Modalities,
Cohesion,
and Information Flow

Alex Kavvos
Department of Mathematics and Computer Science, Wesleyan University

| 2th Panhellenic Logic Symposium, Anogeia, Greece,26 June 2019

Language-based

Information Flow Control

The Needham-Schroeder-Lowe protocol 1. A — B : Alice, E},(Alice|| noncey)
for authentication, given public keys: 2. B — A : Ey, (nonce || Bob || noncep)
3. A — B : Ej,(noncep || ks)
Some code implementing Alice: 4. A — B : Ei_(mq || Alice || counter)
. , 0. te.
Alice's private key Bob's public key ’ -

\ /

proc Alice(pv : Key, pb : Key, Bob-I: ?7[Msg], Bob—O : ![Msg|) {
val nonce—a = generateNonce ()
val pk = generateSymmetricKey ()
Bob—O ! (Alice, encrypt(pb, (Alice, nonce—a)))
val (nonce—a—b, name, nonce—b) = decrypt(pv, Bob-I 7?7 ())

if (nonce—a =— nonce—a—b && name — Bob)) {
Bob—O ! encrypt(pb, (nonce—b, pv)) < Message #3
Alice—session (pk, Bob-I, Bob-0O)

h

Language-based

Information Flow Control

The Needham-5chroeder-Lowe protocol [1 4 — 5. Alice. Ej. (Alice || nonce)
for authentication, given public keys: 2. B — A : Ey, (noncea || Bob || noncep)
3. A — B : Ej,(noncep || ks)
Some code implementing Alice: 4. A — B : Ei_(mq || Alice || counter)
= X P
Alice’s private key Bob's public key 0. cte

\ /

proc Alice(pv : Key, pb : Key, Bob-I: ?7[Msg], Bob—O : ![Msg|) {
val nonce—a = generateNonce ()
val pk = generateSymmetricKey ()
Bob—O ! (Alice, encrypt(pb, (Alice, nonce—a)))
val (nonce—a—b, name, nonce—b) = decrypt(pv, Bob-I 7?7 ())

if (nonce—a =— nonce—a—b && name — Bob)) {
Bob—O ! encrypt(pb, (nonce—b, |[pv]) < Message #3
Alice—session (pk, Bob-I, Bob-0O)

} OH NO

Language-based

Information Flow Control

The Needham-5chroeder-Lowe protocol [1 4 — 5. Alice. By, (Alice

nonce 4)
for authentication, given public keys: 2. B — A : Ey, (nonce || Bob || noncep)
3. A — B : Ej,(noncep || ks)

Some code implementing Alice: . A — B : E;_(m | Alice || counter)

etc.

ot

Alice’s private key Bob's public key

\ |

proc Alice(pv : ¢ Key, pb : Key, Bob—I: ?7[Msg], Bob—O : ![Msg]) {
val nonce—a = generateNonce ()

val pk = generateSymmetricKey ()
Bob—O ! (Alice, encrypt(pb, (Alice, nonce—a)))

val (nonce—a—b, name, nonce—b) = decrypt(pv, Bob-I 7 ())
if (nonce—a — nonce—a—b && name — Bob)) {
Bob—O ! encrypt(pb, (nonce—b, pv)) <« Message #3
Alice—session (pk, Bob—I, Bob-O)
¥

Language-based

Information Flow Control

The Needham-5chroeder-Lowe protocol [1 4 — 5. Alice. By, (Alice

nonce 4)
for authentication, given public keys: 2. B — A : Ey, (nonce || Bob || noncep)
3. A — B : Ej,(noncep || ks)

Some code implementing Alice: . A — B : E;_(m | Alice || counter)

etc.

ot

Alice’s private key Bob's public key

\ |

proc Alice(pv : |4 Key| pb : Key, Bob-I: ?[Msg|, Bob-O : ![Msg]) {
val nonce—a = generateNonce ()
val pk = generateSymmetricKey ()
Bob—O ! (Alice, encrypt(pb, (Alice, nonce—a)))

val (nonce—a—b, name, nonce—b) = decrypt(pv, Bob-I 7 ())
if (nonce—a — nonce—a—b && name — Bob)) {
Bob—O ! encrypt(pb, (nonce—b, pv)) <« Message #3
Alice—session (pk, Bob—I, Bob-O)
¥

