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Language-based

Information Flow Control

The Needham-Schroeder-Lowe protocol 1. A — B : Alice, E},(Alice|| noncey)
for authentication, given public keys: 2. B — A : Ey, (nonce || Bob || noncep)
3. A — B : Ej,(noncep || ks)
Some code implementing Alice: 4. A — B : Ei_(mq || Alice || counter)
. , 0. te.
Alice's private key Bob's public key ’ -

\ /

proc Alice(pv : Key, pb : Key, Bob-I: ?7[Msg], Bob—O : ![Msg|) {
val nonce—a = generateNonce ()
val pk = generateSymmetricKey ()
Bob—O ! (Alice, encrypt(pb, (Alice, nonce—a)))
val (nonce—a—b, name, nonce—b) = decrypt(pv, Bob-I 7?7 ())

if (nonce—a =— nonce—a—b && name — Bob)) {
Bob—O ! encrypt(pb, (nonce—b, pv)) < Message #3
Alice—session (pk, Bob-I, Bob-0O)

h
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Language

-based

Information Flow Control

The Needham-Schroeder-Lowe protocol
for authentication, given public keys:

Some code implementing Alice:

Alice’s private key Bob's public key

\ |

. A — B : Alice, E},(Alice
. B — A : Ej,(noncey || Bob || noncep)
. A — B : Ej,(noncepg || ks)

. A — B : Ej_(m | Alice|| counter)

'8

nonce 4 )

—_ 0 DN =

etc.

ot

proc Alice(pv : |4 Key| pb : Key, Bob-I: ?[Msg|, Bob-O : ![Msg]) {

val nonce—a = generateNonce ()
val pk = generateSymmetricKey ()
Bob—O ! (Alice, encrypt(pb, (Alice

, nonce—a)))

val (nonce—a—b, name, nonce—b) = decrypt(pv, Bob-I 7 ())
if (nonce—a — nonce—a—b && name — Bob)) {

Bob—O ! encrypt(pb, (nonce-—b, |pv

)) Message #3

Alice—session (pk, Bob—I, Bob-O)
}

TYPE ERROR



Modalities for
Information Flow Control

* Modalities = unary operations on types. 'T(A) A A HAH

¢ They can be used to control information flow, as in previous example.

One can copy techniques from the proof theory of modal logic.
¢ The hard part is proving noninterference:

[...] High-security data does not “interfere”
with the calculation of low-security outputs [...]

@ A notion due to [Goguen and Meseguer, 1982]. This definition:
from seminal paper on dependency core calculus [Abadi et al 1999].



Modalities for Information Flow:
an example

@ An example: for each type A, a type ¢A < "high security A”
I'-M:A
['F[M]: 6A

@ Can always get a ¢4 :

| can use a high-security value when computing another high-security value:
I'-M:9A T'z: A- N : ¢C
I'F letx =M in N : ¢C
® Reduction: let x = [M]in N — N[M/z]

¢ Noninterference:

,

If z:4AF E:Bool and F M, N : ¢A then
E[M/z] and E[N/z] compute the same boolean value.

How can one go about proving this?
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@ An example: for each type A, a type ¢A < "high security A”
I'-M:A
['F[M]: 6A

@ Can always get a ¢4 :

| can use a high-security value when computing another high-security value:
I'-M:9A T'z: A- N : ¢C
['F letx=MinN:¢C
a.k.a.
®* Reduction: let x = [M]in N = N[M/z] "Moggi’'s monadic

metalanguage”

*%* Noninterference:

If z:4AF E:Bool and F M, N : ¢A then
E[M/z] and E[N/z] compute the same boolean value.

How can one go about proving this?



Proving noninterference

@ In the last ten to fifteen years: logical relations.
@ Beautiful, but long and complicated syntactic proofs.
@ This talk: using categorical algebra to simplify these proofs.

o Main result: one can use basic axiomatic cohesion to reason about

information flow and prove noninterference results.

¢* Axiomatic cohesion: a theory developed by F. William Lawvere.
Aim: axiomatic desc. of all sorts of geometric/topological spaces.
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Cohesion and non-interference

@ This approach can be leveraged to prove noninterference for
multiple type theories for secure information flow:

** Moggi’'s monadic metalanguage [Moggi 1991]

(A little bit of

care is required

* Davies-Pfenning calculus (S4 modality) [D&Pf 2001 ]

here w.r.t.

¢ Dependency Core Calculus [Abadi et al. 1999] adequacy)

¢ Sealing Calculus [Shikuma & lgarashi 2008]

¢ The last two are multi-modal type theories.
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. v \4
er h?ve the two.coheswe CSet..
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A A
: = = =
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\ 4 \ 4
P(L)°® — Coh CSet .,

Theorem: the category of classified sets over LU 7 is cohesive over the category

of classified sets over L and satisfies contractible codiscreteness.




T hree fundamental equations

TN

% Given r (a pullback) we want:
7\ /f
T M 7Ty
CSet
U, A
CSet
‘A)\ Us
CSetmnz Beck-Chevalley
(2) same as (]) but for V¥ (thanks to D. Spivak)

Observation: These suffice to prove all the

laws | have needed so far.




The laws for /4 T

PROPOSITION 21.
(1) IftrNnxa’ =0, thenO,0, = Oy0u,.

2) Iftna’" =0, then 4,4, = ®,0-
(3) U0z = UOzun

(4) ’n"n" = ’JTU]T’

(5) If t C n’, thenO, @, =0O,.

(6) If 1 C i/, then 4, O, = & .

(7) IftNn " =0, thenO,, ¢, = 4, Oy.
(8) mp ‘71" = ‘JT’—JT O

(9) €0y =07 @



Conclusions

@ One of the most abstract/philosophical parts of categorical algebra,
namely axiomatic cohesion, is a practical theory of information flow.

@ It can be used to prove properties of LBIFC...
¢ ... and, hopefully, it can inspire new languages for LBIFC.

* Despite the looks of it, cateqorical algebra as a way to reason
about programming is still largely unexplored territory.

@ Multi-modal type theories have intuitive categorical semantics.



