][Lτ ] |= ITP at ℵω+1

I Here each κn becomes ℵn+3 and µ becomes ℵω+1.

Dima Sinapova University of Illinois at Chicago Anogeia, Crete 2019The tree property and its strengthenings



ITP at ℵω+1

Let 〈κn | n < ω〉 be increasing supercompacts and µ := (supn κn)+.

I Use a model of Neeman for TPℵω+1 , ’12.

I Do Laver preparation, then force with
C :=

∏
Col(κn, < κn+1).

I For each τ < κ0 of the form τ = δ+ with cf(δ) = ω, let
Lτ := Col(ω, δ)× Col(τ+, < κ). Note that Lτ makes τ = ℵ1.

I Main part:

show for some τ < κ0, V[C][Lτ ] |= ITP at ℵω+1

I Here each κn becomes ℵn+3 and µ becomes ℵω+1.

Dima Sinapova University of Illinois at Chicago Anogeia, Crete 2019The tree property and its strengthenings



ITP at ℵω+1

Let 〈κn | n < ω〉 be increasing supercompacts and µ := (supn κn)+.

I Use a model of Neeman for TPℵω+1 , ’12.

I Do Laver preparation, then force with
C :=

∏
Col(κn, < κn+1).

I For each τ < κ0 of the form τ = δ+ with cf(δ) = ω, let
Lτ := Col(ω, δ)× Col(τ+, < κ). Note that Lτ makes τ = ℵ1.

I Main part: show for some τ < κ0, V[C][Lτ ] |= ITP at ℵω+1

I Here each κn becomes ℵn+3 and µ becomes ℵω+1.

Dima Sinapova University of Illinois at Chicago Anogeia, Crete 2019The tree property and its strengthenings



ITP at ℵω+1

Let 〈κn | n < ω〉 be increasing supercompacts and µ := (supn κn)+.

I Use a model of Neeman for TPℵω+1 , ’12.

I Do Laver preparation, then force with
C :=

∏
Col(κn, < κn+1).

I For each τ < κ0 of the form τ = δ+ with cf(δ) = ω, let
Lτ := Col(ω, δ)× Col(τ+, < κ). Note that Lτ makes τ = ℵ1.

I Main part: show for some τ < κ0, V[C][Lτ ] |= ITP at ℵω+1

I Here each κn becomes ℵn+3 and µ becomes ℵω+1.

Dima Sinapova University of Illinois at Chicago Anogeia, Crete 2019The tree property and its strengthenings



ITP at ℵω+1

Main part: show for some τ < κ0, V[C][Lτ ] |= ITP at ℵω+1.

Outline of the proof:

I Argue that it is enough to show ITP(κ, λ) in
V[C][Col(µ,< λ)][Lτ ], for all λ.

I Work in V[C], where κ0 is supercompact, and the κn’s, n > 0,
are generically supercompact.

I Suppose for contradiction, for each τ , there are names ḋτ for
thin lists with no ineffable branch.

I In step 1, use that κ0 is supercompact in V[H] to narrow
down the system of all names to “κn-thinness”.

I In step 2, lift a supercompact embedding with critical point
κn+1 to V[H] in an outer model.

I Define a system of branches 〈bδ,η | δ < κn, η ∈ I〉 through the
system of the names of the lists.
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ITP at ℵω+1

Outline of the proof cont’d:

I Define a system of branches 〈bδ,η | δ < κn, η ∈ I〉 through the
system of the names of the lists.

I Go back to step 1 and use a branch preservation lemma to
show that the branches are in the right model.

I Show the branches “fill out” the system of the list names.

I Finally use splitting and the pigeon hole to get the ineffable
branch.

Key point: at all times have to consider all possible branches
thought all possible names for lists.
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Next: add ITP at the double successor of the singular.

Want: obtain TP/ITP at many regular cardinals simultaneously.
Needs failures of SCH. Why?
Recall: CH implies the tree property fails at ℵ2.

Old fact (Specker): if µ<µ = µ, then the tree property fails at µ+.
So if κ is singular strong limit and SCH holds at κ (i.e. 2κ = κ+),
then the tree property fails at κ++.

Some major challenges: tension between

I failure of SCH at κ (an instance of non-compactness) vs.

I TP/ITP at κ+ (an instance of compactness).

Solovay: SCH holds above a strong compact cardinal.
Q: Does ITPκ imply SCH above κ? Or the strong tree property?

Dima Sinapova University of Illinois at Chicago Anogeia, Crete 2019The tree property and its strengthenings



Next: add ITP at the double successor of the singular.
Want:

obtain TP/ITP at many regular cardinals simultaneously.
Needs failures of SCH. Why?
Recall: CH implies the tree property fails at ℵ2.

