Modalities, Cohesion, and Information Flow

Alex Kavvos

Department of Mathematics and Computer Science, Wesleyan University

12th Panhellenic Logic Symposium, Anogeia, Greece, 26 June 2019

arXiv:1809.07897

The Needham-Schroeder-Lowe protocol for authentication, given public keys:

Some code implementing Alice:

```
1. A \rightarrow B: Alice, E_{k_B}(\text{Alice} \parallel nonce_A)

2. B \rightarrow A: E_{k_A}(nonce_A \parallel \text{Bob} \parallel nonce_B)

3. A \rightarrow B: E_{k_B}(nonce_B \parallel k_s)

4. A \rightarrow B: E_{k_s}(m_1 \parallel \text{Alice} \parallel counter)

5. etc.
```

The Needham-Schroeder-Lowe protocol for authentication, given public keys:

Some code implementing Alice:

```
1. A \rightarrow B: Alice, E_{k_B}(\text{Alice} \parallel nonce_A)

2. B \rightarrow A: E_{k_A}(nonce_A \parallel \text{Bob} \parallel nonce_B)

3. A \rightarrow B: E_{k_B}(nonce_B \parallel k_s)

4. A \rightarrow B: E_{k_s}(m_1 \parallel \text{Alice} \parallel counter)

5. etc.
```

The Needham-Schroeder-Lowe protocol for authentication, given public keys:

Some code implementing Alice:

```
1. A \rightarrow B: Alice, E_{k_B}(\text{Alice} \parallel nonce_A)

2. B \rightarrow A: E_{k_A}(nonce_A \parallel \text{Bob} \parallel nonce_B)

3. A \rightarrow B: E_{k_B}(nonce_B \parallel k_s)

4. A \rightarrow B: E_{k_s}(m_1 \parallel \text{Alice} \parallel counter)

5. etc.
```

```
proc Alice(pv : ♦ Key, pb : Key, Bob-I: ?[Msg], Bob-O : ![Msg]) {
  val nonce-a = generateNonce()
  val pk = generateSymmetricKey()
  Bob-O ! (Alice, encrypt(pb, (Alice, nonce-a)))
  val (nonce-a-b, name, nonce-b) = decrypt(pv, Bob-I ? ())
  if (nonce-a == nonce-a-b && name == Bob)) {
    Bob-O ! encrypt(pb, (nonce-b, pv)) ← Message #3
    Alice-session(pk, Bob-I, Bob-O)
  }
}
```

The Needham-Schroeder-Lowe protocol for authentication, given public keys:

Some code implementing Alice:

```
1. A \rightarrow B: Alice, E_{k_B}(\text{Alice} \parallel nonce_A)

2. B \rightarrow A: E_{k_A}(nonce_A \parallel \text{Bob} \parallel nonce_B)

3. A \rightarrow B: E_{k_B}(nonce_B \parallel k_s)

4. A \rightarrow B: E_{k_s}(m_1 \parallel \text{Alice} \parallel counter)

5. etc.
```

The Needham-Schroeder-Lowe protocol for authentication, given public keys:

Some code implementing Alice:

```
1. A \rightarrow B: Alice, E_{k_B}(\text{Alice} \parallel nonce_A)

2. B \rightarrow A: E_{k_A}(nonce_A \parallel \text{Bob} \parallel nonce_B)

3. A \rightarrow B: E_{k_B}(nonce_B \parallel k_s)

4. A \rightarrow B: E_{k_s}(m_1 \parallel \text{Alice} \parallel counter)

5. etc.
```

Modalities for Information Flow Control

- \P Modalities = unary operations on types. T(A) $\square A$ $\blacklozenge A$ ||A||
- They can be used to <u>control</u> information flow, as in previous example. One can copy techniques from the **proof** theory of modal logic.
- The hard part is proving noninterference:

[...] High-security data does not "interfere" with the calculation of low-security outputs [...]

A notion due to [Goguen and Meseguer, 1982]. This definition: from seminal paper on **dependency core calculus** [Abadi et al 1999].