Language

-based

Information Flow Control

The Needham-Schroeder-Lowe protocol
for authentication, given public keys:

Some code implementing Alice:

Alice’s private key Bob's public key

\ |

. A — B : Alice, E},(Alice
. B — A : Ej,(noncey || Bob || noncep)
. A — B : Ej,(noncepg || ks)

. A — B : Ej_(m | Alice|| counter)

'8

nonce 4)

—_ 0 DN =

etc.

ot

proc Alice(pv : |4 Key| pb : Key, Bob-I: ?[Msg|, Bob-O : ![Msg]) {

val nonce—a = generateNonce ()
val pk = generateSymmetricKey ()
Bob—O ! (Alice, encrypt(pb, (Alice

, nonce—a)))

val (nonce—a—b, name, nonce—b) = decrypt(pv, Bob-I 7 ())
if (nonce—a — nonce—a—b && name — Bob)) {

Bob—O ! encrypt(pb, (nonce-—b, |pv

)) Message #3

Alice—session (pk, Bob—I, Bob-O)
}

TYPE ERROR

Modalities for
Information Flow Control

* Modalities = unary operations on types. 'T(A) A A HAH

¢ They can be used to control information flow, as in previous example.

One can copy techniques from the proof theory of modal logic.
¢ The hard part is proving noninterference:

[...] High-security data does not “interfere”
with the calculation of low-security outputs [...]

@ A notion due to [Goguen and Meseguer, 1982]. This definition:
from seminal paper on dependency core calculus [Abadi et al 1999].

Modalities for Information Flow:
an example

@ An example: for each type A, a type ¢A < "high security A”
I'-M:A
['F[M]: 6A

@ Can always get a ¢4 :

| can use a high-security value when computing another high-security value:
I'-M:9A T'z: A- N : ¢C
I'F letx =M in N : ¢C
® Reduction: let x = [M]in N — N[M/z]

¢ Noninterference:

,

If z:4AF E:Bool and F M, N : ¢A then
E[M/z] and E[N/z] compute the same boolean value.

How can one go about proving this?

Modalities for Information Flow:
an example

@ An example: for each type A, a type ¢A < "high security A”
I'-M:A
['F[M]: 6A

@ Can always get a ¢4 :

| can use a high-security value when computing another high-security value:
I'-M:9A T'z: A- N : ¢C
['F letx=MinN:¢C
a.k.a.
®* Reduction: let x = [M]in N = N[M/z] "Moggi’'s monadic

metalanguage”

% Noninterference:

If z:4AF E:Bool and F M, N : ¢A then
E[M/z] and E[N/z] compute the same boolean value.

How can one go about proving this?

Proving noninterference

@ In the last ten to fifteen years: logical relations.
@ Beautiful, but long and complicated syntactic proofs.
@ This talk: using categorical algebra to simplify these proofs.

o Main result: one can use basic axiomatic cohesion to reason about

information flow and prove noninterference results.

¢* Axiomatic cohesion: a theory developed by F. William Lawvere.
Aim: axiomatic desc. of all sorts of geometric/topological spaces.

tt

ff

Cohesion

Spaces

Sets

(= points + cohesion)

(= points)

tt

ff

Cohesion

Spaces (= points + cohesion)
U

v
Sets (= points)

Cohesion

Spaces (= points + cohesion)
X = space
U(X) = points of space X (forget cohesion)
U
\/
Sets (= points)

tt ff

tt

ff

Cohesion

Spaces (= points + cohesion)
U

v
Sets (= points)

tt

ff

Cohesion

Spaces (= points + cohesion)
A
A U
v
Sets (= points)

tt

ff

Cohesion

Spaces (= points + cohesion)
A
A
S = set of points
A(S) = discrete space on S (minimum cohesion)

Sets (= points)

tt

ff

Cohesion

Spaces

S = set of points

(= points + cohesion)

A(S) = discrete space on S (minimum cohesion)

Sets

(= points)

tt

ff

Cohesion

Spaces

Sets

(= points + cohesion)

(= points)

tt

ff

Cohesion

Spaces

Sets

(= points + cohesion)

(= points)

tt

ff

Cohesion

Spaces (= points + cohesion)

S = set of points

V(S) = codiscrete space on S (maximum cohesion)

(= points)

tt

ff

Cohesion

Spaces (= points + cohesion)