Old fact (Specker): if µ<µ = µ, then the tree property fails at µ+.
So if κ is singular strong limit and SCH holds at κ (i.e. 2κ = κ+),
then the tree property fails at κ++.

Some major challenges: tension between

I failure of SCH at κ (an instance of non-compactness) vs.

I TP/ITP at κ+ (an instance of compactness).

Solovay: SCH holds above a strong compact cardinal.
Q: Does ITPκ imply SCH above κ? Or the strong tree property?

Dima Sinapova University of Illinois at Chicago Anogeia, Crete 2019The tree property and its strengthenings



Next: add ITP at the double successor of the singular.
Want: obtain TP/ITP at many regular cardinals simultaneously.

Needs failures of SCH. Why?
Recall: CH implies the tree property fails at ℵ2.

Old fact (Specker): if µ<µ = µ, then the tree property fails at µ+.
So if κ is singular strong limit and SCH holds at κ (i.e. 2κ = κ+),
then the tree property fails at κ++.

Some major challenges: tension between

I failure of SCH at κ (an instance of non-compactness) vs.

I TP/ITP at κ+ (an instance of compactness).

Solovay: SCH holds above a strong compact cardinal.
Q: Does ITPκ imply SCH above κ? Or the strong tree property?

Dima Sinapova University of Illinois at Chicago Anogeia, Crete 2019The tree property and its strengthenings



Next: add ITP at the double successor of the singular.
Want: obtain TP/ITP at many regular cardinals simultaneously.
Needs failures of SCH.

Why?
Recall: CH implies the tree property fails at ℵ2.

Old fact (Specker): if µ<µ = µ, then the tree property fails at µ+.
So if κ is singular strong limit and SCH holds at κ (i.e. 2κ = κ+),
then the tree property fails at κ++.

Some major challenges: tension between

I failure of SCH at κ (an instance of non-compactness) vs.

I TP/ITP at κ+ (an instance of compactness).

Solovay: SCH holds above a strong compact cardinal.
Q: Does ITPκ imply SCH above κ? Or the strong tree property?

Dima Sinapova University of Illinois at Chicago Anogeia, Crete 2019The tree property and its strengthenings



Next: add ITP at the double successor of the singular.
Want: obtain TP/ITP at many regular cardinals simultaneously.
Needs failures of SCH. Why?

Recall: CH implies the tree property fails at ℵ2.

Old fact (Specker): if µ<µ = µ, then the tree property fails at µ+.
So if κ is singular strong limit and SCH holds at κ (i.e. 2κ = κ+),
then the tree property fails at κ++.

Some major challenges: tension between

I failure of SCH at κ (an instance of non-compactness) vs.

I TP/ITP at κ+ (an instance of compactness).

Solovay: SCH holds above a strong compact cardinal.
Q: Does ITPκ imply SCH above κ? Or the strong tree property?

Dima Sinapova University of Illinois at Chicago Anogeia, Crete 2019The tree property and its strengthenings



Next: add ITP at the double successor of the singular.
Want: obtain TP/ITP at many regular cardinals simultaneously.
Needs failures of SCH. Why?
Recall: CH implies the tree property fails at ℵ2.

Old fact (Specker): if µ<µ = µ, then the tree property fails at µ+.
So if κ is singular strong limit and SCH holds at κ (i.e. 2κ = κ+),
then the tree property fails at κ++.

Some major challenges: tension between

I failure of SCH at κ (an instance of non-compactness) vs.

I TP/ITP at κ+ (an instance of compactness).

Solovay: SCH holds above a strong compact cardinal.
Q: Does ITPκ imply SCH above κ? Or the strong tree property?

Dima Sinapova University of Illinois at Chicago Anogeia, Crete 2019The tree property and its strengthenings



Next: add ITP at the double successor of the singular.
Want: obtain TP/ITP at many regular cardinals simultaneously.
Needs failures of SCH. Why?
Recall: CH implies the tree property fails at ℵ2.

Old fact (Specker):

if µ<µ = µ, then the tree property fails at µ+.
So if κ is singular strong limit and SCH holds at κ (i.e. 2κ = κ+),
then the tree property fails at κ++.

Some major challenges: tension between

I failure of SCH at κ (an instance of non-compactness) vs.

I TP/ITP at κ+ (an instance of compactness).

Solovay: SCH holds above a strong compact cardinal.
Q: Does ITPκ imply SCH above κ? Or the strong tree property?