Modalities for Information Flow: an example

- \clubsuit An example: for each type A, a type $\spadesuit A$ \longleftarrow "high security A"
- $lacktriangle ext{Can always get a} lacktriangle A: \frac{\Gamma dash M:A}{\Gamma dash [M]: lacktriangle A}$
- ❖ I can use a high-security value when computing another high-security value:

$$\frac{\Gamma \vdash M : \blacklozenge A \quad \Gamma, x : A \vdash N : \blacklozenge C}{\Gamma \vdash \mathsf{let} \times = M \mathsf{ in } N : \blacklozenge C}$$

- $ightharpoonup ext{Reduction:} \quad \text{let } \mathsf{x} = [M] \text{ in } N \to N[M/x]$
- ♣ Noninterference:

If $x: \blacklozenge A \vdash E:$ Bool and $\vdash M, N: \blacklozenge A$ then E[M/x] and E[N/x] compute the same boolean value.

How can one go about proving this?

Modalities for Information Flow: an example

- \clubsuit An example: for each type A, a type $\spadesuit A$ \longleftarrow "high security A"
- $lacktriangle ext{Can always get a} lacktriangle A: \frac{\Gamma dash M:A}{\Gamma dash [M]: lacktriangle A}$
- ❖ I can use a high-security value when computing another high-security value:

$$\frac{\Gamma \vdash M : \blacklozenge A \quad \Gamma, x : A \vdash N : \blacklozenge C}{\Gamma \vdash \mathsf{let} \times = M \mathsf{ in } N : \blacklozenge C}$$

- $ightharpoonup ext{Reduction:} \quad \text{let } \mathsf{x} = [M] \text{ in } N o N[M/x]$
- ♣ Noninterference:

a.k.a.
"Moggi's monadic
metalanguage"

If $x: \blacklozenge A \vdash E:$ Bool and $\vdash M, N: \blacklozenge A$ then E[M/x] and E[N/x] compute the same boolean value.

How can one go about proving this?

Proving noninterference

- In the last ten to fifteen years: logical relations.
- ❖ Beautiful, but long and complicated syntactic proofs.
- This talk: using categorical algebra to simplify these proofs.
- Amain result: one can use basic axiomatic cohesion to reason about information flow and prove noninterference results.
- Axiomatic cohesion: a theory developed by F. William Lawvere. Aim: axiomatic desc. of all sorts of **geometric/topological spaces**.

```
Spaces (= points + cohesion)
```

```
Sets (= points)
```

```
Spaces
                   (= points + cohesion)
                      (= points)
 Sets
```

```
Spaces
                                                              (= points + cohesion)
             X = space
U(X) = points of space X (forget cohesion)
                                         Sets
                                                                 (= points)
tt
        ff
```

```
Spaces
                   (= points + cohesion)
                      (= points)
 Sets
```



```
CRIB
                                       Cohesion
    U(X) = points of space X
         (forget cohesion)
    \Delta(S) = discrete space on S
         (min. cohesion)
  \nabla(S) = \text{codiscrete space on } S
         (max. cohesion)
C(X) = connected components of X
                                                 Spaces
                                                                          (= points + cohesion)
                                                  Sets
                                                                              (= points)
                                                                             \{ff\}
             ff
                                    ff
   tt
                          tt
                                               tt—ff
                                            \nabla(\mathbb{B})
                      \Delta(\mathbb{B})
```

CRIB U(X) = points of space X(forget cohesion) $\Delta(S)$ = discrete space on S (min. cohesion) $\nabla(S) = \text{codiscrete space on } S$ (max. cohesion) C(X) = connected components of X

ff

tt

Cohesion

```
(= points + cohesion)
Spaces
                            S 	o U(X)
                            \Delta(S) \to X
                            U(X) \to S
                            X 	o 
abla(S)
                            X 	o \Delta(S)
                            C(X) \to S
 Sets
                        (= points)
                       \{ff\}
```

tt—ff

 $\nabla(\mathbb{B})$

ff

tt

 $\Delta(\mathbb{B})$

```
CRIB
```

```
U(X) = points of space X

(forget cohesion)

\Delta(S) = discrete space on S

(min. cohesion)

\nabla(S) = codiscrete space on S

(max. cohesion)

C(X) = connected components of X
```