S = set of points

V(S) = codiscrete space on S (maximum cohesion)

Sets (= points)

e i
V(B)

tt

ff

Cohesion

Spaces

Sets

tt ff @ tt—ff
A(B) Vv(B)

(= points + cohesion)

(= points)

tt

ff

Cohesion

Spaces

Sets

tt ff @ tt—ff
A(B) Vv(B)

(= points + cohesion)

(= points)

Cohesion

Spaces
X = space
C(X) = connected components of X
C A U
v \/
Sets

tt

ff tt ff tt—ff
A(B) V(B)

(= points + cohesion)

(= points)

Cohesion

Spaces (= points + cohesion)
X = space A
C(X) = connected components of X
C A U \Y
v \/
Sets (= points)

ff tt ff tt—ff {tt} {ff}
A(B) V(B) C(A(B))

Cohesion

Spaces
X = space
C(X) = connected components of X
C A U
v \/
Sets

tt

ff tt ff tt—ff
A(B) V(B)

(= points + cohesion)

\Y
(= points)
{tt} {ff} {tt, £f}
C(A(B)) C(V(B))

CRIB

ChTeLIl (ohesion

A(S) = discrete space on S
(min. cohesion)

V(S) = codiscrete space on S

(max. cohesion)
C(X) = connected components of X Spaces

Sets

tt ff tt ff || tt—ff
B A(B) v (B)

(= points + cohesion)

(= points)

fte} {e£)

C(A(B))

{tt, ff}

Cc(Vv(B))

CRIB
([
U(X) = points of space X C h
(forget cohesion) O e S I O n
A(S) = discrete space on S
(min. cohesion)

V(S) = codiscrete space on S

(max. cohesion)
C(X) = connected components of X Spaces (= points + cohesion)

t 4 S —-U(X)
A(S) = X

UX)— S
X — V(S)

¢ A v v X — A(S)
v v C(X)%S

Sets (= points)

tt ff tt ff tt—ff {tt} {ff} {tt, £f}
B A(B) V(B) C(A(B)) c(v(B))

CRIB

U(X) = points of space X C h !

(forget cohesion) O e S I O n
A(S) = discrete space on S

(min. cohesion)

V(S) = codiscrete space on S

(max. cohesion)
C(X) = connected components of X Spaces

Sets

tt ff tt—ff {tt, £f}
B V(B) C(V(B))

CRIB

U(X) = points of space X C h !

(forget cohesion) O e S I O n
A(S) = discrete space on S

(min. cohesion)

V(S) = codiscrete space on S

(max. cohesion)
C(X) = connected components of X Spaces

Sets

tt ff tt—ff {tt, £f}
B V(B) C(V(B))

in the codiscrete space V(S) on S
everything is “stuck together”
= there is < 1 connected component

CRIB

U(X) = points of space X C h !

(forget cohesion) O e S I O n
A(S) = discrete space on S

(min. cohesion)

V(S) = codiscrete space on S

(max. cohesion)
C(X) = connected components of X Spaces

Sets

tt ff tt—ff {tt, £f}
B V(B) C(V(B))

Axiom of
CONTRACTIBLE CODISCRETENESS:

vS. |C(VS)| < 1

(For category theorists: the
canonical C(VS) 51
is @ monic arrow.)

in the codiscrete space V(S) on S
everything is “stuck together”
= there is < 1 connected component

CRIB

U(X) = points of space X C h !

(forget cohesion) O e S I O n
A(S) = discrete space on S

(min. cohesion)

V(S) = codiscrete space on S

(max. cohesion)
C(X) = connected components of X Spaces

Sets

tt ff tt—ff {tt, £f}
B V(B) C(V(B))

CLAIM: This is all one needs to

reason about information flow.

Axiom of
CONTRACTIBLE CODISCRETENESS:

vS. |C(VS)| < 1

(For category theorists: the
canonical C(VS) 51
is @ monic arrow.)

in the codiscrete space V(S) on S
everything is “stuck together”
= there is < 1 connected component

CRIB

U(X) = points of space X C h !