Dima Sinapova University of Illinois at Chicago Anogeia, Crete 2019The tree property and its strengthenings



Next: add ITP at the double successor of the singular.
Want: obtain TP/ITP at many regular cardinals simultaneously.
Needs failures of SCH. Why?
Recall: CH implies the tree property fails at ℵ2.

Old fact (Specker): if µ<µ = µ, then the tree property fails at µ+.

So if κ is singular strong limit and SCH holds at κ (i.e. 2κ = κ+),
then the tree property fails at κ++.

Some major challenges: tension between

I failure of SCH at κ (an instance of non-compactness) vs.

I TP/ITP at κ+ (an instance of compactness).

Solovay: SCH holds above a strong compact cardinal.
Q: Does ITPκ imply SCH above κ? Or the strong tree property?

Dima Sinapova University of Illinois at Chicago Anogeia, Crete 2019The tree property and its strengthenings



Next: add ITP at the double successor of the singular.
Want: obtain TP/ITP at many regular cardinals simultaneously.
Needs failures of SCH. Why?
Recall: CH implies the tree property fails at ℵ2.

Old fact (Specker): if µ<µ = µ, then the tree property fails at µ+.
So if κ is singular strong limit and SCH holds at κ (i.e. 2κ = κ+),

then the tree property fails at κ++.

Some major challenges: tension between

I failure of SCH at κ (an instance of non-compactness) vs.

I TP/ITP at κ+ (an instance of compactness).

Solovay: SCH holds above a strong compact cardinal.
Q: Does ITPκ imply SCH above κ? Or the strong tree property?

Dima Sinapova University of Illinois at Chicago Anogeia, Crete 2019The tree property and its strengthenings



Next: add ITP at the double successor of the singular.
Want: obtain TP/ITP at many regular cardinals simultaneously.
Needs failures of SCH. Why?
Recall: CH implies the tree property fails at ℵ2.

Old fact (Specker): if µ<µ = µ, then the tree property fails at µ+.
So if κ is singular strong limit and SCH holds at κ (i.e. 2κ = κ+),
then the tree property fails at κ++.

Some major challenges: tension between

I failure of SCH at κ (an instance of non-compactness) vs.

I TP/ITP at κ+ (an instance of compactness).

Solovay: SCH holds above a strong compact cardinal.
Q: Does ITPκ imply SCH above κ? Or the strong tree property?

Dima Sinapova University of Illinois at Chicago Anogeia, Crete 2019The tree property and its strengthenings



Next: add ITP at the double successor of the singular.
Want: obtain TP/ITP at many regular cardinals simultaneously.
Needs failures of SCH. Why?
Recall: CH implies the tree property fails at ℵ2.

Old fact (Specker): if µ<µ = µ, then the tree property fails at µ+.
So if κ is singular strong limit and SCH holds at κ (i.e. 2κ = κ+),
then the tree property fails at κ++.

Some major challenges:

tension between

I failure of SCH at κ (an instance of non-compactness) vs.

I TP/ITP at κ+ (an instance of compactness).

Solovay: SCH holds above a strong compact cardinal.
Q: Does ITPκ imply SCH above κ? Or the strong tree property?

Dima Sinapova University of Illinois at Chicago Anogeia, Crete 2019The tree property and its strengthenings



Next: add ITP at the double successor of the singular.
Want: obtain TP/ITP at many regular cardinals simultaneously.
Needs failures of SCH. Why?
Recall: CH implies the tree property fails at ℵ2.

Old fact (Specker): if µ<µ = µ, then the tree property fails at µ+.
So if κ is singular strong limit and SCH holds at κ (i.e. 2κ = κ+),
then the tree property fails at κ++.

Some major challenges: tension between

I failure of SCH at κ (an instance of non-compactness) vs.

I TP/ITP at κ+ (an instance of compactness).

Solovay: SCH holds above a strong compact cardinal.
Q: Does ITPκ imply SCH above κ? Or the strong tree property?

Dima Sinapova University of Illinois at Chicago Anogeia, Crete 2019The tree property and its strengthenings



Next: add ITP at the double successor of the singular.
Want: obtain TP/ITP at many regular cardinals simultaneously.
Needs failures of SCH. Why?
Recall: CH implies the tree property fails at ℵ2.

Old fact (Specker): if µ<µ = µ, then the tree property fails at µ+.
So if κ is singular strong limit and SCH holds at κ (i.e. 2κ = κ+),
then the tree property fails at κ++.

Some major challenges: tension between

I failure of SCH at κ (an instance of non-compactness) vs.

I TP/ITP at κ+ (an instance of compactness).