Spaces

Sets

$$abla(\mathbb{B})$$

```
U(X) = points of space X

(forget cohesion)

\Delta(S) = discrete space on S

(min. cohesion)

\nabla(S) = codiscrete space on S

(max. cohesion)

C(X) = connected components of X
```

Cohesion

Spaces

Sets

$$egin{array}{c} \{ exttt{tt, ff}\} \ & C(
abla(\mathbb{B})) \end{array}$$

U(X) = points of space X(forget cohesion) $\Delta(S) = discrete space on S$ (min. cohesion) $\nabla(S) = codiscrete space on S$ (max. cohesion) C(X) = connected components of X

Cohesion

Spaces

Axiom of CONTRACTIBLE CODISCRETENESS:

$$\forall S. |C(\nabla S)| \leq 1$$

(For category theorists: the canonical $C(\nabla S) \xrightarrow{!} \mathbf{1}$ is a monic arrow.)

Sets

tt ff

 $\mathsf{tt} - \mathsf{ff}$

$$egin{array}{ll} egin{array}{ll} \{\mathtt{tt}, \ \mathtt{ff} \} \ & C(
abla(\mathbb{B})) \end{array}$$

U(X) = points of space X(forget cohesion) $\Delta(S) = discrete space on S$ (min. cohesion) $\nabla(S) = codiscrete space on S$ (max. cohesion) C(X) = connected components of X

Cohesion

Spaces

 $C igg| \Delta igg| V i$

CLAIM: This is all one needs to reason about information flow.

Axiom of CONTRACTIBLE CODISCRETENESS:

$$\forall S. |C(\nabla S)| \leq 1$$

(For category theorists: the canonical $C(\nabla S) \xrightarrow{!} \mathbf{1}$ is a monic arrow.)

Sets

tt ff

$$egin{array}{c} \{ exttt{tt, ff}\} \ & C(
abla(\mathbb{B})) \end{array}$$

U(X) = points of space X(forget cohesion) $\Delta(S) = discrete space on S$ (min. cohesion)

 $\nabla(S)$ = codiscrete space on S (max. cohesion)

C(X) = connected components of X

Cohesion

CLAIM: This is all one needs to reason about information flow.

 $\forall S. |C(\nabla S)| \leq 1$

Spaces

Sets

$$egin{array}{c} igl\{ exttt{tt, ff} igr\} \ C(
abla (\mathbb{B})) \end{array}$$

U(X) = points of space X(forget cohesion) $\Delta(S)$ = discrete space on S (min. cohesion) $\nabla(S) = \text{codiscrete space on } S$ (max. cohesion) C(X) = connected components of X

Cohesion

CLAIM: This is all one needs to reason about information flow.

"X redacted" $\forall S. \; |C(\nabla S)| \leq 1$

Define: $\blacklozenge X = \nabla(UX)$

Spaces

Sets

ff

U(X) = points of space X(forget cohesion) $\Delta(S)$ = discrete space on S

(min. cohesion) $\nabla(S)$ = codiscrete space on S

(max. cohesion) C(X) = connected components of X

Cohesion

CLAIM: This is all one needs to reason about information flow.

"X redacted" $\forall S. \ |C(\nabla S)| \leq 1$

Define:
$$\blacklozenge X = \nabla(UX)$$

Spaces

Theorem: every $f : \blacklozenge X \rightarrow \triangle S$ continuous is a point of S (maybe)

Sets

ff tt

{tt, ff}

U(X) = points of space X(forget cohesion)

 $\Delta(S)$ = discrete space on S (min. cohesion)

 $\nabla(S)$ = codiscrete space on S (max. cohesion)

C(X) = connected components of X

Cohesion

CLAIM: This is all one needs to reason about information flow.