(forget cohesion) O e S I O n
A(S) = discrete space on S

(min. cohesion)

V(S) = codiscrete space on S

(max. cohesion)
C(X) = connected components of X Spaces

Sets

tt ff tt—ff {tt, £f}
B V(B) C(V(B))

CLAIM: This is all one needs to

reason about information flow.

vS. |C(VS)| <1

in the codiscrete space V(S) on S
everything is “stuck together”
= there is < 1 connected component

CRIB

U(X) = points of space X C h !
(forget cohesion) O e S I O n
A(S) = discrete space on S

(min. cohesion) “X redacted”
V(S) = codiscrete space on S

(max. cohesion)
C(X) = connected components of X Spaces

Sets

tt ff tt—ff {tt, £f}
B V(B) C(V(B))

CLAIM: This is all one needs to

reason about information flow.

vS. |C(VS)| <1

Define: X =V(UX)

in the codiscrete space V(S) on S
everything is “stuck together”
= there is < 1 connected component

CRIB

U(X) = points of space X C h !
(forget cohesion) O e S I O n
A(S) = discrete space on S

(min. cohesion) “X redacted”
V(S) = codiscrete space on S

(max. cohesion)
C(X) = connected components of X Spaces

Sets

tt ff tt—ff {tt, £f}
B V(B) C(V(B))

CLAIM: This is all one needs to

reason about information flow.

vS. |C(VS)| <1

Define: X =V(UX)

Theorem: every f: ¢X — AS

continuous is a point of S
(maybe)

in the codiscrete space V(S) on S
everything is “stuck together”
= there is < 1 connected component

CRIB

U(X) = points of space X C h !
(forget cohesion) O e S I O n
A(S) = discrete space on S

(min. cohesion) “X redacted”
V(S) = codiscrete space on S

(max. cohesion)
C(X) = connected components of X Spaces

Sets

tt ff tt—ff {tt, £f}
B V(B) C(V(B))

CLAIM: This is all one needs to

reason about information flow.

vS. |C(VS)| <1

Define: X =V(UX)

Theorem: every f: ¢X — AS

continuous is a point of S
(maybe)

Proof: every such f is by
def. a continuous function
fiV(UX)— AS

in the codiscrete space V(S) on S
everything is “stuck together”
= there is < 1 connected component

CRIB

U(X) = points of space X C h !
(forget cohesion) O e S I O n
A(S) = discrete space on S

(min. cohesion) “X redacted”
V(S) = codiscrete space on S

(max. cohesion)
C(X) = connected components of X Spaces

X = A(S)
C(X)—= S ..
pRXY
= = =
C A U \Y
Sets
tt ff tt—ff {tt, £f}

B V(B) c(V(B))

CLAIM: This is all one needs to

reason about information flow.

vS. |C(VS)| <1

Define: X =V(UX)

Theorem: every f: ¢X — AS

continuous is a point of S
(maybe)

Proof: every such f is by
def. a continuous function
fiV(UX)— AS

in the codiscrete space V(S) on S
everything is “stuck together”
= there is < 1 connected component

CRIB

U(X) = points of space X C h '
(forget cohesion) O es I O n reason about information flow.
A(S) = discrete space on S VS ‘C(VS)‘ S 1

CLAIM: This is all one needs to

(min. cohesion) “X redacted”
V(S) = codiscrete space on S
(max. cohesion) Define: X =V(UX)
C(X) = connected components of X Spaces
\ . Theorem: every f: ¢X — AS
S s A(S continuous is a point of S
— A(S) (maybe)
C(X)—=S§ "\\A Proof: every such f is by
- - . def. a continuous function
f:VUX)— AS
C A U \Y which is just a set function
f:C(VUX))—= S
v v
Sets
L tt. ff in the codiscrete space V(S) on S
tt t1 tT £t { ’ } everything is "stuck together”
B V(B) C(V(B)) = there is < 1 connected component

CRIB

U(X) = points of space X C h '
(forget cohesion) O es I O n reason about information flow.
A(S) = discrete space on S VS ‘C(VS)‘ S 1

CLAIM: This is all one needs to

(min. cohesion) “X redacted”
V(S) = codiscrete space on S
(max. cohesion) Define: X =V(UX)
C(X) = connected components of X Spaces
\ . Theorem: every f: ¢X — AS
S s A(S continuous is a point of S
— A(S) (maybe)
C(X)—=S§ "\\A Proof: every such f is by
- - . def. a continuous function
f:VUX)— AS
C A U \Y which is just a set function
f:C(VUX))—= S
v v
Sets
L tt. ff in the codiscrete space V(S) on S
tt t1 tT £t { ’ } everything is "stuck together”
B V(B) C(V(B)) = there is < 1 connected component