Solovay: SCH holds above a strong compact cardinal.
Q: Does ITPκ imply SCH above κ? Or the strong tree property?

Dima Sinapova University of Illinois at Chicago Anogeia, Crete 2019The tree property and its strengthenings



Next: add ITP at the double successor of the singular.
Want: obtain TP/ITP at many regular cardinals simultaneously.
Needs failures of SCH. Why?
Recall: CH implies the tree property fails at ℵ2.

Old fact (Specker): if µ<µ = µ, then the tree property fails at µ+.
So if κ is singular strong limit and SCH holds at κ (i.e. 2κ = κ+),
then the tree property fails at κ++.

Some major challenges: tension between

I failure of SCH at κ (an instance of non-compactness) vs.

I TP/ITP at κ+ (an instance of compactness).

Solovay: SCH holds above a strong compact cardinal.
Q: Does ITPκ imply SCH above κ? Or the strong tree property?

Dima Sinapova University of Illinois at Chicago Anogeia, Crete 2019The tree property and its strengthenings



Next: add ITP at the double successor of the singular.
Want: obtain TP/ITP at many regular cardinals simultaneously.
Needs failures of SCH. Why?
Recall: CH implies the tree property fails at ℵ2.

Old fact (Specker): if µ<µ = µ, then the tree property fails at µ+.
So if κ is singular strong limit and SCH holds at κ (i.e. 2κ = κ+),
then the tree property fails at κ++.

Some major challenges: tension between

I failure of SCH at κ (an instance of non-compactness) vs.

I TP/ITP at κ+ (an instance of compactness).

Solovay: SCH holds above a strong compact cardinal.

Q: Does ITPκ imply SCH above κ? Or the strong tree property?

Dima Sinapova University of Illinois at Chicago Anogeia, Crete 2019The tree property and its strengthenings



Next: add ITP at the double successor of the singular.
Want: obtain TP/ITP at many regular cardinals simultaneously.
Needs failures of SCH. Why?
Recall: CH implies the tree property fails at ℵ2.

Old fact (Specker): if µ<µ = µ, then the tree property fails at µ+.
So if κ is singular strong limit and SCH holds at κ (i.e. 2κ = κ+),
then the tree property fails at κ++.

Some major challenges: tension between

I failure of SCH at κ (an instance of non-compactness) vs.

I TP/ITP at κ+ (an instance of compactness).

Solovay: SCH holds above a strong compact cardinal.
Q: Does ITPκ imply SCH above κ?

Or the strong tree property?

Dima Sinapova University of Illinois at Chicago Anogeia, Crete 2019The tree property and its strengthenings



Next: add ITP at the double successor of the singular.
Want: obtain TP/ITP at many regular cardinals simultaneously.
Needs failures of SCH. Why?
Recall: CH implies the tree property fails at ℵ2.

Old fact (Specker): if µ<µ = µ, then the tree property fails at µ+.
So if κ is singular strong limit and SCH holds at κ (i.e. 2κ = κ+),
then the tree property fails at κ++.

Some major challenges: tension between

I failure of SCH at κ (an instance of non-compactness) vs.

I TP/ITP at κ+ (an instance of compactness).

Solovay: SCH holds above a strong compact cardinal.
Q: Does ITPκ imply SCH above κ? Or the strong tree property?

Dima Sinapova University of Illinois at Chicago Anogeia, Crete 2019The tree property and its strengthenings



ITP and SCH

Does ITPλ imply SCHν for all singular cardinals ν > λ?

SCHν : if 2cf(ν) < ν, then νcf(ν) = ν+.
For ν singular strong limit, SCHν says 2ν = ν+.

Answer: No, at least in the case ν not strong limit:

Theorem
(Hachtman - S., 2017) Let κ < λ be supercompact cardinals.
There is a generic extension where:

I ITPλ.

I cf(κ) = ω, κ++ = λ.

I 2κ = λ+ω+2.

In particular, SCH fails at λ+ω.
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Overview of the proof

1. force with Mitchell type forcing to make λ = κ++ and
2κ = λ+ω+2

2. force with Prikry to singularize κ, causing
(λ+ω)ω = κω = 2κ = λ+ω+2, and so ¬SCHλ+ω

ITPλ in the generic extension:

I Since λ is supercompact in V, V |= ITPλ.
I To show that this is still the case in the generic extension,

I lift elementary embeddings and
I use branch preservation lemmas.
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The Mitchell poset

M: conditions are of the form 〈f, q〉 s.t.:

1. f ∈ Add(κ, λ+ω+2);

2. dom(q) ⊂ λ, |dom(q)| ≤ κ;

3. for each α ∈ dom(q), Add(κ,α) q(α) ∈ ˙Add(κ+, 1).