"X redacted" $\forall S. \ |C(\nabla S)| \leq 1$

Define:
$$\blacklozenge X = \nabla(UX)$$

Spaces

Theorem: every $f : \blacklozenge X \rightarrow \triangle S$ continuous is a point of S (maybe)

Proof: every such f is by def. a continuous function $f: \nabla(UX) \to \Delta S$

Sets

ff tt

{tt, ff}

U(X) = points of space X (forget cohesion)

 $\Delta(S)$ = discrete space on S (min. cohesion)

 $\nabla(S)$ = codiscrete space on S (max. cohesion)

C(X) = connected components of X

Cohesion

CLAIM: This is all one needs to reason about information flow.

"X redacted" _

 $\forall S. |C(\nabla S)| < 1$

Define:
$$\blacklozenge X = \nabla(UX)$$

Spaces

Theorem: every $f : \blacklozenge X \rightarrow \triangle S$ continuous is a point of S (maybe)

Proof: every such f is by def. a continuous function $f: \nabla(UX) \to \Delta S$

Sets

ff tt

{tt, ff}

U(X) = points of space X (forget cohesion)

 $\Delta(S)$ = discrete space on S (min. cohesion)

 $\nabla(S)$ = codiscrete space on S (max. cohesion)

C(X) = connected components of X

Cohesion

CLAIM: This is all one needs to reason about information flow.

"X redacted" -

 $\forall S. |C(\nabla S)| < 1$

Define:
$$\blacklozenge X = \nabla(UX)$$

Spaces

Theorem: every $f : \blacklozenge X \rightarrow \triangle S$ continuous is a point of S (maybe)

Proof: every such f is by def. a continuous function $f: \nabla(UX) \to \Delta S$ which is just a set function $f: C(\nabla(UX)) \to S$

Sets

ff tt

{tt, ff}

U(X) = points of space X (forget cohesion)

 $\Delta(S)$ = discrete space on S (min. cohesion)

 $\nabla(S)$ = codiscrete space on S (max. cohesion)

C(X) = connected components of X

Cohesion

CLAIM: This is all one needs to reason about information flow.

"X redacted" -

 $\forall S. |C(\nabla S)| < 1$

Define:
$$\blacklozenge X = \nabla(UX)$$

Spaces

Theorem: every $f : \blacklozenge X \rightarrow \triangle S$ continuous is a point of S (maybe)

Proof: every such f is by def. a continuous function $f: \nabla(UX) \to \Delta S$ which is just a set function $f: C(\nabla(UX)) \to S$

Sets

ff tt

{tt, ff}

U(X) = points of space X (forget cohesion)

 $\Delta(S)$ = discrete space on S (min. cohesion)

 $\nabla(S)$ = codiscrete space on S (max. cohesion)

C(X) = connected components of X

Cohesion

CLAIM: This is all one needs to reason about information flow.

"X redacted" -

 $\forall S. \ |C(\nabla S)| < 1$

Define:
$$\blacklozenge X = \nabla(UX)$$

Spaces

Theorem: every $f : \blacklozenge X \rightarrow \triangle S$ continuous is a point of S (maybe)

Proof: every such f is by def. a continuous function $f: \nabla(UX) \to \Delta S$

which is just a set function

$$f:C(\nabla(UX))\to S$$

a set of ≤ 1 element!

Sets

ff tt

{tt, ff}

C(X) = connected components of X

Classified sets

Set of classifications/labels: $\ell \in \mathcal{L}$

must be **reflexive**

Classified set: $X = (|X|, (R_{\ell} \subseteq |X| \times |X|)_{\ell \in \mathcal{L}})$

Cont. function: f:X o Y s.t. $orall \ell$. $aR_\ell b\Rightarrow f(a)R_\ell f(b)$

"f is continuous when it maps inputs indistinguishable at $\ell\in\mathcal{L}$ to outputs indistinguishable at $\ell\in\mathcal{L}$ "

C(X) = connected components of X

Classified sets

Set of classifications/labels: $\ell \in \mathcal{L}$

must be **reflexive**

Classified set: $X = (|X|, (R_{\ell} \subseteq |X| \times |X|)_{\ell \in \mathcal{L}})$

Cont. function: f:X o Y s.t. $orall \ell$. $aR_\ell b\Rightarrow f(a)R_\ell f(b)$

"f is continuous when it maps inputs indistinguishable at $\ell\in\mathcal{L}$ to outputs indistinguishable at $\ell\in\mathcal{L}$ "

Theorem: the category of classified sets is cartesian closed and cohesive over Sets, and it satisfies contractible codiscreteness.