CRIB

U(X) = points of space X .
()(forgpet ctohesioi) C O h e S I O n

A(S) = discrete space on S

(min. cohesion) “X redacted”
V(S) = codiscrete space on S

(max. cohesion)
C(X) = connected components of X Spaces

X = A(S)
C(X)—= S ..
pRXY
= = =
C A U \Y
Sets
tt ff tt—ff {tt, £f}

B V(B) c(V(B))

CLAIM: This is all one needs to

reason about information flow.

vS. |C(VS)| <1

Define: X =V(UX)

Theorem: every f: ¢X — AS

continuous is a point of S
(maybe)

Proof: every such f is by
def. a continuous function
f:VUX)— AS
which is just a set function
f:C(V(UX)) = S
—
a set of < | elementl

in the codiscrete space V(S) on S
everything is “stuck together”

= there is < 1 connected component

CRIB

00, = pas of space X Classified sets

A(S) = discrete space on S
(min. cohesion) Set of classifications/labels: £ € L

must be reflexive

V(S) = codiscrete space on S .
(max. cohesion) Classified set: X = (| X1, (Ry C |X| x [X|)¢e)

C(X) = connected components of X

Cont. function: f : X — Y st VL aR,b = f(a)Rgf(b)

f is continuous when it maps inputs indistinguishable at ¢ € £ to outputs indistinguishable at £ € £ "

X (S’ ({(3’3) | s € S})ZEE) X (Sv (S X S)KEE)

—_ A 4

v 1 v

(equivalence classes) S ‘ X ‘ S

CRIB

00, = pas of space X Classified sets

A(S) = discrete space on S

(min. cohesion) Set of classifications/labels: £ € L must be reflexive

V(S) = codiscrete space on S .
(max. cohesion) Classified set: X = (| X1, (Ry C |X| x [X|)¢e)

C(X) = connected components of X

Cont. function: f : X — Y st VL aR,b = f(a)Rgf(b)

f is continuous when it maps inputs indistinguishable at ¢ € £ to outputs indistinguishable at £ € £ "

X (S, ({(s,8) | s € S})ier) X (S, (S X S)eec)
. . .
C A U v
(equivalence classes) _S_ ‘ X‘ ;-S’_

Theorem: the category of classified sets is cartesian closed and cohesive over Sets,

and it satisfies contractible codiscreteness.

CRIB

00, = pas of space X Classified sets

A(S) = discrete space on S
(min. cohesion) Set of classifications/labels: £ € L

must be reflexive

V(S) = codiscrete space on S .
(max. cohesion) Classified set: X = (| X1, (Ry C |X| x [X|)¢e)

C(X) = connected components of X

Cont. function: f : X — Y st VL aR,b = f(a)Rgf(b)

f is continuous when it maps inputs indistinguishable at ¢ € £ to outputs indistinguishable at £ € £ "

X (S’ ({(3’3) | s € S})ZEE) X (Sv (S X S)KEE)

T A A

C A [t is a model of \V/

functional programming

languages

v
(equivalence classes)

Theorem: the category of classified sets is cartesian closed and cohesive over Sets,

and it satisfies contractible codiscreteness.

CRIB

00, = pas of space X Classified sets

A(S) = discrete space on S

(min. cohesion) Set of classifications/labels: £ € L must be reflexive

V(S) = codiscrete space on S .
(max. cohesion) Classified set: X = (| X1, (Ry C |X| x [X|)¢e)

C(X) = connected components of X

Cont. function: f : X — Y st VL aR,b = f(a)Rgf(b)

f is continuous when it maps inputs indistinguishable at ¢ € £ to outputs indistinguishable at £ € £ "

X (S, ({(s,8) | s € S})eer) X (S, (S X S)eer)
| : :
C A It is a model of It is 2 model of

functional programming

information flow

languages

v
(equivalence classes)

Theorem: the category of classified sets is cartesian closed and cohesive over Sets,

and it satisfies contractible codiscreteness.

Cohesion and non-interference

¢ Recall what we were trying to prove:

If -:4AF E :Bool and - M, N : ¢A then

E[M/z] and E[N/z| compute the same boolean value.