〈f′, q′〉 ≤ 〈f, q〉 iff

1. f′ ≤ f;

2. ∀α ∈ dom(q) ⊂ dom(q′),

f′ � α  q′(α) ≤ q(α)

M makes λ = κ++, 2κ = λ+ω+2, while preserving ITP at λ.
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The Prikry poset

P

uses a normal measure on κ to add an ω-sequence through κ.

Let κ be a measurable cardinal and U be a normal measure on κ.
The forcing conditions are pairs 〈s,A〉, where s is a finite sequence
of ordinals in κ and A ∈ U. 〈s1,A1〉 ≤ 〈s0,A0〉 iff:

I s0 is an initial segment of s1.

I s1 \ s0 ⊂ A0,

I A1 ⊂ A0.

A generic object for this poset will add a sequence 〈αn | n < ω〉,
cofinal in κ, such that for every A ∈ U, for all large n, αn ∈ A.
Cardinals are preserved, due to the Prikry property.
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Branch preservation

Recall the general scheme of showing the tree properties:

I lift some elementary embedding to get a branch in the outer
model;

I pull back the branch.

In our case, V[M][P]:

I Let d be a Pλ(τ) -list.

I Take a τ -s.c. elementary embedding with critical point λ,
j : V→ N;

I Lift it to j : V[M][P]→ N[M∗][P∗].
I use j(d)j”τ to get a branch b for the list.

I pull back the branch to the right model.
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Branch preservation

Pulling back the branch.

We show that the quotient forcing has the thin λ-approximation
property.
The key points:

I use a splitting lemma;

I must overcome lack of closure due to the Prikry.

Use the Prikry property to be able to fix the stem often enough in
the splitting, together with the high closure of the term forcing.
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More on failure of SCH

Specker: need many failures of SCH to get the TP or ITP
everywhere.
In particular, if κ is singular strong limit, and the tree property
holds at κ++, we must have failure of SCH at κ.
Is that consistent with the tree property at κ+?

(Neeman, 2009) It is consistent that SCH fails as κ and the tree
property holds at κ+.

(S, 2010-12) Can force the failure of SCH at ℵω2 together with the
tree property at ℵω2+1.

Q: Can we achieve the same for ITP? Would need to for the
ITP-everywhere project.
Yes, we can.
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More on not SCH

Theorem
(Cummings-Hayut-Magidor-Neeman-S.-Unger, 2019)

Suppose that
〈κn | n < ω〉 is an increasing sequence of supercompact cardinals
with limit ν, and let µ := ν+. Then there is a focring extension
where:

1. cf(κ) = ω, µ := κ+

2. ITP holds at µ, and

3. SCH fails at κ.

The construction:use Neeman’s model i.e. force with a version of
the diagonal Gitik-Sharon forcing after adding subsets of κ.
A key feature: cannot lift over the Prikry. So, we must work with
names of lists.
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More on not SCH

We can also obtain the result for κ = ℵω2 .

Theorem
(Cummings-Magidor-Neeman-S.-Unger, 2019) Same assumptions
as before. I.e. there are ω many supercompact cardinals. Then
there is a focring extension where:

1. ITP holds at ℵω2+1, and

2. SCH fails at ℵω2 .

The key feature: Use interleaved collapses in the Prikry forcing.
We need more involved lifting arguments and branch preservation
lemmas.
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Why ℵω2?

Some history:

I Gitik-Sharon (2007): Can force failure of SCH together with
failure of weak square at ℵω2 .
Note: the tree property implies failure of weak square.

I eventually led to obtaining failure of SCH together with the
tree property at ℵω2 .

Set up: κ supercompact, µ = κ+ω+1 , force with Prikry to make κ
singular and µ = κ+.
To violate SCH at κ, arrange 2κ = µ+ before the Prikry. That has
to reflect down below κ.
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Some open questions

Question 1: Does ITPκ imply SCHλ for all singular strong limit
λ > κ?
Question 2: Can ITP hold consistently at κ+ and κ++

simultaneously, for a singular cardinal κ?
(S, 2016) Yes for the tree property.
Question 3: Can ITP hold consistently at ℵω2+1 and ℵω2+2

simultaneously, with ℵω2 singular strong limit
(S-Unger, 2018) Yes for the tree property.

Question 4: Can the tree property hold consistently at ℵω+1 and
ℵω+2 simultaneously, with ℵω singular strong limit?
Yes, for ℵω2 .
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