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A theorem of Baldwin and Lachlan

Theorem (Baldwin-Lachlan)

Let T be a countable uncountably categorical theory. Then T has
a prime model, M0. A strongly minimal set S is definable in M0

and any two models M1,M2 |= T are isomorphic if and only if
dimM1(S) = dimM2(S).

We remind that:

Definition
A set S definable in an ℵ0-saturated structure M is strongly
minimal if every definable subset of S (not Sn!) is either finite or
co-finite.

A structure M is strongly minimal if x = x defines a strongly
minimal set.
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The classical examples

The classical examples of strongly minimal sets are:

Example

1. An infinite set with no structure.

2. A vector space V over a field K in the language
〈V ; 0,+, λ·〉λ∈K .

3. An algebraically closed field in the language of rings.

There are many other examples:

1. An infinite regular binary tree.

2. A projective or affine space over a field K .

3. An algebraic curve over an algebraically closed field K .
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Pre-geometries

Definition
A pregeometry is a pair 〈X , cl〉 where cl : P(X )→ P(X ) satisfies:

:

1. cl(A) ⊇ A for all A.

2. cl(cl(A)) = cl(A) for all A.

3. cl(A) ⊆ cl(B) for all A ⊆ B.

4. cl(A) =
⋃
{cl(A0) : A0 ⊆ A,A0 finite}.

5. Exchange: if a ∈ cl(Ab) \ cl(A) then b ∈ cl(Aa).

Exchange allows us to show – as in linear algebra – that any two
maximal independent sets in a pre-geometry have the same
cardinality.
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The geometry of strongly minimal sets

Fact
Strongly minimal sets are pre-geometries.

Zilber’s Trichotomy conjecture

If M is strongly minimal and not locally modular then M
interprets an algebraically closed field.

I The geometry of a pure set or of a binary tree is trivial.

I The geoemtry of a linear space is locally modular.

I The geometry of an algebraic curve over and algerbaically
closed field is rich.
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Wrong, but not completely

Theorem (Hrushovski)

There are non-locally modular strongly minimal sets not
interpreting a group.

Theorem (Hrushovski-Zilber)

Zilber’s Conjecture is true for Zariski Geometries.

Zariski Geometries are a first order topological framework,
essentially, axiomatizing the Zariski topology on (Cartesian powers
of) regular algebraic curves over algebraically closed fields.
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Many far reaching generalisations

I If D is a strongly minimal definable in DCF0 then D satisfies
Zilber’s Trichotomy.

I If p is a thin type is a separably closed field then p satisfies an
appropriate version of Zilber’s Trichotomy.

I If p is a minimal type in ACFA then p satisfies an appropriate
version of Zilber’s trichotomy.

I If M is o-minimal then all 1-types over M satisfy an
appropriate version of Zilber’s Trichotomy.

Note that the three last examples are not strongly minimal, and
the last two are not even stable.
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An example of a different flavour

Theorem (Rabinovich)

If D is a strongly minimal reduct of an algebraically closed field
then D satisfies Zilber’s trichotomy.

Definition
If M is a structure a structure N is a redct of M if it shares the
same universe and every ∅-definable set of N is M-definable.

Why of a different flavour?

In all previous examples the topology was available to help produce
the field. In Rabinovich’s result the topology only exists in the
background – restricting the behaviour of definable sets.
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So what what do we make of Zilber’s Trichotomy?

Zilber’s Principle

The Trichotomy holds in any geometric structure where definable
sets are constrained by a tame topology.

Conjecture

Zilber Any strongly minimal set interpretable in an algebraically
closed field satisfies the Trichotomy.

Peterzil Any geometric structure interpretable in an o-minimal
structure satisfies the conjecture.

Ko.-Ran. A strongly minimal set interpretable in ACVF satisfies Zilber’s
Trichotomy.
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A few words on Peterzil’s conjecture

A far reaching conjecture:

Peterzil’s conjecture covers structures interpretable for example in:

I Ran,exp := 〈R; +,×,≤, ex , f : f analytic on [0, 1]〉.
I In particular any strongly minimal set interpretable in a

compact complex manifold falls into Peterzil’s conjecture.

An even wider conjecture of Peterzil’s:

A geometric structure interpretable in a distal theory satisfies
Zilber’s Trichotomy.

Example

Every o-minimal theory is distal, and every expansion of an
o-minmial theory by externally definable sets is distal. Also, Qp is
distal.
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The restricted Trichotomy in ACF

Theorem (H.-Sustretov)

Let M be a curve over an algebraically closed field K, M the
structrue with universe M and some of the K-induced structure.
Then M satisfies Zilber’s Trichotomy.

I This generalises Rabinovich’ theorem (and provides a new,
shorter, proof).

I The conjecture remains open if the universe of the strongly
minimal set is not a curve (i.e., of higher dimension).

I If the conjecture is true then the higher dimensional case of
the conjecture should be, essentially, vacuous.

I There are good reasons to believe that the proof would go
through to ACVF.
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Peterzil’s conjecture

Theorem (H.-Onshuus)

Let M be a structure interpretable in an o-minimal theory, p an
unstable type. Then p satisfies Zilber’s Trichotomy.

This reduces Peterzil’s conjecture to strongly minimal structures
interpretable in o-minimal theories:

Theorem (H-Onshuus-Peterzil)

If the universe of the interpretation is 1-dimensional, then the
strongly minimal set is locally modular.

Remark
As in the case of ACF, if Peterzil’s conjecture is true then a
strongly minimal structure interpretable in an o-minimal structure
is either locally modular, or 2-dimensional.
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Peterzil’s conjecture – cont.

Theorem (Eleftheriou-H.-Peterzil)

Assume that G is a strongly minimal group interpretable in an
o-minimal expansion of a field, with 2-dimensional universe. If G is
not locally modular then G is an algebraic group over an
algebraically closed field.

I As in the case of algerbaically closed fields nothing is known
in case the universe of the strongly minimal group is of
dimension greater than 2.

I The topology on G is not the affine topology, but the group
topology.

I What would be the right topology in case a group is not
given?
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Some final words

I Is there are model theoretic theory of tangency that would
give a framework for Zilber’s Trichotomy.

I Zilber’s full-fledged Trichotomy conjecture also suggested a
complete classification of geometries of strongly minimal sets.

I Can one formulate such a conjecture withstanding
Hrushovski’s and other counter examples?

I There are some promising attempts (due mostly to
Mermelstein). It seems that reducts may have an important
role to play.

Thank you!
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