@ There is a way to map every term to a continuous function between
classified sets — a categorical semantics:

z:4A+F E : Bool — |E] : ¢[A] — AB

oge By the Theorem, this corresponds to an element of B
So it is essentially a constant function. ¢X =V(UX)

@ If only this could tell us something about the language... tt ff

Cohesion and non-interference

¢ Recall what we were trying to prove:

If -:4AF E :Bool and - M, N : ¢A then

E[M/z] and E[N/z| compute the same boolean value.

@ There is a way to map every term to a continuous function between
classified sets — a categorical semantics:

z:4A+ E :Bool — |E] : ¢[A] — AB

ADEQUACY, a.k.a

@ By the Theorem, this corresponds to an element of B
completeness at base types

So it is essentially a constant function.

(automatically holds

when the language has
@ If only this could tell us something about the language... BRI ERCEVART
establish for “algebraic

effects”)

Cohesion and non-interference

¢ Recall what we were trying to prove:

If -:4AF E :Bool and - M, N : ¢A then

E[M/z] and E[N/z| compute the same boolean value.

@ There is a way to map every term to a continuous function between
classified sets — a categorical semantics:

z:4A+ E :Bool — |E] : ¢[A] — AB

ADEQUACY, a.k.a

@ By the Theorem, this corresponds to an element of B
completeness at base types

So it is essentially a constant function.

(automatically holds

when the language has
@ If only this could tell us something about the language... BRI ERCEVART
establish for “algebraic

effects”)

Cohesion and non-interference

@ This approach can be leveraged to prove noninterference for
multiple type theories for secure information flow:

** Moggi’'s monadic metalanguage [Moggi 1991]

(A little bit of

care is required

* Davies-Pfenning calculus (S4 modality) [D&Pf 2001]

here w.r.t.

¢ Dependency Core Calculus [Abadi et al. 1999] adequacy)

¢ Sealing Calculus [Shikuma & lgarashi 2008]

¢ The last two are multi-modal type theories.

Cohesion and multi-modal
type theories for information flow

Writing CSet, for the category of classified sets over m C L

| o T g 7_(_I f i CSetﬂu
an or the 4 4
B:.n Cx"
. = .
unique morphisms in P(L) Cp Ag Us Vg
. v \4
er h?ve the two.coheswe CSet..
situation on the right.
A A
: = = =
It's a functor C. AL U. v.
\ 4 \ 4
P(L)°® — Coh CSet .,

LUT

Cohesion and multi-modal
type theories for information flow

Writing CSet, for the category of classified sets over m C L

| o T g 7_(_I f i CSetﬂu
an or the 4 4
B:.n Cx"
. = .
unique morphisms in P(L) Cp Ag Us Vg
. v \4
er h?ve the two.coheswe CSet..
situation on the right.
A A
: = = =
It's a functor C. AL U. v.
\ 4 \ 4
P(L)°® — Coh CSet .,

Theorem: the category of classified sets over LU 7 is cohesive over the category

of classified sets over L and satisfies contractible codiscreteness.

T hree fundamental equations

TN

% Given r (a pullback) we want:
7\ /f
T M 7Ty
CSet
U, A
CSet
‘A)\ Us
CSetmnz Beck-Chevalley
(2) same as (]) but for V¥ (thanks to D. Spivak)

Observation: These suffice to prove all the

laws | have needed so far.

The laws for /4 T

PROPOSITION 21.
(1) IftrNnxa’ =0, thenO,0, = Oy0u,.

2) Iftna’" =0, then 4,4, = ®,0-
(3) U0z = UOzun

(4) ’n"n" = ’JTU]T’

(5) If t C n’, thenO, @, =0O,.

(6) If 1 C i/, then 4, O, = & .

(7) IftNn " =0, thenO,, ¢, = 4, Oy.
(8) mp ‘71" = ‘JT’—JT O

(9) €0y =07 @

Conclusions

@ One of the most abstract/philosophical parts of categorical algebra,
namely axiomatic cohesion, is a practical theory of information flow.

@ It can be used to prove properties of LBIFC...
¢ ... and, hopefully, it can inspire new languages for LBIFC.

* Despite the looks of it, cateqorical algebra as a way to reason
about programming is still largely unexplored territory.

@ Multi-modal type theories have intuitive categorical semantics.