Classified sets

Set of classifications/labels: $\ell \in \mathcal{L}$

must be **reflexive**

Classified set: $X = (|X|, (R_{\ell} \subseteq |X| \times |X|)_{\ell \in \mathcal{L}})$

Cont. function: f:X o Y s.t. $orall \ell$. $aR_\ell b\Rightarrow f(a)R_\ell f(b)$

"f is continuous when it maps inputs indistinguishable at $\ell\in\mathcal{L}$ to outputs indistinguishable at $\ell\in\mathcal{L}$ "

Theorem: the category of classified sets is cartesian closed and cohesive over Sets, and it satisfies contractible codiscreteness.

C(X) = connected components of X

Classified sets

Set of classifications/labels: $\ell \in \mathcal{L}$

must be **reflexive**

Classified set: $X = (|X|, (R_{\ell} \subseteq |X| \times |X|)_{\ell \in \mathcal{L}})$

Cont. function: f:X o Y s.t. $orall \ell$. $aR_\ell b\Rightarrow f(a)R_\ell f(b)$

"f is continuous when it maps inputs indistinguishable at $\ell\in\mathcal{L}$ to outputs indistinguishable at $\ell\in\mathcal{L}$ "

Theorem: the category of classified sets is cartesian closed and cohesive over Sets, and it satisfies contractible codiscreteness.

Recall what we were trying to prove:

If
$$x : \blacklozenge A \vdash E :$$
 Bool and $\vdash M, N : \blacklozenge A$ then $E[M/x]$ and $E[N/x]$ compute the same boolean value.

❖ There is a way to map every term to a continuous function between classified sets — a categorical semantics:

$$x: \blacklozenge A \vdash E: \mathsf{Bool} \longmapsto \llbracket E \rrbracket : \blacklozenge \llbracket A \rrbracket \to \Delta \mathbb{B}$$

- \clubsuit By the Theorem, this corresponds to an element of $\mathbb B$ So it is essentially a constant function.
- If only this could tell us something about the language...

$$\mathsf{tt}$$
 ff $\Delta(\mathbb{B})$

 $\blacklozenge X = \nabla(UX)$

Recall what we were trying to prove:

If
$$x : \blacklozenge A \vdash E :$$
 Bool and $\vdash M, N : \blacklozenge A$ then $E[M/x]$ and $E[N/x]$ compute the same boolean value.

❖ There is a way to map every term to a continuous function between classified sets — a categorical semantics:

$$x: \blacklozenge A \vdash E: \mathsf{Bool} \longmapsto \llbracket E \rrbracket : \blacklozenge \llbracket A \rrbracket \to \Delta \mathbb{B}$$

- \clubsuit By the Theorem, this corresponds to an element of $\mathbb B$ So it is essentially a constant function.
- If only this could tell us something about the language...

ADEQUACY, a.k.a completeness at base types (automatically holds when the language has no recursion; easy to establish for "algebraic effects")

Recall what we were trying to prove:

If $x : \blacklozenge A \vdash E :$ Bool and $\vdash M, N : \blacklozenge A$ then E[M/x] and E[N/x] compute the same boolean value.

❖ There is a way to map every term to a continuous function between classified sets — a categorical semantics:

$$x: \blacklozenge A \vdash E: \mathsf{Bool} \longmapsto \llbracket E \rrbracket : \blacklozenge \llbracket A \rrbracket \to \Delta \mathbb{B}$$

- \clubsuit By the Theorem, this corresponds to an element of $\mathbb B$ So it is essentially a constant function.
- If only this could tell us something about the language...

ADEQUACY, a.k.a completeness at base types (automatically holds when the language has no recursion; easy to establish for "algebraic effects")

- This approach can be leveraged to prove noninterference for multiple type theories for secure information flow:
 - ♣ Moggi's monadic metalanguage [Moggi 1991]
 - ❖ Davies-Pfenning calculus (S4 modality) [D&Pf 2001]
 - ◆ Dependency Core Calculus [Abadi et al. 1999]
 - Sealing Calculus [Shikuma & Igarashi 2008]
- The last two are multi-modal type theories.

(A little bit of care is required here w.r.t. adequacy)

Cohesion and multi-modal type theories for information flow

Writing \mathbf{CSet}_{π} for the category of classified sets over $\pi\subseteq\mathcal{L}$

and
$$lpha:\pi\subseteq\pi'$$
 for the $eta:\pi'\subseteq\pi''$

unique morphisms in $\mathcal{P}(\mathcal{L})$ we have the two cohesive situation on the right.

It's a functor

$$\mathcal{P}(\mathcal{L})^{\operatorname{op}} \longrightarrow \operatorname{\mathbf{Coh}}$$

$$\mathcal{L} \cup \pi$$

Cohesion and multi-modal type theories for information flow

Writing \mathbf{CSet}_{π} for the category of classified sets over $\pi\subseteq\mathcal{L}$

and
$$lpha:\pi\subseteq\pi'$$
 for the $eta:\pi'\subseteq\pi''$

unique morphisms in $\mathcal{P}(\mathcal{L})$ we have the two cohesive situation on the right.

It's a functor

$$\mathcal{P}(\mathcal{L})^{\operatorname{op}} \longrightarrow \operatorname{\mathbf{Coh}}$$

Theorem: the category of classified sets over $\mathcal{L} \cup \pi$ is **cohesive** over the category of classified sets over \mathcal{L} and satisfies **contractible codiscreteness**.

Three fundamental equations

Observation: These suffice to prove all the laws I have needed so far.

The laws for ∫ ¬ □ ¬ ♦

Proposition 21.

(1) If
$$\pi \cap \pi' = \emptyset$$
, then $\square_{\pi} \square_{\pi'} = \square_{\pi \cup \pi'}$.

(2) If
$$\pi \cap \pi' = \emptyset$$
, then $\blacklozenge_{\pi} \blacklozenge_{\pi'} = \blacklozenge_{\pi \cup \pi'}$.

$$(3) \ \square_{\pi}\square_{\pi'} = \square_{\pi\cup\pi'}$$

$$(4) \ \blacklozenge_{\pi} \blacklozenge_{\pi'} = \blacklozenge_{\pi \cup \pi'}$$

(5) If
$$\pi \subseteq \pi'$$
, then $\square_{\pi'} \blacklozenge_{\pi} = \square_{\pi'}$.

(6) If
$$\pi \subseteq \pi'$$
, then $\blacklozenge_{\pi'} \square_{\pi} = \blacklozenge_{\pi'}$.

(7) If
$$\pi \cap \pi' = \emptyset$$
, then $\square_{\pi} \blacklozenge_{\pi'} = \blacklozenge_{\pi'} \square_{\pi}$.

$$(8) \ \square_{\pi} \ \blacklozenge_{\pi'} = \blacklozenge_{\pi'-\pi} \ \square_{\pi}.$$

$$(9) \ \blacklozenge_{\pi} \ \square_{\pi'} = \square_{\pi'-\pi} \ \blacklozenge_{\pi}.$$

Conclusions

- One of the most abstract/philosophical parts of categorical algebra, namely axiomatic cohesion, is a practical theory of information flow.
 - ♣ It can be used to prove properties of LBIFC...
 - ... and, hopefully, it can inspire new languages for LBIFC.
- Despite the looks of it, categorical algebra as a way to reason about programming is still largely unexplored territory.
- ❖ Multi-modal type theories have intuitive categorical semantics.